1
|
Taşbozan O, Erbaş C, Bayır M, Özdemir E, Arslan G, Bayır A. Fatty acid-binding protein genes in gilthead seabream: molecular cloning and nutritional regulation under low water temperatures. JOURNAL OF FISH BIOLOGY 2023; 102:816-828. [PMID: 36647813 DOI: 10.1111/jfb.15319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The molecular characteristics and tissue disruption of 10 fatty acid-binding protein (fabp) genes in gilthead seabream (Sparus aurata) were investigated, and their expression levels were found in the fish fed diets with different vegetable oil (VO) sources, which may explore the potential function of fabp genes in S. aurata. For this purpose, the open reading frames of fabp genes involved in the transport and ß-oxidation of fatty acids (FA) were molecularly cloned and characterized. S. aurata was then exposed to a two-staged feeding trial (the grow-out period following a wash-out period) at low water temperatures. In the grow-out period, the fish were fed diets containing 50% and 100% ratios of various VOs for 60 days, and in the wash-out period, the fish were fed a diet containing 100% fish oil (FO) for 30 days. It has been determined that (a) S. aurata and vertebrate fabp/FABP genes are orthologues; (b) spatio-temporal differences in tissue-specific patterns of fabp genes differ importantly; for instance, the difference between the highest and lowest values reaches 13 × 105 -fold in the fabp10a; and (c) VO-based diets upregulated fabp transcript levels in the liver and muscle with some exceptions, such as liver fabp11a and muscle fabp7a. Gene expressions of only the hepatic fabp7b and fabp10a genes were diminished at the end of the wash-out period. In this study, the authors provide further evidence that dietary FAs affect fabp mRNA expressions in S. aurata. This might be useful in the nutritional control of fabp genes to maintain lipid homeostasis in marine fish fed VO-based diets at low water temperatures.
Collapse
Affiliation(s)
- Oğuz Taşbozan
- Faculty of Fisheries, Department of Aquaculture, Çukurova University, Adana, Turkey
| | - Celal Erbaş
- Yumurtalık Vocational School, Çukurova University, Adana, Turkey
| | - Mehtap Bayır
- Faculty of Agriculture, Department of Agricultural Biotechnology, Atatürk University, Erzurum, Turkey
| | - Erdal Özdemir
- Faculty of Agriculture, Department of Agricultural Biotechnology, Atatürk University, Erzurum, Turkey
| | - Gökhan Arslan
- Faculty of Fisheries, Department of Fisheries and Fish Processing Technology, Atatürk University, Erzurum, Turkey
| | - Abdulkadir Bayır
- Faculty of Fisheries, Department of Aquaculture, Atatürk University, Erzurum, Turkey
| |
Collapse
|
2
|
Sokol AM, Uszczynska-Ratajczak B, Collins MM, Bazala M, Topf U, Lundegaard PR, Sugunan S, Guenther S, Kuenne C, Graumann J, Chan SSL, Stainier DYR, Chacinska A. Loss of the Mia40a oxidoreductase leads to hepato-pancreatic insufficiency in zebrafish. PLoS Genet 2018; 14:e1007743. [PMID: 30457989 PMCID: PMC6245507 DOI: 10.1371/journal.pgen.1007743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Development and function of tissues and organs are powered by the activity of mitochondria. In humans, inherited genetic mutations that lead to progressive mitochondrial pathology often manifest during infancy and can lead to death, reflecting the indispensable nature of mitochondrial biogenesis and function. Here, we describe a zebrafish mutant for the gene mia40a (chchd4a), the life-essential homologue of the evolutionarily conserved Mia40 oxidoreductase which drives the biogenesis of cysteine-rich mitochondrial proteins. We report that mia40a mutant animals undergo progressive cellular respiration defects and develop enlarged mitochondria in skeletal muscles before their ultimate death at the larval stage. We generated a deep transcriptomic and proteomic resource that allowed us to identify abnormalities in the development and physiology of endodermal organs, in particular the liver and pancreas. We identify the acinar cells of the exocrine pancreas to be severely affected by mutations in the MIA pathway. Our data contribute to a better understanding of the molecular, cellular and organismal effects of mitochondrial deficiency, important for the accurate diagnosis and future treatment strategies of mitochondrial diseases. Mitochondrial pathologies which result from mutations in the nuclear DNA remain incurable and often lead to death. As mitochondria play various roles in cellular and tissue-specific contexts, the symptoms of mitochondrial pathologies can differ between patients. Thus, diagnosis and treatment of mitochondrial disorders remain challenging. To enhance this, the generation of new models that explore and define the consequences of mitochondria insufficiencies is of central importance. Here, we present a mia40a zebrafish mutant as a model for mitochondrial dysfunction, caused by an imbalance in mitochondrial protein biogenesis. This mutant shares characteristics with existing reports on mitochondria dysfunction, and has led us to identify novel phenotypes such as enlarged mitochondrial clusters in skeletal muscles. In addition, our transcriptomics and proteomics data contribute important findings to the existing knowledge on how faulty mitochondria impinge on vertebrate development in molecular, tissue and organ specific contexts.
