1
|
Temple SD, Waples RK, Browning SR. Modeling recent positive selection using identity-by-descent segments. Am J Hum Genet 2024; 111:2510-2529. [PMID: 39362217 DOI: 10.1016/j.ajhg.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Recent positive selection can result in an excess of long identity-by-descent (IBD) haplotype segments overlapping a locus. The statistical methods that we propose here address three major objectives in studying selective sweeps: scanning for regions of interest, identifying possible sweeping alleles, and estimating a selection coefficient s. First, we implement a selection scan to locate regions with excess IBD rates. Second, we estimate the allele frequency and location of an unknown sweeping allele by aggregating over variants that are more abundant in an inferred outgroup with excess IBD rate versus the rest of the sample. Third, we propose an estimator for the selection coefficient and quantify uncertainty using the parametric bootstrap. Comparing against state-of-the-art methods in extensive simulations, we show that our methods are more precise at estimating s when s≥0.015. We also show that our 95% confidence intervals contain s in nearly 95% of our simulations. We apply these methods to study positive selection in European ancestry samples from the Trans-Omics for Precision Medicine project. We analyze eight loci where IBD rates are more than four standard deviations above the genome-wide median, including LCT where the maximum IBD rate is 35 standard deviations above the genome-wide median. Overall, we present robust and accurate approaches to study recent adaptive evolution without knowing the identity of the causal allele or using time series data.
Collapse
Affiliation(s)
- Seth D Temple
- Department of Statistics, University of Washington, Seattle, WA, USA.
| | - Ryan K Waples
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Sharon R Browning
- Department of Biostatistics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Whitehouse LS, Ray D, Schrider DR. Tree sequences as a general-purpose tool for population genetic inference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.20.581288. [PMID: 39185244 PMCID: PMC11343121 DOI: 10.1101/2024.02.20.581288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
As population genetics data increases in size new methods have been developed to store genetic information in efficient ways, such as tree sequences. These data structures are computationally and storage efficient, but are not interchangeable with existing data structures used for many population genetic inference methodologies such as the use of convolutional neural networks (CNNs) applied to population genetic alignments. To better utilize these new data structures we propose and implement a graph convolutional network (GCN) to directly learn from tree sequence topology and node data, allowing for the use of neural network applications without an intermediate step of converting tree sequences to population genetic alignment format. We then compare our approach to standard CNN approaches on a set of previously defined benchmarking tasks including recombination rate estimation, positive selection detection, introgression detection, and demographic model parameter inference. We show that tree sequences can be directly learned from using a GCN approach and can be used to perform well on these common population genetics inference tasks with accuracies roughly matching or even exceeding that of a CNN-based method. As tree sequences become more widely used in population genetics research we foresee developments and optimizations of this work to provide a foundation for population genetics inference moving forward.
Collapse
Affiliation(s)
- Logan S. Whitehouse
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA, 120 Mason Farm Rd, Chapel Hill, NC 27514
| | - Dylan Ray
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA, 120 Mason Farm Rd, Chapel Hill, NC 27514
| | - Daniel R. Schrider
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA, 120 Mason Farm Rd, Chapel Hill, NC 27514
| |
Collapse
|
3
|
Wong Y, Ignatieva A, Koskela J, Gorjanc G, Wohns AW, Kelleher J. A general and efficient representation of ancestral recombination graphs. Genetics 2024; 228:iyae100. [PMID: 39013109 PMCID: PMC11373519 DOI: 10.1093/genetics/iyae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 07/18/2024] Open
Abstract
As a result of recombination, adjacent nucleotides can have different paths of genetic inheritance and therefore the genealogical trees for a sample of DNA sequences vary along the genome. The structure capturing the details of these intricately interwoven paths of inheritance is referred to as an ancestral recombination graph (ARG). Classical formalisms have focused on mapping coalescence and recombination events to the nodes in an ARG. However, this approach is out of step with some modern developments, which do not represent genetic inheritance in terms of these events or explicitly infer them. We present a simple formalism that defines an ARG in terms of specific genomes and their intervals of genetic inheritance, and show how it generalizes these classical treatments and encompasses the outputs of recent methods. We discuss nuances arising from this more general structure, and argue that it forms an appropriate basis for a software standard in this rapidly growing field.
