1
|
Secomandi S, Gallo GR, Rossi R, Rodríguez Fernandes C, Jarvis ED, Bonisoli-Alquati A, Gianfranceschi L, Formenti G. Pangenome graphs and their applications in biodiversity genomics. Nat Genet 2025; 57:13-26. [PMID: 39779953 DOI: 10.1038/s41588-024-02029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
Complete datasets of genetic variants are key to biodiversity genomic studies. Long-read sequencing technologies allow the routine assembly of highly contiguous, haplotype-resolved reference genomes. However, even when complete, reference genomes from a single individual may bias downstream analyses and fail to adequately represent genetic diversity within a population or species. Pangenome graphs assembled from aligned collections of high-quality genomes can overcome representation bias by integrating sequence information from multiple genomes from the same population, species or genus into a single reference. Here, we review the available tools and data structures to build, visualize and manipulate pangenome graphs while providing practical examples and discussing their applications in biodiversity and conservation genomics across the tree of life.
Collapse
Affiliation(s)
- Simona Secomandi
- Laboratory of Neurogenetics of Language, the Rockefeller University, New York, NY, USA
| | | | - Riccardo Rossi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Carlos Rodríguez Fernandes
- Centre for Ecology, Evolution and Environmental Changes (CE3C) and CHANGE, Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Faculdade de Psicologia, Universidade de Lisboa, Lisboa, Portugal
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, the Rockefeller University, New York, NY, USA
- The Vertebrate Genome Laboratory, New York, NY, USA
| | - Andrea Bonisoli-Alquati
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA, USA
| | | | | |
Collapse
|
2
|
Lifjeld JT, Cramer ERA, Leder EH, Voje KL. Sperm as a speciation phenotype in promiscuous songbirds. Evolution 2024; 79:134-143. [PMID: 39485024 DOI: 10.1093/evolut/qpae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
Sperm morphology varies considerably among species. Sperm traits may contribute to speciation if they diverge fast in allopatry and cause conspecific sperm precedence upon secondary contact. However, their role in driving prezygotic isolation has been poorly investigated. Here we test the hypothesis that, early in the speciation process, female promiscuity promotes a reduction in overlap in sperm length distributions among songbird populations. We assembled a data set of 20 pairs of populations with known sperm length distributions, a published estimate of divergence time, and an index of female promiscuity derived from extrapair paternity rates or relative testis size. We found that sperm length distributions diverged more rapidly in more promiscuous species. Faster divergence between sperm length distributions was caused by the lower variance in the trait in more promiscuous species, and not by faster divergence of the mean sperm lengths. The reduced variance is presumably due to stronger stabilizing selection on sperm length mediated by sperm competition. If divergent sperm length optima in allopatry causes conspecific sperm precedence in sympatry, which remains to be shown empirically, female promiscuity may promote prezygotic isolation, and rapid speciation in songbirds.
