1
|
Kuang Z, Li F, Duan Q, Tian C, Nevo E, Li K. Host diet shapes functionally differentiated gut microbiomes in sympatric speciation of blind mole rats in Upper Galilee, Israel. Front Microbiol 2022; 13:1062763. [PMID: 36458196 PMCID: PMC9707624 DOI: 10.3389/fmicb.2022.1062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiome is important for host nutrient metabolism and ecological adaptation. However, how the gut microbiome is affected by host phylogeny, ecology and diet during sympatric speciation remain unclear. Here, we compare and contrast the gut microbiome of two sympatric blind mole rat species and correlate them with their corresponding host phylogeny, ecology soil metagenomes, and diet to determine how these factors may influence their gut microbiome. Our results indicate that within the host microbiome there is no significant difference in community composition, but the functions between the two sympatric species populations vary significantly. No significant correlations were found between the gut microbiome differentiation and their corresponding ecological soil metagenomes and host phylogeny. Functional enrichment analysis suggests that the host diets may account for the functional divergence of the gut microbiome. Our results will help us understand how the gut microbiome changes with corresponding ecological dietary factors in sympatric speciation of blind subterranean mole rats.
Collapse
Affiliation(s)
- Zhuoran Kuang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Fang Li
- Department of Zoology, College of Life Sciences and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Qijiao Duan
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Cuicui Tian
- Northwest Surveying and Planning Institute of National Forestry and Grassland Administration, Xi’an, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Kexin Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Itoigawa A, Hayakawa T, Zhou Y, Manning AD, Zhang G, Grutzner F, Imai H. Functional Diversity and Evolution of Bitter Taste Receptors in Egg-Laying Mammals. Mol Biol Evol 2022; 39:6591311. [PMID: 35652727 PMCID: PMC9161717 DOI: 10.1093/molbev/msac107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Egg-laying mammals (monotremes) are a sister clade of therians (placental mammals and marsupials) and a key clade to understand mammalian evolution. They are classified into platypus and echidna, which exhibit distinct ecological features such as habitats and diet. Chemosensory genes, which encode sensory receptors for taste and smell, are believed to adapt to the individual habitats and diet of each mammal. In this study, we focused on the molecular evolution of bitter taste receptors (TAS2Rs) in monotremes. The sense of bitter taste is important to detect potentially harmful substances. We comprehensively surveyed agonists of all TAS2Rs in platypus (Ornithorhynchus anatinus) and short-beaked echidna (Tachyglossus aculeatus) and compared their functions with orthologous TAS2Rs of marsupial and placental mammals (i.e., therians). As results, the agonist screening revealed that the deorphanized monotreme receptors were functionally diversified. Platypus TAS2Rs had broader receptive ranges of agonists than those of echidna TAS2Rs. While platypus consumes a variety of aquatic invertebrates, echidna mainly consumes subterranean social insects (ants and termites) as well as other invertebrates. This result indicates that receptive ranges of TAS2Rs could be associated with feeding habits in monotremes. Furthermore, some orthologous receptors in monotremes and therians responded to β-glucosides, which are feeding deterrents in plants and insects. These results suggest that the ability to detect β-glucosides and other substances might be shared and ancestral among mammals.
Collapse
Affiliation(s)
- Akihiro Itoigawa
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan.,Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan.,Japan Monkey Centre, Inuyama, Aichi, Japan
| | | | - Adrian D Manning
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | - Guojie Zhang
- Department of Biology, University of Copenhagen, Kobenhavn, Denmark
| | - Frank Grutzner
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Hiroo Imai
- Molecular Biology Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan
| |
Collapse
|
3
|
Satjarak A, Golinski GK, Trest MT, Graham LE. Microbiome and related structural features of Earth's most archaic plant indicate early plant symbiosis attributes. Sci Rep 2022; 12:6423. [PMID: 35443766 PMCID: PMC9021317 DOI: 10.1038/s41598-022-10186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
Origin of earliest land plants from ancestral algae dramatically accelerated the evolution of Earth’s terrestrial ecosystems, in which microbial symbioses have played key roles. Recent molecular diversification analyses identify the rare, geographically-limited moss Takakia as Earth’s most archaic modern land plant. Despite occupying a phylogenetic position pivotal for understanding earliest plants, Takakia microbial associations are poorly known. Here, we describe symbiosis-related structural features and contig-based metagenomic data that illuminate the evolutionary transition from streptophyte algae to early embryophytes. We observed that T. lepidozioides shares with streptophyte algae secretion of microbe-harboring mucilage and bacterial taxa such as Rhizobium and genes indicating nitrogen fixation. We find that Takakia root-analogs produce lateral mucilage organs that are more complex than generally understood, having structural analogies to angiosperm lateral roots adapted for N-fixation symbioses, including presence of intracellular microbes. We also find structural and metagenomic evidence for mycorrhiza-like species of glomalean fungi (including Rhizophagus irregularis) not previously known for mosses, as well as ascomycete fungi (e.g. Rhizoscyphus ericae) that associate with other early-diverging plants. Because Takakia is the oldest known modern plant genus, this study of plants of a remote locale not strongly influenced by human activities may indicate microbiome features of early land plants.
Collapse
Affiliation(s)
- Anchittha Satjarak
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| | - G Karen Golinski
- University of British Columbia Herbarium, Beaty Biodiversity Museum, University of British Columbia, Vancouver, BC, Canada.,Department of Botany, Smithsonian National Museum of Natural History, Washington, DC, USA
| | - Marie T Trest
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | - Linda E Graham
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|