Collapse
Affiliation(s)
- Yan Wong
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Anastasia Ignatieva
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8TA, UK
- Department of Statistics, University of Oxford, Oxford OX1 3LB, UK
| | - Jere Koskela
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle NE1 7RU, UK
- Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Gregor Gorjanc
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Anthony W Wohns
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
| | - Jerome Kelleher
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| |
Collapse
|
4
|
Vaughn AH, Nielsen R. Fast and Accurate Estimation of Selection Coefficients and Allele Histories from Ancient and Modern DNA. Mol Biol Evol 2024; 41:msae156. [PMID: 39078618 PMCID: PMC11321360 DOI: 10.1093/molbev/msae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
We here present CLUES2, a full-likelihood method to infer natural selection from sequence data that is an extension of the method CLUES. We make several substantial improvements to the CLUES method that greatly increases both its applicability and its speed. We add the ability to use ancestral recombination graphs on ancient data as emissions to the underlying hidden Markov model, which enables CLUES2 to use both temporal and linkage information to make estimates of selection coefficients. We also fully implement the ability to estimate distinct selection coefficients in different epochs, which allows for the analysis of changes in selective pressures through time, as well as selection with dominance. In addition, we greatly increase the computational efficiency of CLUES2 over CLUES using several approximations to the forward-backward algorithms and develop a new way to reconstruct historic allele frequencies by integrating over the uncertainty in the estimation of the selection coefficients. We illustrate the accuracy of CLUES2 through extensive simulations and validate the importance sampling framework for integrating over the uncertainty in the inference of gene trees. We also show that CLUES2 is well-calibrated by showing that under the null hypothesis, the distribution of log-likelihood ratios follows a χ2 distribution with the appropriate degrees of freedom. We run CLUES2 on a set of recently published ancient human data from Western Eurasia and test for evidence of changing selection coefficients through time. We find significant evidence of changing selective pressures in several genes correlated with the introduction of agriculture to Europe and the ensuing dietary and demographic shifts of that time. In particular, our analysis supports previous hypotheses of strong selection on lactase persistence during periods of ancient famines and attenuated selection in more modern periods.
Collapse
Affiliation(s)
- Andrew H Vaughn
- Center for Computational Biology, University of California, Berkeley, CA 94720, USA
| | - Rasmus Nielsen
- Departments of Integrative Biology and Statistics, University of California, Berkeley, CA 94720, USA
- Center for GeoGenetics, University of Copenhagen, Copenhagen DK-1350, Denmark
| |
Collapse
|
5
|
Wong Y, Ignatieva A, Koskela J, Gorjanc G, Wohns AW, Kelleher J. A general and efficient representation of ancestral recombination graphs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.03.565466. [PMID: 37961279 PMCID: PMC10635123 DOI: 10.1101/2023.11.03.565466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a result of recombination, adjacent nucleotides can have different paths of genetic inheritance and therefore the genealogical trees for a sample of DNA sequences vary along the genome. The structure capturing the details of these intricately interwoven paths of inheritance is referred to as an ancestral recombination graph (ARG). Classical formalisms have focused on mapping coalescence and recombination events to the nodes in an ARG. This approach is out of step with modern developments, which do not represent genetic inheritance in terms of these events or explicitly infer them. We present a simple formalism that defines an ARG in terms of specific genomes and their intervals of genetic inheritance, and show how it generalises these classical treatments and encompasses the outputs of recent methods. We discuss nuances arising from this more general structure, and argue that it forms an appropriate basis for a software standard in this rapidly growing field.
Collapse
Affiliation(s)
- Yan Wong
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, UK
| | - Anastasia Ignatieva
- School of Mathematics and Statistics, University of Glasgow, UK
- Department of Statistics, University of Oxford, UK
| | - Jere Koskela
- School of Mathematics, Statistics and Physics, Newcastle University, UK
- Department of Statistics, University of Warwick, UK
| | - Gregor Gorjanc
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK
| | - Anthony W. Wohns
- Broad Institute of MIT and Harvard, Cambridge, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, USA
| | - Jerome Kelleher
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, UK
| |
Collapse
|
6
|
Riley R, Mathieson I, Mathieson S. Interpreting generative adversarial networks to infer natural selection from genetic data. Genetics 2024; 226:iyae024. [PMID: 38386895 PMCID: PMC10990424 DOI: 10.1093/genetics/iyae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Understanding natural selection and other forms of non-neutrality is a major focus for the use of machine learning in population genetics. Existing methods rely on computationally intensive simulated training data. Unlike efficient neutral coalescent simulations for demographic inference, realistic simulations of selection typically require slow forward simulations. Because there are many possible modes of selection, a high dimensional parameter space must be explored, with no guarantee that the simulated models are close to the real processes. Finally, it is difficult to interpret trained neural networks, leading to a lack of understanding about what features contribute to classification. Here we develop a new approach to detect selection and other local evolutionary processes that requires relatively few selection simulations during training. We build upon a generative adversarial network trained to simulate realistic neutral data. This consists of a generator (fitted demographic model), and a discriminator (convolutional neural network) that predicts whether a genomic region is real or fake. As the generator can only generate data under neutral demographic processes, regions of real data that the discriminator recognizes as having a high probability of being "real" do not fit the neutral demographic model and are therefore candidates for targets of selection. To incentivize identification of a specific mode of selection, we fine-tune the discriminator with a small number of custom non-neutral simulations. We show that this approach has high power to detect various forms of selection in simulations, and that it finds regions under positive selection identified by state-of-the-art population genetic methods in three human populations. Finally, we show how to interpret the trained networks by clustering hidden units of the discriminator based on their correlation patterns with known summary statistics.
