1
|
Frail S, Steele-Ogus M, Doenier J, Moulin SL, Braukmann T, Xu S, Yeh E. Genomes of nitrogen-fixing eukaryotes reveal a non-canonical model of organellogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609708. [PMID: 39253440 PMCID: PMC11383321 DOI: 10.1101/2024.08.27.609708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Endosymbiont gene transfer and import of host-encoded proteins are considered hallmarks of organelles necessary for stable integration of two cells. However, newer endosymbiotic models have challenged the origin and timing of such genetic integration during organellogenesis. Epithemia diatoms contain diazoplasts, closely related to recently-described nitrogen-fixing organelles, that are also stably integrated and co-speciating with their host algae. We report genomic analyses of two species, freshwater E.clementina and marine E.pelagica, which are highly divergent but share a common endosymbiotic origin. We found minimal evidence of genetic integration: nonfunctional diazoplast-to-nuclear DNA transfers in the E.clementina genome and 6 host-encoded proteins of unknown function in the E.clementina diazoplast proteome, far fewer than in other recently-acquired organelles. Epithemia diazoplasts are a valuable counterpoint to existing organellogenesis models, demonstrating that endosymbionts can be stably integrated and inherited absent significant genetic integration. The minimal genetic integration makes diazoplasts valuable blueprints for bioengineering endosymbiotic compartments de novo.
Collapse
Affiliation(s)
- Sarah Frail
- Department of Biochemistry, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Melissa Steele-Ogus
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Jon Doenier
- Department of Biochemistry, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Solène L.Y. Moulin
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Tom Braukmann
- Department of Biochemistry, Stanford School of Medicine, Stanford, CA 94305, USA
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Shouling Xu
- Department of Plant Biology, Carnegie Institution, Stanford, CA 94305, USA
| | - Ellen Yeh
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology & Immunology, Stanford School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, California 94158, USA
- Lead contact
- Senior author
| |
Collapse
|
2
|
Huang X, He H, Li Z, Liu C, Jiang B, Huang Y, Su Y, Li W. Screening and effects of intestinal probiotics on growth performance, gut health, immunity, and disease resistance of Nile tilapia (Oreochromis niloticus) against Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109668. [PMID: 38838837 DOI: 10.1016/j.fsi.2024.109668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
In the present study, 59 autochthonous bacteria were isolated from the intestine of tilapia. Following enzyme producing activity, antagonistic ability, hemolytic activity, drug sensitivity assessments, and in vivo safety evaluation, 7 potential probiotic strains were screened out: Bacillus tequilensis BT0825-2 (BT), Bacillus aryabhattai BA0829-3 (BA1), Bacillus megaterium BM0505-6 (BM), Bacillus velezensis BV0505-11 (BV), Bacillus licheniformis BL0505-18 (BL), B. aryabhattai BA0505-19 (BA2), and Lactococcus lactis LL0306-15 (LL). Subsequently, tilapia were fed basal diets (CT) and basal diets supplemented with 108 CFU/g of BT, BA1, BM, BV, BL, BA2 and LL, respectively. After 56 days of continuous feeding, the growth parameters (weight gain, final weight, and specific growth rate) showed significant improvement (p < 0.05) in both BM and BA2 groups. The total cholesterol and triglycerides of serum were significantly decreased in BV and LL groups (p < 0.05). The superoxide dismutase, glutathione reductase, and lysozyme of BV, BA2 and LL groups were increased, and the malondialdehyde of BV group was significantly decreased. The villous height and amylase of midgut were increased in BV, BA2 and LL groups. In addition, the expression levels of ZO-1 and occludin genes in the midgut of tilapia were enhanced in BM, BV, BA2 and LL groups. The supplementation of probiotics reduced the abundance of Cyanobacteria and increased the abundance of Actinobacteria at the phylum level. At the genus level, the addition of probiotics increased the abundance of Romboutsia. Furthermore, improvement in the expression of immune-related genes were observed, including interleukin 1β, interleukin 10, tumor necrosis factor alpha, and transforming growth factor beta (p < 0.05). After challenging with S. agalactiae, the survival rates of BV, BA2 and LL groups were significantly higher than CT group (p < 0.05). Above results indicated that BM, BA2, BV and LL improved growth performance, gut health or immunity of tilapia, which can be applied in tilapia aquaculture.