Collapse
Affiliation(s)
- Anna M. Sokol
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- * E-mail: (AMS); (AC)
| | | | - Michelle M. Collins
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michal Bazala
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ulrike Topf
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Pia R. Lundegaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sreedevi Sugunan
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Stefan Guenther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carsten Kuenne
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sherine S. L. Chan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Chacinska
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- * E-mail: (AMS); (AC)
| |
Collapse
|
3
|
Venkatachalam AB, Parmar MB, Wright JM. Evolution of the duplicated intracellular lipid-binding protein genes of teleost fishes. Mol Genet Genomics 2017; 292:699-727. [PMID: 28389698 DOI: 10.1007/s00438-017-1313-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/15/2017] [Indexed: 12/18/2022]
Abstract
Increasing organismal complexity during the evolution of life has been attributed to the duplication of genes and entire genomes. More recently, theoretical models have been proposed that postulate the fate of duplicated genes, among them the duplication-degeneration-complementation (DDC) model. In the DDC model, the common fate of a duplicated gene is lost from the genome owing to nonfunctionalization. Duplicated genes are retained in the genome either by subfunctionalization, where the functions of the ancestral gene are sub-divided between the sister duplicate genes, or by neofunctionalization, where one of the duplicate genes acquires a new function. Both processes occur either by loss or gain of regulatory elements in the promoters of duplicated genes. Here, we review the genomic organization, evolution, and transcriptional regulation of the multigene family of intracellular lipid-binding protein (iLBP) genes from teleost fishes. Teleost fishes possess many copies of iLBP genes owing to a whole genome duplication (WGD) early in the teleost fish radiation. Moreover, the retention of duplicated iLBP genes is substantially higher than the retention of all other genes duplicated in the teleost genome. The fatty acid-binding protein genes, a subfamily of the iLBP multigene family in zebrafish, are differentially regulated by peroxisome proliferator-activated receptor (PPAR) isoforms, which may account for the retention of iLBP genes in the zebrafish genome by the process of subfunctionalization of cis-acting regulatory elements in iLBP gene promoters.