Collapse
Affiliation(s)
- Jan T Lifjeld
- Department of Research and Collections, Natural History Museum, University of Oslo, Oslo, Norway
| | - Emily R A Cramer
- Department of Research and Collections, Natural History Museum, University of Oslo, Oslo, Norway
| | - Erica H Leder
- Department of Research and Collections, Natural History Museum, University of Oslo, Oslo, Norway
- Department of Marine Sciences, University of Gothenburg, Tjärnö Marine Laboratory, Strömstad, Sweden
- Department of Biology, University of Turku, Turku, Finland
| | - Kjetil Lysne Voje
- Department of Research and Collections, Natural History Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Day G, Fox G, Hipperson H, Maher K, Tucker R, Horsburgh G, Waters D, Durant K, Burke T, Slate J, Arnold K. Revealing the Demographic History of the European Nightjar ( Caprimulgus europaeus). Ecol Evol 2024; 14:e70460. [PMID: 39463738 PMCID: PMC11512156 DOI: 10.1002/ece3.70460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 10/29/2024] Open
Abstract
A species' demographic history gives important context to contemporary population genetics and a possible insight into past responses to climate change; with an individual's genome providing a window into the evolutionary history of contemporary populations. Pairwise sequentially Markovian coalescent (PSMC) analysis uses information from a single genome to derive fluctuations in effective population size change over the last ~5 million years. Here, we apply PSMC analysis to two European nightjar (Caprimulgus europaeus) genomes, sampled in Northwest and Southern Europe, with the aim of revealing the demographic history of nightjar in Europe. We successfully reconstructed effective population size over the last 5 million years. Our analysis shows that in response to global climate change, the effective population size of nightjar broadly increased under stable warm periods and decreased during cooler spans and prolonged glacial periods. PSMC analysis on the pseudo-diploid combination of the two genomes revealed fluctuations in gene flow between ancestral populations over time, with gene flow ceasing by the last-glacial period. Our results are tentatively suggestive of divergence in the European nightjar population, with timings consistent with differentiation being driven by restriction to different refugia during periods of glaciation. Finally, our results suggest that migratory behaviour in nightjar likely evolved prior to the last-glacial period, with long-distance migration seemingly persisting throughout the Pleistocene. However, further genetic structure analysis of individuals from known breeding sites across the species' contemporary range is needed to understand the extent and origins of range-wide differentiation in nightjar.
Collapse
Affiliation(s)
- George Day
- Department of Environment and GeographyUniversity of YorkYorkUK
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
- British Antarctic SurveyCambridgeUK
| | - Graeme Fox
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
- University of NottinghamNottinghamUK
| | - Helen Hipperson
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
| | - Kathryn H. Maher
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
| | - Rachel Tucker
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
| | - Gavin J. Horsburgh
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
| | - Dean Waters
- Department of Environment and GeographyUniversity of YorkYorkUK
| | | | - Terry Burke
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
| | - Jon Slate
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
| | | |
Collapse
|
4
|
Broggini C, Cavallini M, Vanetti I, Abell J, Binelli G, Lombardo G. From Caves to the Savannah, the Mitogenome History of Modern Lions ( Panthera leo) and Their Ancestors. Int J Mol Sci 2024; 25:5193. [PMID: 38791233 PMCID: PMC11121052 DOI: 10.3390/ijms25105193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Lions (Panthera leo) play a crucial ecological role in shaping and maintaining fragile ecosystems within Africa. Conservation efforts should focus on genetic variability within wild populations when considering reintroduction attempts. We studied two groups of lions from two conservation sites located in Zambia and Zimbabwe to determine their genetic make-up, information that is usually unknown to the sites. In this study, we analysed 17 specimens for cytb and seven microsatellite markers to ascertain family relationships and genetic diversity previously obtained by observational studies. We then produced a standardised haplogroup phylogeny using all available entire mitogenomes, as well as calculating a revised molecular clock. The modern lion lineage diverged ~151 kya and was divided into two subspecies, both containing three distinct haplogroups. We confirm that Panthera leo persica is not a subspecies, but rather a haplogroup of the northern P.l. leo that exited Africa at least ~31 kya. The progenitor to all lions existed ~1.2 Mya, possibly in SE Africa, and later exited Africa and split into the two cave lion lineages ~175 kya. Species demography is correlated to major climactic events. We now have a detailed phylogeny of lion evolution and an idea of their conservation status given the threat of climate change.