Collapse
Affiliation(s)
- Xinzhi Huang
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Huanrong He
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Zehong Li
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Chun Liu
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Biao Jiang
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yanhua Huang
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Youlu Su
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| | - Wei Li
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
3
|
Gabr A, Stephens TG, Reinfelder JR, Liau P, Calatrava V, Grossman AR, Bhattacharya D. Evidence of a putative CO 2 delivery system to the chromatophore in the photosynthetic amoeba Paulinella. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13304. [PMID: 38923306 PMCID: PMC11194058 DOI: 10.1111/1758-2229.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
The photosynthetic amoeba, Paulinella provides a recent (ca. 120 Mya) example of primary plastid endosymbiosis. Given the extensive data demonstrating host lineage-driven endosymbiont integration, we analysed nuclear genome and transcriptome data to investigate mechanisms that may have evolved in Paulinella micropora KR01 (hereinafter, KR01) to maintain photosynthetic function in the novel organelle, the chromatophore. The chromatophore is of α-cyanobacterial provenance and has undergone massive gene loss due to Muller's ratchet, but still retains genes that encode the ancestral α-carboxysome and the shell carbonic anhydrase, two critical components of the biophysical CO2 concentrating mechanism (CCM) in cyanobacteria. We identified KR01 nuclear genes potentially involved in the CCM that arose via duplication and divergence and are upregulated in response to high light and downregulated under elevated CO2. We speculate that these genes may comprise a novel CO2 delivery system (i.e., a biochemical CCM) to promote the turnover of the RuBisCO carboxylation reaction and counteract photorespiration. We posit that KR01 has an inefficient photorespiratory system that cannot fully recycle the C2 product of RuBisCO oxygenation back to the Calvin-Benson cycle. Nonetheless, both these systems appear to be sufficient to allow Paulinella to persist in environments dominated by faster-growing phototrophs.
Collapse
Affiliation(s)
- Arwa Gabr
- Graduate Program in Molecular Bioscience and Program in Microbiology and Molecular GeneticsRutgers UniversityNew BrunswickNew JerseyUSA
| | - Timothy G. Stephens
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNew JerseyUSA
| | - John R. Reinfelder
- Department of Environmental SciencesRutgers UniversityNew BrunswickNew JerseyUSA
| | - Pinky Liau
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNew JerseyUSA
| | - Victoria Calatrava
- Department of Plant BiologyThe Carnegie Institution for ScienceStanfordCaliforniaUSA
| | - Arthur R. Grossman
- Department of Plant BiologyThe Carnegie Institution for ScienceStanfordCaliforniaUSA
| | | |
Collapse
|
4
|
Queiroz VF, Tatara JM, Botelho BB, Rodrigues RAL, Almeida GMDF, Abrahao JS. The consequences of viral infection on protists. Commun Biol 2024; 7:306. [PMID: 38462656 PMCID: PMC10925606 DOI: 10.1038/s42003-024-06001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
Protists encompass a vast widely distributed group of organisms, surpassing the diversity observed in metazoans. Their diverse ecological niches and life forms are intriguing characteristics that render them valuable subjects for in-depth cell biology studies. Throughout history, viruses have played a pivotal role in elucidating complex cellular processes, particularly in the context of cellular responses to viral infections. In this comprehensive review, we provide an overview of the cellular alterations that are triggered in specific hosts following different viral infections and explore intricate biological interactions observed in experimental conditions using different host-pathogen groups.
Collapse
Affiliation(s)
- Victoria Fulgencio Queiroz
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Miranda Tatara
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Bruna Barbosa Botelho
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Araújo Lima Rodrigues
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Magno de Freitas Almeida
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Jonatas Santos Abrahao
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
Lee J, Yang JH, Weber APM, Bhattacharya D, Kim WY, Yoon HS. Diurnal Rhythms in the Red Seaweed Gracilariopsis chorda are Characterized by Unique Regulatory Networks of Carbon Metabolism. Mol Biol Evol 2024; 41:msae012. [PMID: 38267085 PMCID: PMC10853006 DOI: 10.1093/molbev/msae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Cellular and physiological cycles are driven by endogenous pacemakers, the diurnal and circadian rhythms. Key functions such as cell cycle progression and cellular metabolism are under rhythmic regulation, thereby maintaining physiological homeostasis. The photoreceptors phytochrome and cryptochrome, in response to light cues, are central input pathways for physiological cycles in most photosynthetic organisms. However, among Archaeplastida, red algae are the only taxa that lack phytochromes. Current knowledge about oscillatory rhythms is primarily derived from model species such as Arabidopsis thaliana and Chlamydomonas reinhardtii in the Viridiplantae, whereas little is known about these processes in other clades of the Archaeplastida, such as the red algae (Rhodophyta). We used genome-wide expression profiling of the red seaweed Gracilariopsis chorda and identified 3,098 rhythmic genes. Here, we characterized possible cryptochrome-based regulation and photosynthetic/cytosolic carbon metabolism in this species. We found a large family of cryptochrome genes in G. chorda that display rhythmic expression over the diurnal cycle and may compensate for the lack of phytochromes in this species. The input pathway gates regulatory networks of carbon metabolism which results in a compact and efficient energy metabolism during daylight hours. The system in G. chorda is distinct from energy metabolism in most plants, which activates in the dark. The green lineage, in particular, land plants, balance water loss and CO2 capture in terrestrial environments. In contrast, red seaweeds maintain a reduced set of photoreceptors and a compact cytosolic carbon metabolism to thrive in the harsh abiotic conditions typical of intertidal zones.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu 41566, Korea
