1
|
Campos LRS, Trefflich S, Morais DAA, Imparato DO, Chagas VS, Albanus RD, Dalmolin RJS, Castro MAA. Bridge: A New Algorithm for Rooting Orthologous Genes in Large-Scale Evolutionary Analyses. Mol Biol Evol 2024; 41:msae019. [PMID: 38306290 PMCID: PMC10873778 DOI: 10.1093/molbev/msae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Orthology information has been used for searching patterns in high-dimensional data, allowing transferring functional information between species. The key concept behind this strategy is that orthologous genes share ancestry to some extent. While reconstructing the history of a single gene is feasible with the existing computational resources, the reconstruction of entire biological systems remains challenging. In this study, we present Bridge, a new algorithm designed to infer the evolutionary root of orthologous genes in large-scale evolutionary analyses. The Bridge algorithm infers the evolutionary root of a given gene based on the distribution of its orthologs in a species tree. The Bridge algorithm is implemented in R and can be used either to assess genetic changes across the evolutionary history of orthologous groups or to infer the onset of specific traits in a biological system.
Collapse
Affiliation(s)
- Leonardo R S Campos
- Bioinformatics Multidisciplinary Environment–BioME, IMD, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sheyla Trefflich
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba 81520-260, Brazil
| | - Diego A A Morais
- Bioinformatics Multidisciplinary Environment–BioME, IMD, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Danilo O Imparato
- Bioinformatics Multidisciplinary Environment–BioME, IMD, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Vinicius S Chagas
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba 81520-260, Brazil
| | | | - Rodrigo J S Dalmolin
- Bioinformatics Multidisciplinary Environment–BioME, IMD, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Biochemistry, CB, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Mauro A A Castro
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba 81520-260, Brazil
| |
Collapse
|
2
|
Renner J, Rasia-Filho AA. Morphological Features of Human Dendritic Spines. ADVANCES IN NEUROBIOLOGY 2023; 34:367-496. [PMID: 37962801 DOI: 10.1007/978-3-031-36159-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spine features in human neurons follow the up-to-date knowledge presented in the previous chapters of this book. Human dendrites are notable for their heterogeneity in branching patterns and spatial distribution. These data relate to circuits and specialized functions. Spines enhance neuronal connectivity, modulate and integrate synaptic inputs, and provide additional plastic functions to microcircuits and large-scale networks. Spines present a continuum of shapes and sizes, whose number and distribution along the dendritic length are diverse in neurons and different areas. Indeed, human neurons vary from aspiny or "relatively aspiny" cells to neurons covered with a high density of intermingled pleomorphic spines on very long dendrites. In this chapter, we discuss the phylogenetic and ontogenetic development of human spines and describe the heterogeneous features of human spiny neurons along the spinal cord, brainstem, cerebellum, thalamus, basal ganglia, amygdala, hippocampal regions, and neocortical areas. Three-dimensional reconstructions of Golgi-impregnated dendritic spines and data from fluorescence microscopy are reviewed with ultrastructural findings to address the complex possibilities for synaptic processing and integration in humans. Pathological changes are also presented, for example, in Alzheimer's disease and schizophrenia. Basic morphological data can be linked to current techniques, and perspectives in this research field include the characterization of spines in human neurons with specific transcriptome features, molecular classification of cellular diversity, and electrophysiological identification of coexisting subpopulations of cells. These data would enlighten how cellular attributes determine neuron type-specific connectivity and brain wiring for our diverse aptitudes and behavior.