Collapse
Affiliation(s)
- Camilla Broggini
- Wildlife Research Unit (UIRCP-UCO), University of Cordoba, 14071 Córdoba, Spain;
| | - Marta Cavallini
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.C.); (I.V.); (G.B.)
| | - Isabella Vanetti
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.C.); (I.V.); (G.B.)
| | - Jackie Abell
- Centre for Agroecology, Water and Resilience, Coventry University, Coventry CV8 3LG, UK;
| | - Giorgio Binelli
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.C.); (I.V.); (G.B.)
| | - Gianluca Lombardo
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.C.); (I.V.); (G.B.)
| |
Collapse
|
5
|
Nardi F, Boschi S, Funari R, Cucini C, Cardaioli E, Potter D, Asano SI, Toubarro D, Meier M, Paoli F, Carapelli A, Frati F. The direction, timing and demography of Popillia japonica (Coleoptera) invasion reconstructed using complete mitochondrial genomes. Sci Rep 2024; 14:7120. [PMID: 38531924 DOI: 10.1038/s41598-024-57667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
The Japanese beetle Popillia japonica is a pest insect that feeds on hundreds of species of wild and cultivated plants including important fruit, vegetable, and field crops. Native to Japan, the pest has invaded large areas of the USA, Canada, the Azores (Portugal), Italy, and Ticino (Switzerland), and it is considered a priority for control in the European Union. We determined the complete mitochondrial genome sequence in 86 individuals covering the entire distribution of the species. Phylogenetic analysis supports a major division between South Japan and Central/North Japan, with invasive samples coming from the latter. The origin of invasive USA samples is incompatible, in terms of the timing of the event, with a single introduction, with multiple Japanese lineages having been introduced and one accounting for most of the population expansion locally. The origin of the two invasive European populations is compatible with two different invasions followed by minimal differentiation locally. Population analyses provide the possibility to estimate the rate of sequence change from the data and to date major invasion events. Demographic analysis identifies a population expansion followed by a period of contraction prior to the invasion. The present study adds a time and demographic dimension to available reconstructions.
Collapse
Affiliation(s)
- Francesco Nardi
- Department of Life Sciences, University of Siena, via Aldo Moro 2, 53100, Siena, Italy.
- NBFC, National Biodiversity Future Center, Palermo, Italy.
- BAT-Center, Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, Portici, Italy.
| | - Sara Boschi
- Department of Life Sciences, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Rebecca Funari
- Department of Life Sciences, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Claudio Cucini
- Department of Life Sciences, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Elena Cardaioli
- Department of Life Sciences, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Daniel Potter
- Department of Entomology, University of Kentucky, Lexington, USA
| | - Shin-Ichiro Asano
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Duarte Toubarro
- Biotechnology Centre of Azores, University of the Azores, Ponta Delgada, Portugal
| | - Michela Meier
- Servizio fitosanitario cantonale, Dipartimento delle finanze e dell'economia, Bellinzona, Switzerland
| | - Francesco Paoli
- Council for Agricultural Research and Agricultural Economy Analysis (CREA), Florence, Italy
| | - Antonio Carapelli
- Department of Life Sciences, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- BAT-Center, Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, Portici, Italy
| | - Francesco Frati
- Department of Life Sciences, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- BAT-Center, Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, Portici, Italy
| |
Collapse
|
6
|
Bensch S, Caballero-López V, Cornwallis CK, Sokolovskis K. The evolutionary history of "suboptimal" migration routes. iScience 2023; 26:108266. [PMID: 38026158 PMCID: PMC10663737 DOI: 10.1016/j.isci.2023.108266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/12/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Migratoriness in birds is evolutionary labile, with many examples of increasing or decreasing migration distances on the timescale of modern ornithology. In contrast, shifts of migration to more nearby wintering grounds seem to be a slow process. We examine the history of how Palearctic migratory landbirds have expanded their wintering ranges to include both tropical Africa and Asia, a process that has involved major shifts in migratory routes. We found that species with shorter migration distances and with resident populations in the Palearctic more often winter in both Africa and Asia. Our results suggest that changes in wintering grounds are not by long-distance migrant populations per se, but through historic intermediate populations that were less migratory from which long-distance migration evolved secondarily. The failure of long-distance migrants to shift migration direction to more nearby winter quarters indicates that major modifications to the migratory program may be difficult to evolve.