- Kyungpook Institute of Oceanography, Kyungpook National University, Daegu 41566, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 four), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
6
|
Nomura M, Ohta K, Nishigami Y, Nakayama T, Nakamura KI, Tadakuma K, Galipon J. Three-dimensional architecture and assembly mechanism of the egg-shaped shell in testate amoeba Paulinella micropora. Front Cell Dev Biol 2023; 11:1232685. [PMID: 37731817 PMCID: PMC10507277 DOI: 10.3389/fcell.2023.1232685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Unicellular euglyphid testate amoeba Paulinella micropora with filose pseudopodia secrete approximately 50 siliceous scales into the extracellular template-free space to construct a shell isomorphic to that of its mother cell. This shell-constructing behavior is analogous to building a house with bricks, and a complex mechanism is expected to be involved for a single-celled amoeba to achieve such a phenomenon; however, the three-dimensional (3D) structure of the shell and its assembly in P. micropora are still unknown. In this study, we aimed to clarify the positional relationship between the cytoplasmic and extracellular scales and the structure of the egg-shaped shell in P. micropora during shell construction using focused ion beam scanning electron microscopy (FIB-SEM). 3D reconstruction revealed an extensive invasion of the electron-dense cytoplasm between the long sides of the positioned and stacked scales, which was predicted to be mediated by actin filament extension. To investigate the architecture of the shell of P. micropora, each scale was individually segmented, and the position of its centroid was plotted. The scales were arranged in a left-handed, single-circular ellipse in a twisted arrangement. In addition, we 3D printed individual scales and assembled them, revealing new features of the shell assembly mechanism of P. micropora. Our results indicate that the shell of P. micropora forms an egg shape by the regular stacking of precisely designed scales, and that the cytoskeleton is involved in the construction process.
Collapse
Affiliation(s)
- Mami Nomura
- Faculty of Science, Yamagata University, Yamagata, Japan
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, Japan
| | - Yukinori Nishigami
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Takuro Nakayama
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, Japan
| | - Kenjiro Tadakuma
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Tough Cyberphysical AI Research Center, Tohoku University, Sendai, Japan
| | - Josephine Galipon
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Institute for Advanced Sciences, Keio University, Tsuruoka, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Japan
- Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| |
Collapse
|
7
|
Macorano L, Binny TM, Spiegl T, Klimenko V, Singer A, Oberleitner L, Applegate V, Seyffert S, Stefanski A, Gremer L, Gertzen CGW, Höppner A, Smits SHJ, Nowack ECM. DNA-binding and protein structure of nuclear factors likely acting in genetic information processing in the Paulinella chromatophore. Proc Natl Acad Sci U S A 2023; 120:e2221595120. [PMID: 37364116 PMCID: PMC10319021 DOI: 10.1073/pnas.2221595120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The chromatophores in Paulinella are evolutionary-early-stage photosynthetic organelles. Biological processes in chromatophores depend on a combination of chromatophore and nucleus-encoded proteins. Interestingly, besides proteins carrying chromatophore-targeting signals, a large arsenal of short chromatophore-targeted proteins (sCTPs; <90 amino acids) without recognizable targeting signals were found in chromatophores. This situation resembles endosymbionts in plants and insects that are manipulated by host-derived antimicrobial peptides. Previously, we identified an expanded family of sCTPs of unknown function, named here "DNA-binding (DB)-sCTPs". DB-sCTPs contain a ~45 amino acid motif that is conserved in some bacterial proteins with predicted functions in DNA processing. Here, we explored antimicrobial activity, DNA-binding capacity, and structures of three purified recombinant DB-sCTPs. All three proteins exhibited antimicrobial activity against bacteria involving membrane permeabilization, and bound to bacterial lipids in vitro. A combination of in vitro assays demonstrated binding of recombinant DB-sCTPs to chromatophore-derived genomic DNA sequences with an affinity in the low nM range. Additionally, we report the 1.2 Å crystal structure of one DB-sCTP. In silico docking studies suggest that helix α2 inserts into the DNA major grove and the exposed residues, that are highly variable between different DB-sCTPs, confer interaction with the DNA bases. Identification of photosystem II subunit CP43 as a potential interaction partner of one DB-sCTP, suggests DB-sCTPs to be involved in more complex regulatory mechanisms. We hypothesize that membrane binding of DB-sCTPs is related to their import into chromatophores. Once inside, they interact with the chromatophore genome potentially providing nuclear control over genetic information processing.