Collapse
Affiliation(s)
- Rebecca Riley
- Department of Computer Science, Haverford College, Haverford, PA 19041, USA
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara Mathieson
- Department of Computer Science, Haverford College, Haverford, PA 19041, USA
| |
Collapse
|
7
|
Song H, Chu J, Li W, Li X, Fang L, Han J, Zhao S, Ma Y. A Novel Approach Utilizing Domain Adversarial Neural Networks for the Detection and Classification of Selective Sweeps. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304842. [PMID: 38308186 PMCID: PMC11005742 DOI: 10.1002/advs.202304842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/10/2024] [Indexed: 02/04/2024]
Abstract
The identification and classification of selective sweeps are of great significance for improving the understanding of biological evolution and exploring opportunities for precision medicine and genetic improvement. Here, a domain adaptation sweep detection and classification (DASDC) method is presented to balance the alignment of two domains and the classification performance through a domain-adversarial neural network and its adversarial learning modules. DASDC effectively addresses the issue of mismatch between training data and real genomic data in deep learning models, leading to a significant improvement in its generalization capability, prediction robustness, and accuracy. The DASDC method demonstrates improved identification performance compared to existing methods and excels in classification performance, particularly in scenarios where there is a mismatch between application data and training data. The successful implementation of DASDC in real data of three distinct species highlights its potential as a useful tool for identifying crucial functional genes and investigating adaptive evolutionary mechanisms, particularly with the increasing availability of genomic data.
Collapse
Affiliation(s)
- Hui Song
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
| | - Jinyu Chu
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
| | - Wangjiao Li
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Lingzhao Fang
- Center for Quantitative Genetics and GenomicsAarhus UniversityAarhus8000Denmark
| | - Jianlin Han
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
- CAAS‐ILRI Joint Laboratory on Livestock and Forage Genetic ResourcesInstitute of Animal ScienceChinese Academy of Agricultural Sciences (CAAS)Beijing100193China
- Livestock Genetics ProgramInternational Livestock Research Institute (ILRI)Nairobi00100Kenya
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
- Lingnan Modern Agricultural Science and Technology Guangdong LaboratoryGuangzhou510642China
| | - Yunlong Ma
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
- Lingnan Modern Agricultural Science and Technology Guangdong LaboratoryGuangzhou510642China
| |
Collapse
|
8
|
Brandt DYC, Huber CD, Chiang CWK, Ortega-Del Vecchyo D. The Promise of Inferring the Past Using the Ancestral Recombination Graph. Genome Biol Evol 2024; 16:evae005. [PMID: 38242694 PMCID: PMC10834162 DOI: 10.1093/gbe/evae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/21/2024] Open
Abstract
The ancestral recombination graph (ARG) is a structure that represents the history of coalescent and recombination events connecting a set of sequences (Hudson RR. In: Futuyma D, Antonovics J, editors. Gene genealogies and the coalescent process. In: Oxford Surveys in Evolutionary Biology; 1991. p. 1 to 44.). The full ARG can be represented as a set of genealogical trees at every locus in the genome, annotated with recombination events that change the topology of the trees between adjacent loci and the mutations that occurred along the branches of those trees (Griffiths RC, Marjoram P. An ancestral recombination graph. In: Donnelly P, Tavare S, editors. Progress in population genetics and human evolution. Springer; 1997. p. 257 to 270.). Valuable insights can be gained into past evolutionary processes, such as demographic events or the influence of natural selection, by studying the ARG. It is regarded as the "holy grail" of population genetics (Hubisz M, Siepel A. Inference of ancestral recombination graphs using ARGweaver. In: Dutheil JY, editors. Statistical population genomics. New York, NY: Springer US; 2020. p. 231-266.) since it encodes the processes that generate all patterns of allelic and haplotypic variation from which all commonly used summary statistics in population genetic research (e.g. heterozygosity and linkage disequilibrium) can be derived. Many previous evolutionary inferences relied on summary statistics extracted from the genotype matrix. Evolutionary inferences using the ARG represent a significant advancement as the ARG is a representation of the evolutionary history of a sample that shows the past history of recombination, coalescence, and mutation events across a particular sequence. This representation in theory contains as much information, if not more, than the combination of all independent summary statistics that could be derived from the genotype matrix. Consistent with this idea, some of the first ARG-based analyses have proven to be more powerful than summary statistic-based analyses (Speidel L, Forest M, Shi S, Myers SR. A method for genome-wide genealogy estimation for thousands of samples. Nat Genet. 2019:51(9):1321 to 1329.; Stern AJ, Wilton PR, Nielsen R. An approximate full-likelihood method for inferring selection and allele frequency trajectories from DNA sequence data. PLoS Genet. 2019:15(9):e1008384.; Hubisz MJ, Williams AL, Siepel A. Mapping gene flow between ancient hominins through demography-aware inference of the ancestral recombination graph. PLoS Genet. 2020:16(8):e1008895.; Fan C, Mancuso N, Chiang CWK. A genealogical estimate of genetic relationships. Am J Hum Genet. 2022:109(5):812-824.; Fan C, Cahoon JL, Dinh BL, Ortega-Del Vecchyo D, Huber C, Edge MD, Mancuso N, Chiang CWK. A likelihood-based framework for demographic inference from genealogical trees. bioRxiv. 2023.10.10.561787. 2023.; Hejase HA, Mo Z, Campagna L, Siepel A. A deep-learning approach for inference of selective sweeps from the ancestral recombination graph. Mol Biol Evol. 2022:39(1):msab332.; Link V, Schraiber JG, Fan C, Dinh B, Mancuso N, Chiang CWK, Edge MD. Tree-based QTL mapping with expected local genetic relatedness matrices. bioRxiv. 2023.04.07.536093. 2023.; Zhang BC, Biddanda A, Gunnarsson ÁF, Cooper F, Palamara PF. Biobank-scale inference of ancestral recombination graphs enables genealogical analysis of complex traits. Nat Genet. 2023:55(5):768-776.). As such, there has been significant interest in the field to investigate 2 main problems related to the ARG: (i) How can we estimate the ARG based on genomic data, and (ii) how can we extract information of past evolutionary processes from the ARG? In this perspective, we highlight 3 topics that pertain to these main issues: The development of computational innovations that enable the estimation of the ARG; remaining challenges in estimating the ARG; and methodological advances for deducing evolutionary forces and mechanisms using the ARG. This perspective serves to introduce the readers to the types of questions that can be explored using the ARG and to highlight some of the most pressing issues that must be addressed in order to make ARG-based inference an indispensable tool for evolutionary research.