Collapse
Affiliation(s)
- Staffan Bensch
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, 22362 Lund, Sweden
| | - Violeta Caballero-López
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, 22362 Lund, Sweden
| | - Charlie K. Cornwallis
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, 22362 Lund, Sweden
| | - Kristaps Sokolovskis
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, 22362 Lund, Sweden
- Department of Biology, University of Turku, Vesilinnantie 5, 20500 Turku, Finland
| |
Collapse
|
7
|
Wang Z, Zheng Y, Zhao X, Xu X, Xu Z, Cui C. Molecular Phylogeny and Evolution of the Tuerkayana (Decapoda: Brachyura: Gecarcinidae) Genus Based on Whole Mitochondrial Genome Sequences. BIOLOGY 2023; 12:974. [PMID: 37508404 PMCID: PMC10376310 DOI: 10.3390/biology12070974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
Tuerkayana is of particular interest because it has been separated, in recent years, from Cardisoma and Discoplax but studies of its taxonomic status, especially from a whole mitochondrial genome perspective, have been lacking. In this study, the mitogenomes of four species (Tuerkayana magnum, Tuerkayana rotundum, Tuerkayana hirtipes, and Tuerkayana celeste) of Tuerkayana are sequenced and contrasted with other species in Brachyura for the first time. The phylogenetic tree of Brachyura, which includes 206 crab species (189 species of Brachyuran and 17 Anomura species) with a complete mitogenome, was constructed to evaluate the phylogenetic position of Tuerkayana and Gecarcinidae within Brachyuran, and explore the monophyly of Gecarcinidae. Furthermore, two single gene trees based on cox1 and 16SrRNA separately within interspecies of Gecarcinidae were reconstructed, providing molecular evidence for Tuerkayana and further clarifying the division of genera in Gecarcinidae. Based on the mitogenome dataset of 206 crabs, the branch-site model was utilized to explore selective pressure in individual codons with CodeML. The strong selective pressure shown in nad6 indicates that it may have played a significant role in the evolution of Gecarcinidae.
Collapse
Affiliation(s)
- Zhengfei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, China
| | - Yuqing Zheng
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, China
| | - Xinyue Zhao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, China
| | - Xinyi Xu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200000, China
| | - Zhiwen Xu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, China
| | - Chong Cui
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, China
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
8
|
Secomandi S, Gallo GR, Sozzoni M, Iannucci A, Galati E, Abueg L, Balacco J, Caprioli M, Chow W, Ciofi C, Collins J, Fedrigo O, Ferretti L, Fungtammasan A, Haase B, Howe K, Kwak W, Lombardo G, Masterson P, Messina G, Møller AP, Mountcastle J, Mousseau TA, Ferrer Obiol J, Olivieri A, Rhie A, Rubolini D, Saclier M, Stanyon R, Stucki D, Thibaud-Nissen F, Torrance J, Torroni A, Weber K, Ambrosini R, Bonisoli-Alquati A, Jarvis ED, Gianfranceschi L, Formenti G. A chromosome-level reference genome and pangenome for barn swallow population genomics. Cell Rep 2023; 42:111992. [PMID: 36662619 PMCID: PMC10044405 DOI: 10.1016/j.celrep.2023.111992] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/20/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Insights into the evolution of non-model organisms are limited by the lack of reference genomes of high accuracy, completeness, and contiguity. Here, we present a chromosome-level, karyotype-validated reference genome and pangenome for the barn swallow (Hirundo rustica). We complement these resources with a reference-free multialignment of the reference genome with other bird genomes and with the most comprehensive catalog of genetic markers for the barn swallow. We identify potentially conserved and accelerated genes using the multialignment and estimate genome-wide linkage disequilibrium using the catalog. We use the pangenome to infer core and accessory genes and to detect variants using it as a reference. Overall, these resources will foster population genomics studies in the barn swallow, enable detection of candidate genes in comparative genomics studies, and help reduce bias toward a single reference genome.