Collapse
Affiliation(s)
- Luis Macorano
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Taniya M. Binny
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Tobias Spiegl
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Victoria Klimenko
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Anna Singer
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Linda Oberleitner
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Violetta Applegate
- Center for Structural Studies, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Sarah Seyffert
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Lothar Gremer
- Institute of Biological Information Processing (IBI-7 Structural Biochemistry) and JuStruct Jülich Center of Structural Biology, Forschungszentrum Jülich, 52428Jülich, Germany
- Institute of Physical Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Christoph G. W. Gertzen
- Center for Structural Studies, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Department of Pharmacy, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Astrid Höppner
- Center for Structural Studies, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Sander H. J. Smits
- Center for Structural Studies, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
- Institute of Biochemistry, Department of Chemistry, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Eva C. M. Nowack
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| |
Collapse
|
8
|
Bellas C, Hackl T, Plakolb MS, Koslová A, Fischer MG, Sommaruga R. Large-scale invasion of unicellular eukaryotic genomes by integrating DNA viruses. Proc Natl Acad Sci U S A 2023; 120:e2300465120. [PMID: 37036967 PMCID: PMC10120064 DOI: 10.1073/pnas.2300465120] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/20/2023] [Indexed: 04/12/2023] Open
Abstract
Eukaryotic genomes contain a variety of endogenous viral elements (EVEs), which are mostly derived from RNA and ssDNA viruses that are no longer functional and are considered to be "genomic fossils." Genomic surveys of EVEs, however, are strongly biased toward animals and plants, whereas protists, which represent the majority of eukaryotic diversity, remain poorly represented. Here, we show that protist genomes harbor tens to thousands of diverse, ~14 to 40 kbp long dsDNA viruses. These EVEs, composed of virophages, Polinton-like viruses, and related entities, have remained hitherto hidden owing to poor sequence conservation between virus groups and their repetitive nature that precluded accurate short-read assembly. We show that long-read sequencing technology is ideal for resolving virus insertions. Many protist EVEs appear intact, and most encode integrases, which suggests that they have actively colonized hosts across the tree of eukaryotes. We also found evidence for gene expression in host transcriptomes and that closely related virophage and Polinton-like virus genomes are abundant in viral metagenomes, indicating that many EVEs are probably functional viruses.
Collapse
Affiliation(s)
| | - Thomas Hackl
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747AGGroningen, The Netherlands
| | | | - Anna Koslová
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120Heidelberg, Germany
| | - Matthias G. Fischer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120Heidelberg, Germany
| | - Ruben Sommaruga
- Department of Ecology, Universität Innsbruck, 6020Innsbruck, Austria
| |
Collapse
|
9
|
Van Etten J, Benites LF, Stephens TG, Yoon HS, Bhattacharya D. Algae obscura: The potential of rare species as model systems. JOURNAL OF PHYCOLOGY 2023; 59:293-300. [PMID: 36764681 DOI: 10.1111/jpy.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 05/28/2023]
Abstract
Model organism research has provided invaluable knowledge about foundational biological principles. However, most of these studies have focused on species that are in high abundance, easy to cultivate in the lab, and represent only a small fraction of extant biodiversity. Here, we present three examples of rare algae with unusual features that we refer to as "algae obscura." The Cyanidiophyceae (Rhodophyta), Glaucophyta, and Paulinella (rhizarian) lineages have all transitioned out of obscurity to become models for fundamental evolutionary research. Insights have been gained into the prevalence and importance of eukaryotic horizontal gene transfer, early Earth microbial community dynamics, primary plastid endosymbiosis, and the origin of Archaeplastida. By reviewing the research that has come from the exploration of these organisms, we demonstrate that underappreciated algae have the potential to help us formulate, refine, and substantiate core hypotheses and that such organisms should be considered when establishing future model systems.