Collapse
Affiliation(s)
- Ananda B Venkatachalam
- Department of Biology, Dalhousie University, 1355 Oxford Street, PO BOX 15000, Halifax, NS, B3H 4R2, Canada
| | - Manoj B Parmar
- Department of Biology, Dalhousie University, 1355 Oxford Street, PO BOX 15000, Halifax, NS, B3H 4R2, Canada
| | - Jonathan M Wright
- Department of Biology, Dalhousie University, 1355 Oxford Street, PO BOX 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
4
|
Boglino A, Ponce M, Cousin X, Gisbert E, Manchado M. Transcriptional regulation of genes involved in retinoic acid metabolism in Senegalese sole larvae. Comp Biochem Physiol B Biochem Mol Biol 2016; 203:35-46. [PMID: 27619487 DOI: 10.1016/j.cbpb.2016.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 12/26/2022]
Abstract
The aim of this study was the characterization of transcriptional regulatory pathways mediated by retinoic acid (RA) in Senegalese sole larvae. For this purpose, pre-metamorphic larvae were treated with a low concentration of DEAB, an inhibitor of RALDH enzyme, until the end of metamorphosis. No differences in growth, eye migration or survival were observed. Nevertheless, gene expression analysis revealed a total of 20 transcripts differentially expressed during larval development and only six related with DEAB treatments directly involved in RA metabolism and actions (rdh10a, aldh1a2, crbp1, igf2r, rarg and cyp26a1) to adapt to a low-RA environment. In a second experiment, post-metamorphic larvae were exposed to the all-trans RA (atRA) observing an opposite regulation for those genes involved in RA synthesis and degradation (rdh10a, aldh1a2, crbp1 and cyp26a1) as well as other related with thyroid- (dio2) and IGF-axes (igfbp1, igf2r and igfbp5) to balance RA levels. In a third experiment, DEAB-pretreated post-metamorphic larvae were exposed to atRA and TTNPB (a specific RAR agonist). Both drugs down-regulated rdh10a and aldh1a2 and up-regulated cyp26a1 expression demonstrating their important role in RA homeostasis. Moreover, five retinoic receptors that mediate RA actions, the thyroid receptor thrb, and five IGF binding proteins changed differentially their expression. Overall, this study demonstrates that exogenous RA modulates the expression of some genes involved in the RA synthesis, degradation and cellular transport through RAR-mediated regulatory pathways establishing a negative feedback regulatory mechanism necessary to balance endogenous RA levels and gradients.
Collapse
Affiliation(s)
- Anaïs Boglino
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán (CIAD), PO Box 711, 82010 Mazatlán, Sinaloa, Mexico
| | - Marian Ponce
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro de Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - Xavier Cousin
- IFREMER, Laboratoire d'Ecotoxicologie, Place Gaby Coll, BP7, 17137 L'Houmeau, France
| | - Enric Gisbert
- IRTA-Sant Carles de la Ràpita, Ctra. De Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro de Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| |
Collapse
|
5
|
Parmar MB, Shams R, Wright JM. Genomic organization and transcription of the medaka and zebrafish cellular retinol-binding protein (rbp) genes. Mar Genomics 2013; 11:1-10. [PMID: 23632098 DOI: 10.1016/j.margen.2013.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/25/2013] [Accepted: 04/07/2013] [Indexed: 01/10/2023]
Abstract
In this study, we examined the evolutionary trajectories and the common ancestor of medaka rbp genes by comparing them to the well-studied rbp/RBP genes from zebrafish and other vertebrates. We describe here gene structure, sequence identity, phylogenetic analysis and conserved gene synteny of medaka rbp genes and their putative proteins as well as the tissue-specific distribution of rbp transcripts in adult medaka and zebrafish. Medaka rbp genes consist of four exons separated by three introns that encode putative polypeptides of 134-138 amino acids, a genomic organization characteristic of rbp genes. Medaka Rbp sequences share highest sequence identity and similarity with their orthologs in vertebrates, and form a distinct clade with them in phylogenetic analysis. Conserved gene synteny was evident among medaka, zebrafish and human rbp/RBP genes, which provides compelling evidence that the medaka rbp1, rbp2a, rbp2b, rbp5, rbp7a and rbp7b genes arose from a common ancestor of vertebrates. Moreover, the duplicated rbp2 and rbp7 genes most likely exist owing to a whole-genome duplication (WGD) event specific to the teleost fish lineage. Selection pressure and the nonparametric relative rate test of the medaka and zebrafish duplicated rbp2 and rbp7 genes suggest that these duplicated genes are subjected to purifying selection and one paralog might have evolved at an accelerated rate compared to its sister duplicate since the WGD. The steady-state levels of medaka and zebrafish rbp1, rbp2a, rbp2b and rbp5 transcripts in various tissues suggest that medaka rbp1, rbp2a and rbp2b genes have retained the regulatory elements of an ancestral RBP1 and RBP2 genes, and the medaka rbp5 gene has acquired new function. Furthermore, the tissue-specific regulations of rbp7a and rbp7b genes have diverged markedly in medaka and zebrafish since the teleost-specific WGD.