Collapse
Affiliation(s)
- Débora Y C Brandt
- Department of Genetics Evolution and Environment, University College London, London, UK
| | - Christian D Huber
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Diego Ortega-Del Vecchyo
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma De México, Querétaro, Querétaro, Mexico
| |
Collapse
|
9
|
Huang X, Rymbekova A, Dolgova O, Lao O, Kuhlwilm M. Harnessing deep learning for population genetic inference. Nat Rev Genet 2024; 25:61-78. [PMID: 37666948 DOI: 10.1038/s41576-023-00636-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 09/06/2023]
Abstract
In population genetics, the emergence of large-scale genomic data for various species and populations has provided new opportunities to understand the evolutionary forces that drive genetic diversity using statistical inference. However, the era of population genomics presents new challenges in analysing the massive amounts of genomes and variants. Deep learning has demonstrated state-of-the-art performance for numerous applications involving large-scale data. Recently, deep learning approaches have gained popularity in population genetics; facilitated by the advent of massive genomic data sets, powerful computational hardware and complex deep learning architectures, they have been used to identify population structure, infer demographic history and investigate natural selection. Here, we introduce common deep learning architectures and provide comprehensive guidelines for implementing deep learning models for population genetic inference. We also discuss current challenges and future directions for applying deep learning in population genetics, focusing on efficiency, robustness and interpretability.
Collapse
Affiliation(s)
- Xin Huang
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| | - Aigerim Rymbekova
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Olga Dolgova
- Integrative Genomics Laboratory, CIC bioGUNE - Centro de Investigación Cooperativa en Biociencias, Derio, Biscaya, Spain
| | - Oscar Lao
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain.
| | - Martin Kuhlwilm
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Lewanski AL, Grundler MC, Bradburd GS. The era of the ARG: An introduction to ancestral recombination graphs and their significance in empirical evolutionary genomics. PLoS Genet 2024; 20:e1011110. [PMID: 38236805 PMCID: PMC10796009 DOI: 10.1371/journal.pgen.1011110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
In the presence of recombination, the evolutionary relationships between a set of sampled genomes cannot be described by a single genealogical tree. Instead, the genomes are related by a complex, interwoven collection of genealogies formalized in a structure called an ancestral recombination graph (ARG). An ARG extensively encodes the ancestry of the genome(s) and thus is replete with valuable information for addressing diverse questions in evolutionary biology. Despite its potential utility, technological and methodological limitations, along with a lack of approachable literature, have severely restricted awareness and application of ARGs in evolution research. Excitingly, recent progress in ARG reconstruction and simulation have made ARG-based approaches feasible for many questions and systems. In this review, we provide an accessible introduction and exploration of ARGs, survey recent methodological breakthroughs, and describe the potential for ARGs to further existing goals and open avenues of inquiry that were previously inaccessible in evolutionary genomics. Through this discussion, we aim to more widely disseminate the promise of ARGs in evolutionary genomics and encourage the broader development and adoption of ARG-based inference.