Collapse
Affiliation(s)
- Julia Van Etten
- Graduate Program in Ecology and Evolution, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Luiz Felipe Benites
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
10
|
Bowles AMC, Williamson CJ, Williams TA, Lenton TM, Donoghue PCJ. The origin and early evolution of plants. TRENDS IN PLANT SCIENCE 2023; 28:312-329. [PMID: 36328872 DOI: 10.1016/j.tplants.2022.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Plant (archaeplastid) evolution has transformed the biosphere, but we are only now beginning to learn how this took place through comparative genomics, phylogenetics, and the fossil record. This has illuminated the phylogeny of Archaeplastida, Viridiplantae, and Streptophyta, and has resolved the evolution of key characters, genes, and genomes - revealing that many key innovations evolved long before the clades with which they have been casually associated. Molecular clock analyses estimate that Streptophyta and Viridiplantae emerged in the late Mesoproterozoic to late Neoproterozoic, whereas Archaeplastida emerged in the late-mid Palaeoproterozoic. Together, these insights inform on the coevolution of plants and the Earth system that transformed ecology and global biogeochemical cycles, increased weathering, and precipitated snowball Earth events, during which they would have been key to oxygen production and net primary productivity (NPP).
Collapse
Affiliation(s)
- Alexander M C Bowles
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK; Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK.
| | | | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Timothy M Lenton
- Global Systems Institute, University of Exeter, Laver Building, North Park Road, Exeter EX4 4QE, UK
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK.
| |
Collapse
|
11
|
Phycobilisomes and Phycobiliproteins in the Pigment Apparatus of Oxygenic Photosynthetics: From Cyanobacteria to Tertiary Endosymbiosis. Int J Mol Sci 2023; 24:ijms24032290. [PMID: 36768613 PMCID: PMC9916406 DOI: 10.3390/ijms24032290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Eukaryotic photosynthesis originated in the course of evolution as a result of the uptake of some unstored cyanobacterium and its transformation to chloroplasts by an ancestral heterotrophic eukaryotic cell. The pigment apparatus of Archaeplastida and other algal phyla that emerged later turned out to be arranged in the same way. Pigment-protein complexes of photosystem I (PS I) and photosystem II (PS II) are characterized by uniform structures, while the light-harvesting antennae have undergone a series of changes. The phycobilisome (PBS) antenna present in cyanobacteria was replaced by Chl a/b- or Chl a/c-containing pigment-protein complexes in most groups of photosynthetics. In the form of PBS or phycobiliprotein aggregates, it was inherited by members of Cyanophyta, Cryptophyta, red algae, and photosynthetic amoebae. Supramolecular organization and architectural modifications of phycobiliprotein antennae in various algal phyla in line with the endosymbiotic theory of chloroplast origin are the subject of this review.
Collapse
|
12
|
Bhattacharya D, Etten JV, Benites LF, Stephens TG. Endosymbiotic ratchet accelerates divergence after organelle origin: The Paulinella model for plastid evolution: The Paulinella model for plastid evolution. Bioessays 2023; 45:e2200165. [PMID: 36328783 DOI: 10.1002/bies.202200165] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
We hypothesize that as one of the most consequential events in evolution, primary endosymbiosis accelerates lineage divergence, a process we refer to as the endosymbiotic ratchet. Our proposal is supported by recent work on the photosynthetic amoeba, Paulinella, that underwent primary plastid endosymbiosis about 124 Mya. This amoeba model allows us to explore the early impacts of photosynthetic organelle (plastid) origin on the host lineage. The current data point to a central role for effective population size (Ne ) in accelerating divergence post-endosymbiosis due to limits to dispersal and reproductive isolation that reduce Ne , leading to local adaptation. We posit that isolated populations exploit different strategies and behaviors and assort themselves in non-overlapping niches to minimize competition during the early, rapid evolutionary phase of organelle integration. The endosymbiotic ratchet provides a general framework for interpreting post-endosymbiosis lineage evolution that is driven by disruptive selection and demographic and population shifts. Also see the video abstract here: https://youtu.be/gYXrFM6Zz6Q.