Collapse
Affiliation(s)
- Manoj B Parmar
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | | | | |
Collapse
|
6
|
New insights into the mechanism of lens development using zebra fish. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:1-61. [PMID: 22559937 DOI: 10.1016/b978-0-12-394307-1.00001-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On the basis of recent advances in molecular biology, genetics, and live-embryo imaging, direct comparisons between zebra fish and human lens development are being made. The zebra fish has numerous experimental advantages for investigation of fundamental biomedical problems that are often best studied in the lens. The physical characteristics of visible light can account for the highly coordinated cell differentiation during formation of a beautifully transparent, refractile, symmetric optical element, the biological lens. The accessibility of the zebra fish lens for direct investigation during rapid development will result in new knowledge about basic functional mechanisms of epithelia-mesenchymal transitions, cell fate, cell-matrix interactions, cytoskeletal interactions, cytoplasmic crowding, membrane transport, cell adhesion, cell signaling, and metabolic specialization. The lens is well known as a model for characterization of cell and molecular aging. We review the recent advances in understanding vertebrate lens development conducted with zebra fish.
Collapse
|
7
|
Chen L, Hu C, Huang C, Wang Q, Wang X, Yang L, Zhou B. Alterations in retinoid status after long-term exposure to PBDEs in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 120-121:11-18. [PMID: 22580571 DOI: 10.1016/j.aquatox.2012.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 05/31/2023]
Abstract
This study examined the disruptive effect of exposure to polybrominated diphenyl ethers (PBDEs) on retinoid content in zebrafish (Danio rerio). Adult zebrafish were exposed to an environmentally relevant concentration (0.45 μg/L) and a higher concentration (9.6 μg/L) of DE-71 for 60 days. Retinoid content and gene transcription levels were examined in female zebrafish. PBDE exposure caused a significant decrease of retinyl ester content in the intestine and a downregulation of intestinal cellular retinol binding protein gene transcription (CRBP1a). In the liver, retinyl ester content was significantly decreased, while retinol content was increased. An upregulation of liver CRBP2a and retinol binding protein (RBP) gene transcription and an increased level of RBP protein were observed. In the eyes, both the retinal and retinyl ester content were increased and CRBP1a gene transcription was upregulated. However, the gene encoding for retinal dehydrogenase (RALDH2), responsible for retinoic acid synthesis, was downregulated in the eyes. CYP26a, the gene responsible for retinoic acid degradation, was upregulated, which indicated an increased level of retinoic acid. In the ovaries, the increased deposition of retinoids was also observed, while gene transcription levels of both CRBPs (CRBP1a and CRBP1b) were upregulated. An increased deposition of retinal was measured in the eggs. Overall, this study demonstrated that long-term exposure of zebrafish to environmentally relevant concentrations of DE-71 disrupted the transport, storage and metabolism of retinoid in various tissues. This study also indicated that retinoid levels in zebrafish are sensitive to PBDE exposure and highlighted the importance of liver storage, which appears to support important functions in reproduction and vision.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Mezaki Y, Morii M, Yoshikawa K, Yamaguchi N, Miura M, Imai K, Yoshino H, Senoo H. Characterization of a cellular retinol-binding protein from lamprey, Lethenteron japonicum. Comp Biochem Physiol B Biochem Mol Biol 2011; 161:233-9. [PMID: 22155549 DOI: 10.1016/j.cbpb.2011.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 11/18/2022]
Abstract
Lampreys are ancestral representatives of vertebrates known as jawless fish. The Japanese lamprey, Lethenteron japonicum, is a parasitic member of the lampreys known to store large amounts of vitamin A within its body. How this storage is achieved, however, is wholly unknown. Within the body, the absorption, transfer and metabolism of vitamin A are regulated by a family of proteins called retinoid-binding proteins. Here we have cloned a cDNA for cellular retinol-binding protein (CRBP) from the Japanese lamprey, and phylogenetic analysis suggests that lamprey CRBP is an ancestor of both CRBP I and II. The lamprey CRBP protein was expressed in bacteria and purified. Binding of the lamprey CRBP to retinol (Kd of 13.2 nM) was identified by fluorimetric titration. However, results obtained with the protein fluorescence quenching technique indicated that lamprey CRBP does not bind to retinal. Northern blot analysis showed that lamprey CRBP mRNA was ubiquitously expressed, although expression was most abundant in the intestine. Together, these results suggest that lamprey CRBP has an important role in absorbing vitamin A from the blood of host animals.