Collapse
Affiliation(s)
- Alexander L. Lewanski
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, United States of America
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, United States of America
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, United States of America
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael C. Grundler
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gideon S. Bradburd
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, United States of America
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
11
|
Panigrahi M, Rajawat D, Nayak SS, Ghildiyal K, Sharma A, Jain K, Lei C, Bhushan B, Mishra BP, Dutt T. Landmarks in the history of selective sweeps. Anim Genet 2023; 54:667-688. [PMID: 37710403 DOI: 10.1111/age.13355] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
Half a century ago, a seminal article on the hitchhiking effect by Smith and Haigh inaugurated the concept of the selection signature. Selective sweeps are characterised by the rapid spread of an advantageous genetic variant through a population and hence play an important role in shaping evolution and research on genetic diversity. The process by which a beneficial allele arises and becomes fixed in a population, leading to a increase in the frequency of other linked alleles, is known as genetic hitchhiking or genetic draft. Kimura's neutral theory and hitchhiking theory are complementary, with Kimura's neutral evolution as the 'null model' and positive selection as the 'signal'. Both are widely accepted in evolution, especially with genomics enabling precise measurements. Significant advances in genomic technologies, such as next-generation sequencing, high-density SNP arrays and powerful bioinformatics tools, have made it possible to systematically investigate selection signatures in a variety of species. Although the history of selection signatures is relatively recent, progress has been made in the last two decades, owing to the increasing availability of large-scale genomic data and the development of computational methods. In this review, we embark on a journey through the history of research on selective sweeps, ranging from early theoretical work to recent empirical studies that utilise genomic data.
Collapse
Affiliation(s)
- Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | | | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Bishnu Prasad Mishra
- Division of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
12
|
Mo Z, Siepel A. Domain-adaptive neural networks improve supervised machine learning based on simulated population genetic data. PLoS Genet 2023; 19:e1011032. [PMID: 37934781 PMCID: PMC10655966 DOI: 10.1371/journal.pgen.1011032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/17/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Investigators have recently introduced powerful methods for population genetic inference that rely on supervised machine learning from simulated data. Despite their performance advantages, these methods can fail when the simulated training data does not adequately resemble data from the real world. Here, we show that this "simulation mis-specification" problem can be framed as a "domain adaptation" problem, where a model learned from one data distribution is applied to a dataset drawn from a different distribution. By applying an established domain-adaptation technique based on a gradient reversal layer (GRL), originally introduced for image classification, we show that the effects of simulation mis-specification can be substantially mitigated. We focus our analysis on two state-of-the-art deep-learning population genetic methods-SIA, which infers positive selection from features of the ancestral recombination graph (ARG), and ReLERNN, which infers recombination rates from genotype matrices. In the case of SIA, the domain adaptive framework also compensates for ARG inference error. Using the domain-adaptive SIA (dadaSIA) model, we estimate improved selection coefficients at selected loci in the 1000 Genomes CEU population. We anticipate that domain adaptation will prove to be widely applicable in the growing use of supervised machine learning in population genetics.
Collapse
Affiliation(s)
- Ziyi Mo
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| |
Collapse
|
13
|
Lewanski AL, Grundler MC, Bradburd GS. The era of the ARG: an empiricist's guide to ancestral recombination graphs. ARXIV 2023:arXiv:2310.12070v1. [PMID: 37904740 PMCID: PMC10614969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
In the presence of recombination, the evolutionary relationships between a set of sampled genomes cannot be described by a single genealogical tree. Instead, the genomes are related by a complex, interwoven collection of genealogies formalized in a structure called an ancestral recombination graph (ARG). An ARG extensively encodes the ancestry of the genome(s) and thus is replete with valuable information for addressing diverse questions in evolutionary biology. Despite its potential utility, technological and methodological limitations, along with a lack of approachable literature, have severely restricted awareness and application of ARGs in empirical evolution research. Excitingly, recent progress in ARG reconstruction and simulation have made ARG-based approaches feasible for many questions and systems. In this review, we provide an accessible introduction and exploration of ARGs, survey recent methodological breakthroughs, and describe the potential for ARGs to further existing goals and open avenues of inquiry that were previously inaccessible in evolutionary genomics. Through this discussion, we aim to more widely disseminate the promise of ARGs in evolutionary genomics and encourage the broader development and adoption of ARG-based inference.
Collapse
Affiliation(s)
- Alexander L Lewanski
- Department of Integrative Biology, Michigan State University, East Lansing, MI, US
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, US
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, US
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, US
| | - Michael C Grundler
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, US
| | - Gideon S Bradburd
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, US
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, US
| |
Collapse
|
14
|
Salazar-Tortosa DF, Huang YF, Enard D. Assessing the Presence of Recent Adaptation in the Human Genome With Mixture Density Regression. Genome Biol Evol 2023; 15:evad170. [PMID: 37713622 PMCID: PMC10563788 DOI: 10.1093/gbe/evad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023] Open
Abstract
How much genome differences between species reflect neutral or adaptive evolution is a central question in evolutionary genomics. In humans and other mammals, the presence of adaptive versus neutral genomic evolution has proven particularly difficult to quantify. The difficulty notably stems from the highly heterogeneous organization of mammalian genomes at multiple levels (functional sequence density, recombination, etc.) which complicates the interpretation and distinction of adaptive versus neutral evolution signals. In this study, we introduce mixture density regressions (MDRs) for the study of the determinants of recent adaptation in the human genome. MDRs provide a flexible regression model based on multiple Gaussian distributions. We use MDRs to model the association between recent selection signals and multiple genomic factors likely to affect the occurrence/detection of positive selection, if the latter was present in the first place to generate these associations. We find that an MDR model with two Gaussian distributions provides an excellent fit to the genome-wide distribution of a common sweep summary statistic (integrated haplotype score), with one of the two distributions likely enriched in positive selection. We further find several factors associated with signals of recent adaptation, including the recombination rate, the density of regulatory elements in immune cells, GC content, gene expression in immune cells, the density of mammal-wide conserved elements, and the distance to the nearest virus-interacting gene. These results support the presence of strong positive selection in recent human evolution and highlight MDRs as a powerful tool to make sense of signals of recent genomic adaptation.