Collapse
Affiliation(s)
- Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Julia Van Etten
- Graduate Program in Ecology and Evolution, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - L Felipe Benites
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
13
|
Loss of key endosymbiont genes may facilitate early host control of the chromatophore in Paulinella. iScience 2022; 25:104974. [PMID: 36093053 PMCID: PMC9450145 DOI: 10.1016/j.isci.2022.104974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 01/12/2023] Open
Abstract
The primary plastid endosymbiosis (∼124 Mya) that occurred in the heterotrophic amoeba lineage, Paulinella, is at an earlier stage of evolution than in Archaeplastida, and provides an excellent model for studying organelle integration. Using genomic data from photosynthetic Paulinella, we identified a plausible mechanism for the evolution of host control of endosymbiont (termed the chromatophore) biosynthetic pathways and functions. Specifically, random gene loss from the chromatophore and compensation by nuclear-encoded gene copies enables host control of key pathways through a minimal number of evolutionary innovations. These gene losses impact critical enzymatic steps in nucleotide biosynthesis and the more peripheral components of multi-protein DNA replication complexes. Gene retention in the chromatophore likely reflects the need to maintain a specific stoichiometric balance of the encoded products (e.g., involved in DNA replication) rather than redox state, as in the highly reduced plastid genomes of algae and plants. Endosymbiont DNA replication cannot be completed without several key host proteins Endosymbiont nucleotide biosynthesis is completed by import of host proteins Limited gene loss allowed the host to gain control of endosymbiont division Paulinella regulates chromatophore function using the stringent response pathway
Collapse
|
14
|
An amoeba and a cyanobacterium walk into a bar... Nat Rev Microbiol 2022; 20:511. [PMID: 35835987 DOI: 10.1038/s41579-022-00775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Meinnel T. Tracking N-terminal protein processing from the Golgi to the chromatophore of a rhizarian amoeba. PLANT PHYSIOLOGY 2022; 189:1226-1231. [PMID: 35485189 PMCID: PMC9237673 DOI: 10.1093/plphys/kiac173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/16/2022] [Indexed: 05/03/2023]
Abstract
Mass spectrometry analysis of protein processing in a photosynthetic rhizarian amoeba, Paulinella chromatophora, suggests a major trafficking route from the cytosol to the chromatophore via the Golgi.
Collapse
|
16
|
Calatrava V, Stephens TG, Gabr A, Bhaya D, Bhattacharya D, Grossman AR. Retrotransposition facilitated the establishment of a primary plastid in the thecate amoeba Paulinella. Proc Natl Acad Sci U S A 2022; 119:e2121241119. [PMID: 35639693 PMCID: PMC9191642 DOI: 10.1073/pnas.2121241119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/01/2022] [Indexed: 12/23/2022] Open
Abstract
The evolution of eukaryotic life was predicated on the development of organelles such as mitochondria and plastids. During this complex process of organellogenesis, the host cell and the engulfed prokaryote became genetically codependent, with the integration of genes from the endosymbiont into the host nuclear genome and subsequent gene loss from the endosymbiont. This process required that horizontally transferred genes become active and properly regulated despite inherent differences in genetic features between donor (endosymbiont) and recipient (host). Although this genetic reorganization is considered critical for early stages of organellogenesis, we have little knowledge about the mechanisms governing this process. The photosynthetic amoeba Paulinella micropora offers a unique opportunity to study early evolutionary events associated with organellogenesis and primary endosymbiosis. This amoeba harbors a “chromatophore,” a nascent photosynthetic organelle derived from a relatively recent cyanobacterial association (∼120 million years ago) that is independent of the evolution of primary plastids in plants (initiated ∼1.5 billion years ago). Analysis of the genome and transcriptome of Paulinella revealed that retrotransposition of endosymbiont-derived nuclear genes was critical for their domestication in the host. These retrocopied genes involved in photoprotection in cyanobacteria became expanded gene families and were “rewired,” acquiring light-responsive regulatory elements that function in the host. The establishment of host control of endosymbiont-derived genes likely enabled the cell to withstand photo-oxidative stress generated by oxygenic photosynthesis in the nascent organelle. These results provide insights into the genetic mechanisms and evolutionary pressures that facilitated the metabolic integration of the host–endosymbiont association and sustained the evolution of a photosynthetic organelle.
Collapse
Affiliation(s)
- Victoria Calatrava
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305
| | - Timothy G. Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901
| | - Arwa Gabr
- Graduate Program in Molecular Biosciences, Program in Microbiology and Molecular Genetics, Rutgers University, Piscataway, NJ 08854
| | - Devaki Bhaya
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305
| |
Collapse
|
17
|
Gabr A, Stephens TG, Bhattacharya D. Hypothesis: Trans-splicing Generates Evolutionary Novelty in the Photosynthetic Amoeba Paulinella. JOURNAL OF PHYCOLOGY 2022; 58:392-405. [PMID: 35255163 PMCID: PMC9311404 DOI: 10.1111/jpy.13247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 05/19/2023]
Abstract
Plastid primary endosymbiosis has occurred twice, once in the Archaeplastida ancestor and once in the Paulinella (Rhizaria) lineage. Both events precipitated massive evolutionary changes, including the recruitment and activation of genes that are horizontally acquired (HGT) and the redeployment of existing genes and pathways in novel contexts. Here we address the latter aspect in Paulinella micropora KR01 (hereafter, KR01) that has independently evolved spliced leader (SL) trans-splicing (SLTS) of nuclear-derived transcripts. We investigated the role of this process in gene regulation, novel gene origination, and endosymbiont integration. Our analysis shows that 20% of KR01 genes give rise to transcripts with at least one (but in some cases, multiple) sites of SL addition. This process, which often occurs at canonical cis-splicing acceptor sites (internal introns), results in shorter transcripts that may produce 5'-truncated proteins with novel functions. SL-truncated transcripts fall into four categories that may show: (i) altered protein localization, (ii) altered protein function, structure, or regulation, (iii) loss of valid alternative start codons, preventing translation, or (iv) multiple SL addition sites at the 5'-terminus. The SL RNA genes required for SLTS are putatively absent in the heterotrophic sister lineage of photosynthetic Paulinella species. Moreover, a high proportion of transcripts derived from genes of endosymbiotic gene transfer (EGT) and HGT origin contain SL sequences. We hypothesize that truncation of transcripts by SL addition may facilitate the generation and expression of novel gene variants and that SLTS may have enhanced the activation and fixation of foreign genes in the host genome of the photosynthetic lineages, playing a key role in primary endosymbiont integration.