Collapse
Affiliation(s)
- Josué Renner
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Rasia-Filho AA, Calcagnotto ME, von Bohlen Und Halbach O. Introduction: What Are Dendritic Spines? ADVANCES IN NEUROBIOLOGY 2023; 34:1-68. [PMID: 37962793 DOI: 10.1007/978-3-031-36159-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines are cellular specializations that greatly increase the connectivity of neurons and modulate the "weight" of most postsynaptic excitatory potentials. Spines are found in very diverse animal species providing neural networks with a high integrative and computational possibility and plasticity, enabling the perception of sensorial stimuli and the elaboration of a myriad of behavioral displays, including emotional processing, memory, and learning. Humans have trillions of spines in the cerebral cortex, and these spines in a continuum of shapes and sizes can integrate the features that differ our brain from other species. In this chapter, we describe (1) the discovery of these small neuronal protrusions and the search for the biological meaning of dendritic spines; (2) the heterogeneity of shapes and sizes of spines, whose structure and composition are associated with the fine-tuning of synaptic processing in each nervous area, as well as the findings that support the role of dendritic spines in increasing the wiring of neural circuits and their functions; and (3) within the intraspine microenvironment, the integration and activation of signaling biochemical pathways, the compartmentalization of molecules or their spreading outside the spine, and the biophysical properties that can affect parent dendrites. We also provide (4) examples of plasticity involving dendritic spines and neural circuits relevant to species survival and comment on (5) current research advancements and challenges in this exciting research field.
Collapse
Affiliation(s)
- Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
4
|
Rasia-Filho AA. Unraveling Brain Microcircuits, Dendritic Spines, and Synaptic Processing Using Multiple Complementary Approaches. Front Physiol 2022; 13:831568. [PMID: 35295578 PMCID: PMC8918670 DOI: 10.3389/fphys.2022.831568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 12/21/2022] Open
Affiliation(s)
- Alberto A. Rasia-Filho
- Department of Basic Sciences/Physiology, Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
5
|
de Souza ID, Reis CF, Morais DAA, Fernandes VGS, Cavalcante JVF, Dalmolin RJS. Ancestry analysis indicates two different sets of essential genes in eukaryotic model species. Funct Integr Genomics 2021; 21:523-531. [PMID: 34279742 DOI: 10.1007/s10142-021-00794-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 11/28/2022]
Abstract
Essential genes are so-called because they are crucial for organism perpetuation. Those genes are usually related to essential functions to cellular metabolism or multicellular homeostasis. Deleterious alterations on essential genes produce a spectrum of phenotypes in multicellular organisms. The effects range from the impairment of the fertilization process, disruption of fetal development, to loss of reproductive capacity. Essential genes are described as more evolutionarily conserved than non-essential genes. However, there is no consensus about the relationship between gene essentiality and gene age. Here, we identified essential genes in five model eukaryotic species (Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster, Caenorhabditis elegans, and Mus musculus) and estimate their evolutionary ancestry and their network properties. We observed that essential genes, on average, are older than other genes in all species investigated. The relationship of network properties and gene essentiality convey with previous findings, showing essential genes as important nodes in biological networks. As expected, we also observed that essential orthologs shared by the five species evaluated here are old. However, all the species evaluated here have a specific set of young essential genes not shared among them. Additionally, these two groups of essential genes are involved with distinct biological functions, suggesting two sets of essential genes: (i) a set of old essential genes common to all the evaluated species, regulating basic cellular functions, and (ii) a set of young essential genes exclusive to each species, which perform specific essential functions in each species.
Collapse
Affiliation(s)
- Iara D de Souza
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande Do Norte, Av. Odilon Gomes de Lima, 1722, Capim Macio, Natal, RN, 59078-400, Brazil
| | - Clovis F Reis
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande Do Norte, Av. Odilon Gomes de Lima, 1722, Capim Macio, Natal, RN, 59078-400, Brazil
| | - Diego A A Morais
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande Do Norte, Av. Odilon Gomes de Lima, 1722, Capim Macio, Natal, RN, 59078-400, Brazil
| | - Vítor G S Fernandes
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande Do Norte, Av. Odilon Gomes de Lima, 1722, Capim Macio, Natal, RN, 59078-400, Brazil
| | - João Vitor F Cavalcante
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande Do Norte, Av. Odilon Gomes de Lima, 1722, Capim Macio, Natal, RN, 59078-400, Brazil
| | - Rodrigo J S Dalmolin
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande Do Norte, Av. Odilon Gomes de Lima, 1722, Capim Macio, Natal, RN, 59078-400, Brazil. .,Department of Biochemistry - CB, Federal University of Rio Grande Do Norte, Campus Universitário UFRN, Lagoa Nova, Natal, RN, 59078-970, Brazil.
| |
Collapse
|