Collapse
Affiliation(s)
- Yoshihiro Mezaki
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Belliveau DJ, Venkatachalam AB, Thisse C, Thisse B, Ma H, Wright JM. The duplicated retinol-binding protein 7 (rbp7) genes are differentially transcribed in embryos and adult zebrafish (Danio rerio). Gene Expr Patterns 2010; 10:167-76. [PMID: 20398800 DOI: 10.1016/j.gep.2010.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/16/2010] [Accepted: 04/07/2010] [Indexed: 01/12/2023]
Abstract
Genomic and cDNA sequences coding for two cellular retinol-binding proteins (rbp) in zebrafish were retrieved from DNA sequence databases. Phylogenetic analysis revealed that these proteins were most similar to mammalian RBP7/Rbp7 proteins. Hence, the genes coding for these proteins were named rbp7a and rbp7b. Using a radiation hybrid panel, rbp7a and rbp7b were mapped to the zebrafish chromosomes 23 and 6, respectively. Conserved gene synteny indicated that these genes most likely arose as a result of a fish-specific whole-genome duplication event that had occurred 230-400 million years ago. Whole-mount in situ hybridization to zebrafish embryos detected rbp7a transcripts from the sphere stage (4h post-fertilization (hpf)) in the forerunner cells and the yolk syncytial layer, as well as in Kuppfer's vesicle and the periderm at 12 hpf. The transcripts of rbp7b were seen primarily in the somite stages (10-24 hpf) of zebrafish embryos, but also in the floor plate and hypochord, and did not overlap with the distribution of rbp7a transcripts in embryos. The hybridization signal for rbp7a and rbp7b transcripts was not detected in embryos after 12 hpf and 24 hpf, respectively. While transcripts for both rbp7a and rbp7b were found in all adult tissues assayed by RT-qPCR, the steady-state level of rbp7a transcripts were significantly higher than that of rbp7b transcripts in gill and ovary, whereas rbp7b transcripts were significantly higher than rbp7a transcripts in muscle and brain. The distribution of rbp7a and rbp7b transcripts in embryos and adult zebrafish indicate that the cis-elements that control the transcriptional regulation of the rbp7a and rbp7b genes have diverged considerably since their duplication.
Collapse
Affiliation(s)
- Daniel J Belliveau
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1
| | | | | | | | | | | |
Collapse
|
10
|
Venkatachalam AB, Thisse C, Thisse B, Wright JM. Differential tissue-specific distribution of transcripts for the duplicated fatty acid-binding protein 10 (fabp10) genes in embryos, larvae and adult zebrafish (Danio rerio). FEBS J 2009; 276:6787-97. [DOI: 10.1111/j.1742-4658.2009.07393.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Liu RZ, Li X, Godbout R. A novel fatty acid-binding protein (FABP) gene resulting from tandem gene duplication in mammals: transcription in rat retina and testis. Genomics 2008; 92:436-45. [PMID: 18786628 DOI: 10.1016/j.ygeno.2008.08.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/05/2008] [Accepted: 08/06/2008] [Indexed: 02/02/2023]
Abstract
We have identified a new member of the FABP gene family, designated FABP12. FABP12 has the same structure as other FABP genes and resides in a cluster with FABP4/5/8/9 within 300,000 bp chromosomal region. FABP12 orthologs are found in mammals, but not in the zebrafish or chicken genomes. We demonstrate that FABP12 is expressed in rodent retina and testis, as well as in human retinoblastoma cell lines. In situ hybridization of adult rat retinal tissue indicates that FABP12 mRNA is expressed in ganglion and inner nuclear layer cells. Analysis of adult rat testis reveals a pattern of expression that is different from that of the known testis FABP (FABP9) in the testicular germ cells, suggesting distinct roles for these two genes during mammalian spermatogenesis. We propose that FABP12 arose as the result of tandem gene duplication, a mechanism that may have been instrumental to the expansion of the FABP family.