Collapse
Affiliation(s)
- Arwa Gabr
- Graduate Program in Molecular Bioscience and Program in Microbiology and Molecular GeneticsRutgers UniversityNew BrunswickNew Jersey08901USA
| | - Timothy G. Stephens
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNew Jersey08901USA
| | - Debashish Bhattacharya
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNew Jersey08901USA
| |
Collapse
|
18
|
Oberleitner L, Perrar A, Macorano L, Huesgen PF, Nowack ECM. A bipartite chromatophore transit peptide and N-terminal protein processing in the Paulinella chromatophore. PLANT PHYSIOLOGY 2022; 189:152-164. [PMID: 35043947 PMCID: PMC9070848 DOI: 10.1093/plphys/kiac012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/06/2021] [Indexed: 05/19/2023]
Abstract
The amoeba Paulinella chromatophora contains photosynthetic organelles, termed chromatophores, which evolved independently from plastids in plants and algae. At least one-third of the chromatophore proteome consists of nucleus-encoded (NE) proteins that are imported across the chromatophore double envelope membranes. Chromatophore-targeted proteins exceeding 250 amino acids (aa) carry a conserved N-terminal extension presumably involved in protein targeting, termed the chromatophore transit peptide (crTP). Short imported proteins do not carry discernable targeting signals. To explore whether the import of proteins is accompanied by their N-terminal processing, here we identified N-termini of 208 chromatophore-localized proteins by a mass spectrometry-based approach. Our study revealed extensive N-terminal acetylation and proteolytic processing in both NE and chromatophore-encoded (CE) fractions of the chromatophore proteome. Mature N-termini of 37 crTP-carrying proteins were identified, of which 30 were cleaved in a common processing region. Surprisingly, only the N-terminal ∼50 aa (part 1) become cleaved upon import. This part contains a conserved adaptor protein-1 complex-binding motif known to mediate protein sorting at the trans-Golgi network followed by a predicted transmembrane helix, implying that part 1 anchors the protein co-translationally in the endoplasmic reticulum and mediates trafficking to the chromatophore via the Golgi. The C-terminal part 2 contains conserved secondary structural elements, remains attached to the mature proteins, and might mediate translocation across the chromatophore inner membrane. Short imported proteins remain largely unprocessed. Finally, this work illuminates N-terminal processing of proteins encoded in an evolutionary-early-stage organelle and suggests host-derived posttranslationally acting factors involved in regulation of the CE chromatophore proteome.
Collapse
Affiliation(s)
- Linda Oberleitner
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas Perrar
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, 52425 Jülich, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases, CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany
| | - Luis Macorano
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, 52425 Jülich, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases, CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany
- Department of Chemistry, Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany
| | | |
Collapse
|
19
|
Gabr A, Zournas A, Stephens TG, Dismukes GC, Bhattacharya D. Evidence for a robust photosystem II in the photosynthetic amoeba Paulinella. THE NEW PHYTOLOGIST 2022; 234:934-945. [PMID: 35211975 DOI: 10.1111/nph.18052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Paulinella represents the only known case of an independent primary plastid endosymbiosis, outside Archaeplastida, that occurred c. 120 (million years ago) Ma. These photoautotrophs grow very slowly in replete culture medium with a doubling time of 6-7 d at optimal low light, and are highly sensitive to photodamage under moderate light levels. We used genomic and biophysical methods to investigate the extreme slow growth rate and light sensitivity of Paulinella, which are key to photosymbiont integration. All photosystem II (PSII) genes except psb28-2 and all cytochrome b6 f complex genes except petM and petL are present in Paulinella micropora KR01 (hereafter, KR01). Biophysical measurements of the water oxidation complex, variable chlorophyll fluorescence, and photosynthesis-irradiance curves show no obvious evidence of PSII impairment. Analysis of photoacclimation under high-light suggests that although KR01 can perform charge separation, it lacks photoprotection mechanisms present in cyanobacteria. We hypothesize that Paulinella species are restricted to low light environments because they are deficient in mitigating the formation of reactive oxygen species formed within the photosystems under peak solar intensities. The finding that many photoprotection genes have been lost or transferred to the host-genome during endosymbiont genome reduction, and may lack light-regulation, is consistent with this hypothesis.
