1
|
Lyu H, Chamberlin HM. Functional distinction in oncogenic Ras variant activity in Caenorhabditis elegans. Dis Model Mech 2024; 17:dmm050577. [PMID: 38946472 PMCID: PMC11340813 DOI: 10.1242/dmm.050577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/21/2024] [Indexed: 07/02/2024] Open
Abstract
Ras genes are important oncogenes that are frequently mutated in cancer. Human oncogenic variants exhibit functional distinctions in terms of their representation in different cancer types, impact on cellular targets and sensitivity to pharmacological treatments. However, how these distinct variants influence and respond to the cellular networks in which they are embedded is poorly understood. To identify novel participants in the complex interplay between Ras genotype and cell interaction networks in vivo, we have developed and tested an experimental framework using a simple vulva-development assay in the nematode C. elegans. Using this system, we evaluated a set of Ras oncogenic substitution changes at G12, G13 and Q61. We found that these variants fall into distinct groups based on phenotypic differences, sensitivity to gene dosage and inhibition of the downstream kinase MEK and their response to genetic modulators that influence Ras activity in a non-autonomous manner. Together, our results demonstrated that oncogenic C. elegans Ras variants exhibit clear distinctions in how they interface with the vulva-development network and showed that extracellular modulators yield variant-restricted effects in vivo.
Collapse
Affiliation(s)
- Haimeng Lyu
- Department of Molecular Genetics, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Helen M. Chamberlin
- Department of Molecular Genetics, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Jhaveri N, Gupta B. Characterization of two new C. briggsae multivulva genes. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000859. [PMID: 37383173 PMCID: PMC10293904 DOI: 10.17912/micropub.biology.000859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023]
Abstract
The nematode C. briggsae is an excellent genetic model for comparative and evolutionary studies involving its well-known cousin C. elegans . The vulval system in these two species has been used extensively to investigate genes and pathways involved in cell proliferation and cell differentiation. Here we report initial characterization of two C. briggsae multivulva (Muv) mutants, Cbr-lin(bh1) and Cbr-lin(bh3) .
Collapse
|
3
|
Corchado-Sonera M, Rambani K, Navarro K, Kladney R, Dowdle J, Leone G, Chamberlin HM. Discovery of nonautonomous modulators of activated Ras. G3 GENES|GENOMES|GENETICS 2022; 12:6656354. [PMID: 35929788 PMCID: PMC9526067 DOI: 10.1093/g3journal/jkac200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Communication between mesodermal cells and epithelial cells is fundamental to normal animal development and is frequently disrupted in cancer. However, the genes and processes that mediate this communication are incompletely understood. To identify genes that mediate this communication and alter the proliferation of cells with an oncogenic Ras genotype, we carried out a tissue-specific genome-wide RNAi screen in Caenorhabditis elegans animals bearing a let-60(n1046gf) (RasG13E) allele. The screen identifies 24 genes that, when knocked down in adjacent mesodermal tissue, suppress the increased vulval epithelial cell proliferation defect associated with let-60(n1046gf). Importantly, gene knockdown reverts the mutant animals to a wild-type phenotype. Using chimeric animals, we genetically confirm that 2 of the genes function nonautonomously to revert the let-60(n1046gf) phenotype. The effect is genotype restricted, as knockdown does not alter development in a wild type (let-60(+)) or activated EGF receptor (let-23(sa62gf)) background. Although many of the genes identified encode proteins involved in essential cellular processes, including chromatin formation, ribosome function, and mitochondrial ATP metabolism, knockdown does not alter the normal development or function of targeted mesodermal tissues, indicating that the phenotype derives from specific functions performed by these cells. We show that the genes act in a manner distinct from 2 signal ligand classes (EGF and Wnt) known to influence the development of vulval epithelial cells. Altogether, the results identify genes with a novel function in mesodermal cells required for communicating with and promoting the proliferation of adjacent epithelial cells with an activated Ras genotype.
Collapse
Affiliation(s)
| | - Komal Rambani
- Department of Cancer Biology and Genetics, Ohio State University , Columbus, OH 43210, USA
- Biomedical Sciences Graduate Program, Ohio State University , Columbus, OH 43210, USA
| | - Kristen Navarro
- Department of Molecular Genetics, Ohio State University , Columbus, OH 43210, USA
| | - Raleigh Kladney
- Department of Cancer Biology and Genetics, Ohio State University , Columbus, OH 43210, USA
| | - James Dowdle
- Department of Cancer Biology and Genetics, Ohio State University , Columbus, OH 43210, USA
| | - Gustavo Leone
- Department of Molecular Genetics, Ohio State University , Columbus, OH 43210, USA
- Department of Cancer Biology and Genetics, Ohio State University , Columbus, OH 43210, USA
| | - Helen M Chamberlin
- Department of Molecular Genetics, Ohio State University , Columbus, OH 43210, USA
| |
Collapse
|
4
|
Cabin1 domain-containing gene picd-1 interacts with pry-1/Axin to regulate multiple processes in Caenorhabditis elegans. Sci Rep 2022; 12:12029. [PMID: 35835800 PMCID: PMC9283418 DOI: 10.1038/s41598-022-15873-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
The Axin family of scaffolding proteins control diverse processes, such as facilitating the interactions between cellular components and providing specificity to signaling pathways. While several Axin family members have been discovered in metazoans and shown to play crucial roles, their mechanism of action are not well understood. The Caenorhabditis elegans Axin homolog, pry-1, is a powerful tool for identifying interacting genes and downstream effectors that function in a conserved manner to regulate Axin-mediated signaling. Our lab and others have established pry-1's essential role in developmental processes that affect the reproductive system, seam cells, and a posterior P lineage cell, P11.p. Additionally, pry-1 is crucial for lipid metabolism, stress responses, and aging. In this study, we expanded on our previous work on pry-1 by reporting a novel interacting gene named picd-1 (pry-1-interacting and Cabin1 domain-containing). PICD-1 protein shares sequence conservation with CABIN1, a component of the HUCA complex. Our findings have revealed that PICD-1 is involved in several pry-1-mediated processes, including stress response and lifespan maintenance. picd-1's expression overlapped with that of pry-1 in multiple tissues throughout the lifespan. Furthermore, PRY-1 and PICD-1 inhibited CREB-regulated transcriptional coactivator homolog CRTC-1, which promotes longevity in a calcineurin-dependent manner. Overall, our study has demonstrated that picd-1 is necessary for mediating pry-1 function and provides the basis to investigate whether Cabin-1 domain-containing protein plays a similar role in Axin signaling in other systems.
Collapse
|
5
|
Job Opening for Nucleosome Mechanic: Flexibility Required. Cells 2020; 9:cells9030580. [PMID: 32121488 PMCID: PMC7140402 DOI: 10.3390/cells9030580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/21/2022] Open
Abstract
The nucleus has been studied for well over 100 years, and chromatin has been the intense focus of experiments for decades. In this review, we focus on an understudied aspect of chromatin biology, namely the chromatin fiber polymer’s mechanical properties. In recent years, innovative work deploying interdisciplinary approaches including computational modeling, in vitro manipulations of purified and native chromatin have resulted in deep mechanistic insights into how the mechanics of chromatin might contribute to its function. The picture that emerges is one of a nucleus that is shaped as much by external forces pressing down upon it, as internal forces pushing outwards from the chromatin. These properties may have evolved to afford the cell a dynamic and reversible force-induced communication highway which allows rapid coordination between external cues and internal genomic function.
Collapse
|