Collapse
Affiliation(s)
- Rong-Zong Liu
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada, T6G 1Z2
| | | | | |
Collapse
|
12
|
Duplication of the dystroglycan gene in most branches of teleost fish. BMC Mol Biol 2007; 8:34. [PMID: 17509131 PMCID: PMC1885269 DOI: 10.1186/1471-2199-8-34] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 05/17/2007] [Indexed: 11/24/2022] Open
Abstract
Background The dystroglycan (DG) complex is a major non-integrin cell adhesion system whose multiple biological roles involve, among others, skeletal muscle stability, embryonic development and synapse maturation. DG is composed of two subunits: α-DG, extracellular and highly glycosylated, and the transmembrane β-DG, linking the cytoskeleton to the surrounding basement membrane in a wide variety of tissues. A single copy of the DG gene (DAG1) has been identified so far in humans and other mammals, encoding for a precursor protein which is post-translationally cleaved to liberate the two DG subunits. Similarly, D. rerio (zebrafish) seems to have a single copy of DAG1, whose removal was shown to cause a severe dystrophic phenotype in adult animals, although it is known that during evolution, due to a whole genome duplication (WGD) event, many teleost fish acquired multiple copies of several genes (paralogues). Results Data mining of pufferfish (T. nigroviridis and T. rubripes) and other teleost fish (O. latipes and G. aculeatus) available nucleotide sequences revealed the presence of two functional paralogous DG sequences. RT-PCR analysis proved that both the DG sequences are transcribed in T. nigroviridis. One of the two DG sequences harbours an additional mini-intronic sequence, 137 bp long, interrupting the uncomplicated exon-intron-exon pattern displayed by DAG1 in mammals and D. rerio. A similar scenario emerged also in D. labrax (sea bass), from whose genome we have cloned and sequenced a new DG sequence that also harbours a shorter additional intronic sequence of 116 bp. Western blot analysis confirmed the presence of DG protein products in all the species analysed including two teleost Antarctic species (T. bernacchii and C. hamatus). Conclusion Our evolutionary analysis has shown that the whole-genome duplication event in the Class Actinopterygii (ray-finned fish) involved also DAG1. We unravelled new important molecular genetic details about fish orthologous DGs, which might help to increase the current knowledge on DG expression, maturation and targeting and on its physiopathological role in higher organisms.