Collapse
Affiliation(s)
- Arwa Gabr
- Graduate Program in Molecular Bioscience and Program in Microbiology and Molecular Genetics, Rutgers University, Nelson Lab-604 Allison Road, Piscataway, NJ, 08854, USA
| | - Apostolos Zournas
- Graduate Program in Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ, 08854, USA
- The Waksman Institute, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers University, Lipman Drive, New Brunswick, NJ, 08901, USA
| | - G Charles Dismukes
- The Waksman Institute, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, Lipman Drive, New Brunswick, NJ, 08901, USA
| |
Collapse
|
20
|
Abstract
Macorano and Nowack provide an overview of Paulinella chromatophora, a filose amoeba that harbors an organelle called a chromatophore and only the second known case of a eukaryote forming a primary endosymbiosis with a photosynthetic bacterium. Studying this relatively young relationship offers the chance to study the early stages of endosymbiosis.
Collapse
Affiliation(s)
- Luis Macorano
- Institute for Microbial Cell Biology, Biology Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Eva C M Nowack
- Institute for Microbial Cell Biology, Biology Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
21
|
Stephens TG, Gabr A, Calatrava V, Grossman AR, Bhattacharya D. Why is primary endosymbiosis so rare? THE NEW PHYTOLOGIST 2021; 231:1693-1699. [PMID: 34018613 PMCID: PMC8711089 DOI: 10.1111/nph.17478] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/05/2021] [Indexed: 05/05/2023]
Abstract
Endosymbiosis is a relationship between two organisms wherein one cell resides inside the other. This affiliation, when stable and beneficial for the 'host' cell, can result in massive genetic innovation with the foremost examples being the evolution of eukaryotic organelles, the mitochondria and plastids. Despite its critical evolutionary role, there is limited knowledge about how endosymbiosis is initially established and how host-endosymbiont biology is integrated. Here, we explore this issue, using as our model the rhizarian amoeba Paulinella, which represents an independent case of primary plastid origin that occurred c. 120 million yr ago. We propose the 'chassis and engine' model that provides a theoretical framework for understanding primary plastid endosymbiosis, potentially explaining why it is so rare.
Collapse
Affiliation(s)
- Timothy G. Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Arwa Gabr
- Graduate Program in Molecular Bioscience and Program in Microbiology and Molecular Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Victoria Calatrava
- Department of Plant Biology, The Carnegie Institution, Stanford, CA 94305, USA
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution, Stanford, CA 94305, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
22
|
Lhee D, Bhattacharya D, Yoon HS. Independent evolution of the thioredoxin system in photosynthetic Paulinella species. Curr Biol 2021; 31:R328-R329. [PMID: 33848483 DOI: 10.1016/j.cub.2021.02.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Redox regulation allows phytoplankton to monitor and stabilize metabolic pathways under changing conditions1. In plastids, the thioredoxin (TRX) system is linked to photosynthetic electron transport and fine tuning of metabolic pathways to fluctuating light levels. Expansion of the number of redox signal transmitters and their protein targets, as seen in plants, is believed to increase cell robustness2. In this study, we searched for genes related to redox regulation in the photosynthetic amoeba Paulinella micropora KR01 (hereafter, KR01). The genus Paulinella includes testate filose amoebae, in which a single clade acquired a photosynthetic organelle, the chromatophore, from an alpha-cyanobacterial donor3. This independent primary endosymbiosis occurred relatively recently (∼124 million years ago) when compared to Archaeplastida (>1 billion years ago), making photosynthetic Paulinella a valuable model for studying the early stages of primary endosymbiosis4. Our comparative analysis demonstrates that this lineage has evolved a TRX system similar to other algae, relying, however, on genes with diverse phylogenetic origins (including the endosymbiont, host, bacteria, and red algae). One TRX of eukaryotic provenance is targeted to the chromatophore, implicating host-endosymbiont coordination of redox regulation. A chromatophore-targeted glucose-6-phosphate dehydrogenase (G6PDH) of red algal origin suggests that Paulinella exploited the existing redox regulation system in Archaeplastida to foster integration. Our study elucidates the independent evolution of the TRX system in photosynthetic Paulinella, whose parts derive from the existing genetic toolkit in diverse organisms.
Collapse
Affiliation(s)
- Duckhyun Lhee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|