Collapse
Affiliation(s)
- Simona Secomandi
- Department of Biosciences, University of Milan, Milan, Italy; Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Guido R Gallo
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Alessio Iannucci
- Department of Biology, University of Florence, Sesto Fiorentino (FI), Italy
| | - Elena Galati
- Department of Biosciences, University of Milan, Milan, Italy
| | - Linelle Abueg
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Jennifer Balacco
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Manuela Caprioli
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | | | - Claudio Ciofi
- Department of Biology, University of Florence, Sesto Fiorentino (FI), Italy
| | | | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Luca Ferretti
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | | - Bettina Haase
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | | | - Woori Kwak
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea
| | - Gianluca Lombardo
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Patrick Masterson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Anders P Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay Cedex, France
| | | | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Joan Ferrer Obiol
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Diego Rubolini
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | | | - Roscoe Stanyon
- Department of Biology, University of Florence, Sesto Fiorentino (FI), Italy
| | | | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | | - Roberto Ambrosini
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | - Andrea Bonisoli-Alquati
- Department of Biological Sciences, California State Polytechnic University - Pomona, Pomona, CA, USA
| | - Erich D Jarvis
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA; The Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
9
|
Matyjasiak P, López-Calderón C, Ambrosini R, Balbontín J, Costanzo A, Kiat Y, Romano A, Rubolini D. Wing morphology covaries with migration distance in a highly aerial insectivorous songbird. Curr Zool 2022. [DOI: 10.1093/cz/zoac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
According to classical prediction of aerodynamic theory, birds and other powered fliers that migrate over long distances should have longer and more pointed wings than those that migrate less. However, the association between wing morphology and migratory behavior can be masked by contrasting selective pressures related to foraging behavior, habitat selection and predator avoidance, possibly at the cost of lower flight energetic efficiency. We studied the handwing morphology of Eurasian barn swallows Hirundo rustica from four populations representing a migration distance gradient. This species is an aerial insectivore, so it flies extensively while foraging, and may migrate during the day using a ‘fly-and-forage’ migration strategy. Prolonged foraging flights may reinforce the effects of migration distance on flight morphology. We found that two wings’ aerodynamic properties – isometric handwing length and pointedness, both favoring energetically efficient flight, were more pronounced in barn swallows from populations undertaking longer seasonal migrations compared to less migratory populations. Our result contrast with two recent interspecific comparative studies that either reported no relationship or reported a negative relationship between pointedness and the degree of migratory behavior in hirundines. Our results may thus contribute to confirming the universality of the rule that longer migrations are associated with more pointed wings.
Collapse
Affiliation(s)
- Piotr Matyjasiak
- Museum and Institute of Zoology Polish Academy of Sciences, Wilcza 64 , PL-00-679 Warsaw, Poland
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Wóycickiego 1/3 , PL-01-815 Warsaw, Poland
| | - Cosme López-Calderón
- Departamento de Zoología, Facultad de Biología, Edificio Verde , Avda. de Reina Mercedes s/n, E-41012 Sevilla, Spain
- Department of Wetland Ecology, Estación Biológica de Doñana CSIC, Americo Vespucio s/n , E-41092 Seville, Spain
| | - Roberto Ambrosini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26 , I-20133 Milan, Italy
| | - Javier Balbontín
- Departamento de Zoología, Facultad de Biología, Edificio Verde , Avda. de Reina Mercedes s/n, E-41012 Sevilla, Spain
| | - Alessandra Costanzo
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26 , I-20133 Milan, Italy
| | - Yosef Kiat
- Israeli Bird Ringing Center (IBRC), Israel Ornithological Center, Society for the Protection of Nature in Israel , Hanegev 2, Tel-Aviv, Israel
| | - Andrea Romano
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26 , I-20133 Milan, Italy
| | - Diego Rubolini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26 , I-20133 Milan, Italy
- Istituto di Ricerca sulle Acque, IRSA-CNR, Via del Mulino 19 , I-20861 Brugherio (MB), Italy
| |
Collapse
|