Collapse
Affiliation(s)
- Diego F Salazar-Tortosa
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
- Department of Ecology, University of Granada, Granada, Spain
| | - Yi-Fei Huang
- Department of Biology, Pennsylvania State University, University Park, State College, Pennsylvania, PA 16801, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, Pennsylvania, PA 16801, USA
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
15
|
Nait Saada J, Tsangalidou Z, Stricker M, Palamara PF. Inference of Coalescence Times and Variant Ages Using Convolutional Neural Networks. Mol Biol Evol 2023; 40:msad211. [PMID: 37738175 PMCID: PMC10581698 DOI: 10.1093/molbev/msad211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
Accurate inference of the time to the most recent common ancestor (TMRCA) between pairs of individuals and of the age of genomic variants is key in several population genetic analyses. We developed a likelihood-free approach, called CoalNN, which uses a convolutional neural network to predict pairwise TMRCAs and allele ages from sequencing or SNP array data. CoalNN is trained through simulation and can be adapted to varying parameters, such as demographic history, using transfer learning. Across several simulated scenarios, CoalNN matched or outperformed the accuracy of model-based approaches for pairwise TMRCA and allele age prediction. We applied CoalNN to settings for which model-based approaches are under-developed and performed analyses to gain insights into the set of features it uses to perform TMRCA prediction. We next used CoalNN to analyze 2,504 samples from 26 populations in the 1,000 Genome Project data set, inferring the age of ∼80 million variants. We observed substantial variation across populations and for variants predicted to be pathogenic, reflecting heterogeneous demographic histories and the action of negative selection. We used CoalNN's predicted allele ages to construct genome-wide annotations capturing the signature of past negative selection. We performed LD-score regression analysis of heritability using summary association statistics from 63 independent complex traits and diseases (average N=314k), observing increased annotation-specific effects on heritability compared to a previous allele age annotation. These results highlight the effectiveness of using likelihood-free, simulation-trained models to infer properties of gene genealogies in large genomic data sets.
Collapse
Affiliation(s)
| | | | | | - Pier Francesco Palamara
- Department of Statistics, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Gao L, Kantar MB, Moxley D, Ortiz-Barrientos D, Rieseberg LH. Crop adaptation to climate change: An evolutionary perspective. MOLECULAR PLANT 2023; 16:1518-1546. [PMID: 37515323 DOI: 10.1016/j.molp.2023.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
The disciplines of evolutionary biology and plant and animal breeding have been intertwined throughout their development, with responses to artificial selection yielding insights into the action of natural selection and evolutionary biology providing statistical and conceptual guidance for modern breeding. Here we offer an evolutionary perspective on a grand challenge of the 21st century: feeding humanity in the face of climate change. We first highlight promising strategies currently under way to adapt crops to current and future climate change. These include methods to match crop varieties with current and predicted environments and to optimize breeding goals, management practices, and crop microbiomes to enhance yield and sustainable production. We also describe the promise of crop wild relatives and recent technological innovations such as speed breeding, genomic selection, and genome editing for improving environmental resilience of existing crop varieties or for developing new crops. Next, we discuss how methods and theory from evolutionary biology can enhance these existing strategies and suggest novel approaches. We focus initially on methods for reconstructing the evolutionary history of crops and their pests and symbionts, because such historical information provides an overall framework for crop-improvement efforts. We then describe how evolutionary approaches can be used to detect and mitigate the accumulation of deleterious mutations in crop genomes, identify alleles and mutations that underlie adaptation (and maladaptation) to agricultural environments, mitigate evolutionary trade-offs, and improve critical proteins. Continuing feedback between the evolution and crop biology communities will ensure optimal design of strategies for adapting crops to climate change.