Collapse
|
13
|
Moise AR, Isken A, Domínguez M, de Lera AR, von Lintig J, Palczewski K. Specificity of zebrafish retinol saturase: formation of all-trans-13,14-dihydroretinol and all-trans-7,8- dihydroretinol. Biochemistry 2007; 46:1811-20. [PMID: 17253779 PMCID: PMC2561287 DOI: 10.1021/bi062147u] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metabolism of vitamin A, all-trans-retinol, leads to the formation of 11-cis-retinaldehyde, the visual chromophore, and all-trans-retinoic acid, which is involved in the regulation of gene expression through the retinoic acid receptor. Enzymes and binding proteins involved in retinoid metabolism are highly conserved across species. We previously described a novel mammalian enzyme that saturates the 13-14 double bond of all-trans-retinol to produce all-trans-13,14-dihydroretinol, which then follows the same metabolic fate as that of all-trans-retinol. Specifically, all-trans-13,14-dihydroretinol is transiently oxidized to all-trans-13,14-dihydroretinoic acid before being oxidized further by Cyp26 enzymes. Here, we report the identification of two putative RetSat homologues in zebrafish, one of which, zebrafish RetSat A (zRetSat A), also had retinol saturase activity, whereas zebrafish RetSat B (zRetSat B) was inactive under similar conditions. Unlike mouse RetSat (mRetSat), zRetSat A had an altered bond specificity saturating either the 13-14 or 7-8 double bonds of all-trans-retinol to produce either all-trans-13,14-dihydroretinol or all-trans-7,8-dihydroretinol, respectively. zRetSat A also saturated the 13-14 or 7-8 double bonds of all-trans-3,4-didehydroretinol (vitamin A2), a second endogenous form of vitamin A in zebrafish. The dual enzymatic activity of zRetSat A displays a newly acquired specificity for the 13-14 double bond retained in higher vertebrates and also the evolutionarily preserved activity of bacterial phytoene desaturases and plant carotenoid isomerases. Expression of zRetSat A was restricted to the liver and intestine of hatchlings and adult zebrafish, whereas zRetSat B was expressed in the same tissues but at earlier developmental stages. Exogenous all-trans-retinol, all-trans-13,14-dihydroretinol, or all-trans-7,8-dihydroretinol led to the strong induction of the expression of the retinoic acid-metabolizing enzyme, Cyp26A1, arguing for an active signaling function of dihydroretinoid metabolites in zebrafish. These findings point to a conserved function but altered specificity of RetSat in vertebrates, leading to the generation of various dihydroretinoid compounds, some of which could have signaling functions.
Collapse
Affiliation(s)
- Alexander R. Moise
- * To whom correspondence should be addressed. Phone: 216-368-4631. Fax: 216-368-1300. E-mail: (A.R.M.); (K.P.)
| | | | | | | | | | - Krzysztof Palczewski
- * To whom correspondence should be addressed. Phone: 216-368-4631. Fax: 216-368-1300. E-mail: (A.R.M.); (K.P.)
| |
Collapse
|
14
|
Tingaud-Sequeira A, Forgue J, André M, Babin PJ. Epidermal transient down-regulation of retinol-binding protein 4 and mirror expression of apolipoprotein Eb and estrogen receptor 2a during zebrafish fin and scale development. Dev Dyn 2007; 235:3071-9. [PMID: 16929533 DOI: 10.1002/dvdy.20921] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Very little is known about the molecular control of skin patterning and scale morphogenesis in teleost fish. We have found radially symmetrical epidermal placodes with down-regulation of retinol-binding protein 4 (rbp4) expression during the initial paired fin and scale morphogenesis in zebrafish (Danio rerio). This finding may be related to changes in keratinocyte cytodifferentiation and/or the integument retinoid metabolism. rbp4 transcripts are expressed afterward in the central epidermis of the scale papilla and gradually extend to the epidermis, covering the growing scale, whereas no transcripts were detected in posterior margin epidermis. In contrast, induction of apolipoprotein Eb (apoeb) and up-regulation of estrogen receptor 2a (esr2a) transcripts were observed in the epidermis at initiator sites of zebrafish ectodermal/dermal appendage morphogenesis. This expression was maintained in the posterior margin epidermis of the formed scales. esr2a was also strongly expressed in neuromasts, whereas no rbp4 and apoeb transcripts were detected in these mechanosensory structures. The observed epidermal molecular events suggest that epidermis patterning is due to an activator-inhibitor mechanism operational at epidermal-dermal interaction sites. rbp4 transcript expression was also strongly down-regulated by 1-phenyl-2-thio-urea (PTU). As this inhibitor is commonly used to block obscuring pigmentation during in situ hybridization studies, this finding suggests that PTU should be used with caution, particularly in studying skin development.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Génomique et Physiologie des Poissons, UMR NuAGe, Université Bordeaux 1, 33405 Talence Cedex, France
