1
|
Baumann O, Cheng F, Kirschbaum F, Tiedemann R. Organization of the stalk system on electrocytes in mormyrid weakly electric fish Campylomormyrus compressirostris. Cell Tissue Res 2024:10.1007/s00441-024-03938-y. [PMID: 39704840 DOI: 10.1007/s00441-024-03938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/15/2024] [Indexed: 12/21/2024]
Abstract
The adult electric organ in weakly electric mormyrid fish consists of action-potential-generating electrocytes, structurally and functionally modified skeletal muscle cells. The electrocytes have a disc-shaped portion and, on one of its sides, numerous thin processes, termed stalklets. These unite to stalks leading to a single main stalk that carries the innervation site. Here, we describe the 3-dimensional layout of the stalklet/stalk system in adult Campylomormyrus compressirostris by differential interference contrast microscopy and confocal fluorescence microscopy. Using antibodies against Na+/K+-ATPase α-subunit and plasma membrane Ca2+-ATPase, we show that these ion pumps are differentially distributed over the stalklet/stalk system, with plasma membrane Ca2+-ATPase being enriched on the stalklet membrane. Stalklets are distributed and organized in a quite uniform pattern on the posterior face of the electrocyte disc and fuse to terminal stalks. The latter then unite in a mostly dichotomic mode to stalks of increasing thickness, with the main stalk measuring about 100 µm in diameter. We further analyse the structural organization of stalklets and stalks, with a characteristic cytoskeletal system of bundled actin filaments in the centre and nuclei in subsurface position. These results suggest that the stalklet/stalk system is adapted in its structural layout to generate an action potential highly synchronized over the entire disc-portion of the electrocyte, accounting for the short electric organ discharge in this species. Our results suggest that actin-related proteins overexpressed in electrocytes, as shown previously by transcriptome analysis, may be involved in the organization of the unique F-actin system in stalklets and stalks.
Collapse
Affiliation(s)
- Otto Baumann
- Unit of Animal Physiology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
| | - Feng Cheng
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Frank Kirschbaum
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| |
Collapse
|
2
|
Hauser FE, Xiao D, Van Nynatten A, Brochu-De Luca KK, Rajakulendran T, Elbassiouny AE, Sivanesan H, Sivananthan P, Crampton WGR, Lovejoy NR. Ecologically mediated differences in electric organ discharge drive evolution in a sodium channel gene in South American electric fishes. Biol Lett 2024; 20:20230480. [PMID: 38412964 PMCID: PMC10898970 DOI: 10.1098/rsbl.2023.0480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Active electroreception-the ability to detect objects and communicate with conspecifics via the detection and generation of electric organ discharges (EODs)-has evolved convergently in several fish lineages. South American electric fishes (Gymnotiformes) are a highly species-rich group, possibly in part due to evolution of an electric organ (EO) that can produce diverse EODs. Neofunctionalization of a voltage-gated sodium channel gene accompanied the evolution of electrogenic tissue from muscle and resulted in a novel gene (scn4aa) uniquely expressed in the EO. Here, we investigate the link between variation in scn4aa and differences in EOD waveform. We combine gymnotiform scn4aa sequences encoding the C-terminus of the Nav1.4a protein, with biogeographic data and EOD recordings to test whether physiological transitions among EOD types accompany differential selection pressures on scn4aa. We found positive selection on scn4aa coincided with shifts in EOD types. Species that evolved in the absence of predators, which likely selected for reduced EOD complexity, exhibited increased scn4aa evolutionary rates. We model mutations in the protein that may underlie changes in protein function and discuss our findings in the context of gymnotiform signalling ecology. Together, this work sheds light on the selective forces underpinning major evolutionary transitions in electric signal production.
Collapse
Affiliation(s)
- Frances E. Hauser
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Dawn Xiao
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Alexander Van Nynatten
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, Ontario, Canada M5S 3G5
| | - Kristen K. Brochu-De Luca
- Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA
- School of Chemistry, Environmental and Life Sciences, University of The Bahamas, Oakes Field Campus, Nassau, New Providence, The Bahamas
| | - Thanara Rajakulendran
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Ahmed E. Elbassiouny
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, Ontario, Canada M5S 3G5
| | - Harunya Sivanesan
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Pradeega Sivananthan
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - William G. R. Crampton
- Department of Biology, University of Central Florida, 4110 Libra Dr, Orlando, FL 32816, USA
| | - Nathan R. Lovejoy
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, Ontario, Canada M5S 3G5
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, Canada M5S 3B2
| |
Collapse
|