Collapse
Affiliation(s)
- Lexuan Gao
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Michael B Kantar
- Department of Tropical Plant & Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dylan Moxley
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences and Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
17
|
Mo Z, Siepel A. Domain-adaptive neural networks improve supervised machine learning based on simulated population genetic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.529396. [PMID: 36909514 PMCID: PMC10002701 DOI: 10.1101/2023.03.01.529396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Investigators have recently introduced powerful methods for population genetic inference that rely on supervised machine learning from simulated data. Despite their performance advantages, these methods can fail when the simulated training data does not adequately resemble data from the real world. Here, we show that this "simulation mis-specification" problem can be framed as a "domain adaptation" problem, where a model learned from one data distribution is applied to a dataset drawn from a different distribution. By applying an established domain-adaptation technique based on a gradient reversal layer (GRL), originally introduced for image classification, we show that the effects of simulation mis-specification can be substantially mitigated. We focus our analysis on two state-of-the-art deep-learning population genetic methods-SIA, which infers positive selection from features of the ancestral recombination graph (ARG), and ReLERNN, which infers recombination rates from genotype matrices. In the case of SIA, the domain adaptive framework also compensates for ARG inference error. Using the domain-adaptive SIA (dadaSIA) model, we estimate improved selection coefficients at selected loci in the 1000 Genomes CEU population. We anticipate that domain adaptation will prove to be widely applicable in the growing use of supervised machine learning in population genetics.
Collapse
Affiliation(s)
- Ziyi Mo
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| |
Collapse
|
18
|
Riley R, Mathieson I, Mathieson S. INTERPRETING GENERATIVE ADVERSARIAL NETWORKS TO INFER NATURAL SELECTION FROM GENETIC DATA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531546. [PMID: 36945387 PMCID: PMC10028936 DOI: 10.1101/2023.03.07.531546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Understanding natural selection in humans and other species is a major focus for the use of machine learning in population genetics. Existing methods rely on computationally intensive simulated training data. Unlike efficient neutral coalescent simulations for demographic inference, realistic simulations of selection typically requires slow forward simulations. Because there are many possible modes of selection, a high dimensional parameter space must be explored, with no guarantee that the simulated models are close to the real processes. Mismatches between simulated training data and real test data can lead to incorrect inference. Finally, it is difficult to interpret trained neural networks, leading to a lack of understanding about what features contribute to classification. Here we develop a new approach to detect selection that requires relatively few selection simulations during training. We use a Generative Adversarial Network (GAN) trained to simulate realistic neutral data. The resulting GAN consists of a generator (fitted demographic model) and a discriminator (convolutional neural network). For a genomic region, the discriminator predicts whether it is "real" or "fake" in the sense that it could have been simulated by the generator. As the "real" training data includes regions that experienced selection and the generator cannot produce such regions, regions with a high probability of being real are likely to have experienced selection. To further incentivize this behavior, we "fine-tune" the discriminator with a small number of selection simulations. We show that this approach has high power to detect selection in simulations, and that it finds regions under selection identified by state-of-the art population genetic methods in three human populations. Finally, we show how to interpret the trained networks by clustering hidden units of the discriminator based on their correlation patterns with known summary statistics. In summary, our approach is a novel, efficient, and powerful way to use machine learning to detect natural selection.
Collapse
Affiliation(s)
- Rebecca Riley
- Department of Computer Science, Haverford College, Haverford PA, 19041 USA
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, 19104 USA
| | - Sara Mathieson
- Department of Computer Science, Haverford College, Haverford PA, 19041 USA
| |
Collapse
|
19
|
Schweiger R, Durbin R. Ultrafast genome-wide inference of pairwise coalescence times. Genome Res 2023; 33:1023-1031. [PMID: 37562965 PMCID: PMC10538485 DOI: 10.1101/gr.277665.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/21/2023] [Indexed: 08/12/2023]
Abstract
The pairwise sequentially Markovian coalescent (PSMC) algorithm and its extensions infer the coalescence time of two homologous chromosomes at each genomic position. This inference is used in reconstructing demographic histories, detecting selection signatures, studying genome-wide associations, constructing ancestral recombination graphs, and more. Inference of coalescence times between each pair of haplotypes in a large data set is of great interest, as they may provide rich information about the population structure and history of the sample. Here, we introduce a new method, Gamma-SMC, which is more than 10 times faster than current methods. To obtain this speed-up, we represent the posterior coalescence time distributions succinctly as a gamma distribution with just two parameters; in contrast, PSMC and its extensions hold these in a vector over discrete intervals of time. Thus, Gamma-SMC has constant time-complexity per site, without dependence on the number of discrete time states. Additionally, because of this continuous representation, our method is able to infer times spanning many orders of magnitude and, as such, is robust to parameter misspecification. We describe how this approach works, show its performance on simulated and real data, and illustrate its use in studying recent positive selection in the 1000 Genomes Project data set.
Collapse
Affiliation(s)
- Regev Schweiger
- Department of Genetics, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| |
Collapse
|
20
|
Korfmann K, Gaggiotti OE, Fumagalli M. Deep Learning in Population Genetics. Genome Biol Evol 2023; 15:evad008. [PMID: 36683406 PMCID: PMC9897193 DOI: 10.1093/gbe/evad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/19/2022] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Population genetics is transitioning into a data-driven discipline thanks to the availability of large-scale genomic data and the need to study increasingly complex evolutionary scenarios. With likelihood and Bayesian approaches becoming either intractable or computationally unfeasible, machine learning, and in particular deep learning, algorithms are emerging as popular techniques for population genetic inferences. These approaches rely on algorithms that learn non-linear relationships between the input data and the model parameters being estimated through representation learning from training data sets. Deep learning algorithms currently employed in the field comprise discriminative and generative models with fully connected, convolutional, or recurrent layers. Additionally, a wide range of powerful simulators to generate training data under complex scenarios are now available. The application of deep learning to empirical data sets mostly replicates previous findings of demography reconstruction and signals of natural selection in model organisms. To showcase the feasibility of deep learning to tackle new challenges, we designed a branched architecture to detect signals of recent balancing selection from temporal haplotypic data, which exhibited good predictive performance on simulated data. Investigations on the interpretability of neural networks, their robustness to uncertain training data, and creative representation of population genetic data, will provide further opportunities for technological advancements in the field.