| | | | | | | |
Collapse
|
15
|
Sharma MK, Liu RZ, Thisse C, Thisse B, Denovan-Wright EM, Wright JM. Hierarchical subfunctionalization of fabp1a, fabp1b and fabp10 tissue-specific expression may account for retention of these duplicated genes in the zebrafish (Danio rerio) genome. FEBS J 2006; 273:3216-29. [PMID: 16857010 DOI: 10.1111/j.1742-4658.2006.05330.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fatty acid-binding protein type 1 (FABP1), commonly termed liver-type fatty acid-binding protein (L-FABP), is encoded by a single gene in mammals. We cloned and sequenced cDNAs for two distinct FABP1s in zebrafish coded by genes designated fabp1a and fabp1b. The zebrafish proteins, FABP1a and FABP1b, show highest sequence identity and similarity to the human protein FABP1. Zebrafish fabp1a and fabp1b genes were assigned to linkage groups 5 and 8, respectively. Both linkage groups show conserved syntenies to a segment of mouse chromosome 6, rat chromosome 4 and human chromosome 2 harboring the FABP1 locus. Phylogenetic analysis further suggests that zebrafish fabp1a and fabp1b genes are orthologs of mammalian FABP1 and most likely arose by a whole-genome duplication event in the ray-finned fish lineage, estimated to have occurred 200-450 million years ago. The paralogous fabp10 gene encoding basic L-FABP, found to date in only nonmammalian vertebrates, was assigned to zebrafish linkage group 16. RT-PCR amplification of mRNA in adults, and in situ hybridization to whole-mount embryos to fabp1a, fabp1b and fapb10 mRNAs, revealed a distinct and differential pattern of expression for the fabp1a, fabp1b and fabp10 genes in zebrafish, suggesting a division of function for these orthogolous and paralogous gene products following their duplication in the vertebrate genome. The differential and complementary expression patterns of the zebrafish fabp1a, fapb1b and fabp10 genes imply a hierarchical subfunctionalization that may account for the retention of both the duplicated fabp1a and fabp1b genes, and the fabp10 gene in the zebrafish genome.
Collapse
Affiliation(s)
- Mukesh K Sharma
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Liu RZ, Sharma MK, Sun Q, Thisse C, Thisse B, Denovan-Wright EM, Wright JM. Retention of the duplicated cellular retinoic acid-binding protein 1 genes (crabp1a and crabp1b) in the zebrafish genome by subfunctionalization of tissue-specific expression. FEBS J 2005; 272:3561-71. [PMID: 16008556 DOI: 10.1111/j.1742-4658.2005.04775.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cellular retinoic acid-binding protein type I (CRABPI) is encoded by a single gene in mammals. We have characterized two crabp1 genes in zebrafish, designated crabp1a and crabp1b. These two crabp1 genes share the same gene structure as the mammalian CRABP1 genes and encode proteins that show the highest amino acid sequence identity to mammalian CRABPIs. The zebrafish crabp1a and crabp1b were assigned to linkage groups 25 and 7, respectively. Both linkage groups show conserved syntenies to a segment of the human chromosome 15 harboring the CRABP1 locus. Phylogenetic analysis suggests that the zebrafish crabp1a and crabp1b are orthologs of the mammalian CRABP1 genes that likely arose from a teleost fish lineage-specific genome duplication. Embryonic whole mount in situ hybridization detected zebrafish crabp1b transcripts in the posterior hindbrain and spinal cord from early stages of embryogenesis. crabp1a mRNA was detected in the forebrain and midbrain at later developmental stages. In adult zebrafish, crabp1a mRNA was localized to the optic tectum, whereas crabp1b mRNA was detected in several tissues by RT-PCR but not by tissue section in situ hybridization. The differential and complementary expression patterns of the zebrafish crabp1a and crabp1b genes imply that subfunctionalization may be the mechanism for the retention of both crabp1 duplicated genes in the zebrafish genome.
Collapse
Affiliation(s)
- Rong-Zong Liu
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | |
Collapse
|