Collapse
Affiliation(s)
- Kevin Korfmann
- Professorship for Population Genetics, Department of Life Science Systems, Technical University of Munich, Germany
| | - Oscar E Gaggiotti
- Centre for Biological Diversity, Sir Harold Mitchell Building, University of St Andrews, Fife KY16 9TF, UK
| | - Matteo Fumagalli
- Department of Biological and Behavioural Sciences, Queen Mary University of London, UK
| |
Collapse
|
21
|
Campagna L, Mo Z, Siepel A, Uy JAC. Selective sweeps on different pigmentation genes mediate convergent evolution of island melanism in two incipient bird species. PLoS Genet 2022; 18:e1010474. [PMID: 36318577 PMCID: PMC9624418 DOI: 10.1371/journal.pgen.1010474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022] Open
Abstract
Insular organisms often evolve predictable phenotypes, like flightlessness, extreme body sizes, or increased melanin deposition. The evolutionary forces and molecular targets mediating these patterns remain mostly unknown. Here we study the Chestnut-bellied Monarch (Monarcha castaneiventris) from the Solomon Islands, a complex of closely related subspecies in the early stages of speciation. On the large island of Makira M. c. megarhynchus has a chestnut belly, whereas on the small satellite islands of Ugi, and Santa Ana and Santa Catalina (SA/SC) M. c. ugiensis is entirely iridescent blue-black (i.e., melanic). Melanism has likely evolved twice, as the Ugi and SA/SC populations were established independently. To investigate the genetic basis of melanism on each island we generated whole genome sequence data from all three populations. Non-synonymous mutations at the MC1R pigmentation gene are associated with melanism on SA/SC, while ASIP, an antagonistic ligand of MC1R, is associated with melanism on Ugi. Both genes show evidence of selective sweeps in traditional summary statistics and statistics derived from the ancestral recombination graph (ARG). Using the ARG in combination with machine learning, we inferred selection strength, timing of onset and allele frequency trajectories. MC1R shows evidence of a recent, strong, soft selective sweep. The region including ASIP shows more complex signatures; however, we find evidence for sweeps in mutations near ASIP, which are comparatively older than those on MC1R and have been under relatively strong selection. Overall, our study shows convergent melanism results from selective sweeps at independent molecular targets, evolving in taxa where coloration likely mediates reproductive isolation with the neighboring chestnut-bellied subspecies. Chestnut-bellied Monarchs (Monarcha castaneiventris ugiensis) from two archipelagos in the Solomon Islands have evolved entirely black plumage from a chestnut ancestor (Monarcha castaneiventris megarhynchus), a phenomenon known as island melanism. We obtain and analyze whole genome sequences using traditional summary statistics and new methods that combine inference of the ancestral recombination graph with machine learning. We find multiple lines of evidence for independent selective sweeps on the MC1R and ASIP genes, a receptor/ligand pair which regulates the production of melanin. Melanism on each archipelago is mediated by mutations in one of these two genes. Mutations in and around MC1R underwent a recent soft sweep experiencing strong selection on the islands of Santa Ana and Santa Catalina, whereas selection was also strong but comparatively older for ASIP on the island of Ugi. We show how melanism originated under positive selection on independent molecular targets, evolving convergently in taxa where coloration mediates reproductive isolation.
Collapse
Affiliation(s)
- Leonardo Campagna
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, New York, United States of America
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail: (LC); (JACU)
| | - Ziyi Mo
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - J. Albert C. Uy
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- * E-mail: (LC); (JACU)
| |
Collapse
|
22
|
Huang X, Huang S, Han B, Li J. The integrated genomics of crop domestication and breeding. Cell 2022; 185:2828-2839. [PMID: 35643084 DOI: 10.1016/j.cell.2022.04.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
Abstract
As a major event in human civilization, wild plants were successfully domesticated to be crops, largely owing to continuing artificial selection. Here, we summarize new discoveries made during the past decade in crop domestication and breeding. The construction of crop genome maps and the functional characterization of numerous trait genes provide foundational information. Approaches to read, interpret, and write complex genetic information are being leveraged in many plants for highly efficient de novo or re-domestication. Understanding the underlying mechanisms of crop microevolution and applying the knowledge to agricultural productions will give possible solutions for future challenges in food security.
Collapse
Affiliation(s)
- Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China.
| | - Bin Han
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|