1
|
Schober I, Bunk B, Carril G, Freese HM, Ojeda N, Riedel T, Meier-Kolthoff JP, Göker M, Spröer C, Flores-Herrera PA, Nourdin-Galindo G, Gómez F, Cárdenas C, Vásquez-Ponce F, Labra A, Figueroa J, Olivares-Pacheco J, Nübel U, Sikorski J, Marshall SH, Overmann J. Ongoing diversification of the global fish pathogen Piscirickettsia salmonis through genetic isolation and transposition bursts. THE ISME JOURNAL 2023; 17:2247-2258. [PMID: 37853183 PMCID: PMC10689435 DOI: 10.1038/s41396-023-01531-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
The management of bacterial pathogens remains a key challenge of aquaculture. The marine gammaproteobacterium Piscirickettsia salmonis is the etiological agent of piscirickettsiosis and causes multi-systemic infections in different salmon species, resulting in considerable mortality and substantial commercial losses. Here, we elucidate its global diversity, evolution, and selection during human interventions. Our comprehensive analysis of 73 closed, high quality genome sequences covered strains from major outbreaks and was supplemented by an analysis of all P. salmonis 16S rRNA gene sequences and metagenomic reads available in public databases. Genome comparison showed that Piscirickettsia comprises at least three distinct, genetically isolated species of which two showed evidence for continuing speciation. However, at least twice the number of species exist in marine fish or seawater. A hallmark of Piscirickettsia diversification is the unprecedented amount and diversity of transposases which are particularly active in subgroups undergoing rapid speciation and are key to the acquisition of novel genes and to pseudogenization. Several group-specific genes are involved in surface antigen synthesis and may explain the differences in virulence between strains. However, the frequent failure of antibiotic treatment of piscirickettsiosis outbreaks cannot be explained by horizontal acquisition of resistance genes which so far occurred only very rarely. Besides revealing a dynamic diversification of an important pathogen, our study also provides the data for improving its surveillance, predicting the emergence of novel lineages, and adapting aquaculture management, and thereby contributes towards the sustainability of salmon farming.
Collapse
Affiliation(s)
- Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Gabriela Carril
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Heike M Freese
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Nicolás Ojeda
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Jan P Meier-Kolthoff
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Markus Göker
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Patricio A Flores-Herrera
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Guillermo Nourdin-Galindo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Fernando Gómez
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Constanza Cárdenas
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile
| | - Felipe Vásquez-Ponce
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Alvaro Labra
- Laboratorio de Patógenos Acuícolas, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jaime Figueroa
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Jorge Olivares-Pacheco
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Núcleo Milenio para la Investigación Colaborativa en Resistencia Antimicrobiana (MICROB-R), Santiago, Chile
| | - Ulrich Nübel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Johannes Sikorski
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sergio H Marshall
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany.
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
2
|
Huang S, Li H, Ma L, Liu R, Li Y, Wang H, Lu X, Huang X, Wu X, Liu X. Insertion sequence contributes to the evolution and environmental adaptation of Acidithiobacillus. BMC Genomics 2023; 24:282. [PMID: 37231368 DOI: 10.1186/s12864-023-09372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The genus Acidithiobacillus has been widely concerned due to its superior survival and oxidation ability in acid mine drainage (AMD). However, the contribution of insertion sequence (IS) to their biological evolution and environmental adaptation is very limited. ISs are the simplest kinds of mobile genetic elements (MGEs), capable of interrupting genes, operons, or regulating the expression of genes through transposition activity. ISs could be classified into different families with their own members, possessing different copies. RESULTS In this study, the distribution and evolution of ISs, as well as the functions of the genes around ISs in 36 Acidithiobacillus genomes, were analyzed. The results showed that 248 members belonging to 23 IS families with a total of 10,652 copies were identified within the target genomes. The IS families and copy numbers among each species were significantly different, indicating that the IS distribution of Acidithiobacillus were not even. A. ferrooxidans had 166 IS members, which may develop more gene transposition strategies compared with other Acidithiobacillus spp. What's more, A. thiooxidans harbored the most IS copies, suggesting that their ISs were the most active and more likely to transpose. The ISs clustered in the phylogenetic tree approximately according to the family, which were mostly different from the evolutionary trends of their host genomes. Thus, it was suggested that the recent activity of ISs of Acidithiobacillus was not only determined by their genetic characteristics, but related with the environmental pressure. In addition, many ISs especially Tn3 and IS110 families were inserted around the regions whose functions were As/Hg/Cu/Co/Zn/Cd translocation and sulfur oxidation, implying that ISs could improve the adaptive capacities of Acidithiobacillus to the extremely acidic environment by enhancing their resistance to heavy metals and utilization of sulfur. CONCLUSIONS This study provided the genomic evidence for the contribution of IS to evolution and adaptation of Acidithiobacillus, opening novel sights into the genome plasticity of those acidophiles.
Collapse
Affiliation(s)
- Shanshan Huang
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China
| | - Huiying Li
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China
| | - Liyuan Ma
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China.
| | - Rui Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Yiran Li
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China
| | - Hongmei Wang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Xiaolu Lu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Xinping Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China
| | - Xinhong Wu
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China
| |
Collapse
|
3
|
Woods RJ, Barbosa C, Koepping L, Raygoza JA, Mwangi M, Read AF. The evolution of antibiotic resistance in an incurable and ultimately fatal infection: A retrospective case study. Evol Med Public Health 2023; 11:163-173. [PMID: 37325804 PMCID: PMC10266578 DOI: 10.1093/emph/eoad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/06/2023] [Indexed: 06/17/2023] Open
Abstract
Background and objectives The processes by which pathogens evolve within a host dictate the efficacy of treatment strategies designed to slow antibiotic resistance evolution and influence population-wide resistance levels. The aim of this study is to describe the underlying genetic and phenotypic changes leading to antibiotic resistance within a patient who died as resistance evolved to available antibiotics. We assess whether robust patterns of collateral sensitivity and response to combinations existed that might have been leveraged to improve therapy. Methodology We used whole-genome sequencing of nine isolates taken from this patient over 279 days of a chronic infection with Enterobacter hormaechei, and systematically measured changes in resistance against five of the most relevant drugs considered for treatment. Results The entirety of the genetic change is consistent with de novo mutations and plasmid loss events, without acquisition of foreign genetic material via horizontal gene transfer. The nine isolates fall into three genetically distinct lineages, with early evolutionary trajectories being supplanted by previously unobserved multi-step evolutionary trajectories. Importantly, although the population evolved resistance to all the antibiotics used to treat the infection, no single isolate was resistant to all antibiotics. Evidence of collateral sensitivity and response to combinations therapy revealed inconsistent patterns across this diversifying population. Conclusions Translating antibiotic resistance management strategies from theoretical and laboratory data to clinical situations, such as this, will require managing diverse population with unpredictable resistance trajectories.
Collapse
Affiliation(s)
- Robert J Woods
- Corresponding author. 2215 Fuller Rd, Ann Arbor, MI 48105, USA. Tel: +734 845-3460; E-mail:
| | - Camilo Barbosa
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Laura Koepping
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Juan A Raygoza
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael Mwangi
- Machine Learning Modeling Working Group, Synopsys, Mountain View, CA, USA
| | - Andrew F Read
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
- Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
4
|
Bertels F, Rainey PB. Ancient Darwinian replicators nested within eubacterial genomes. Bioessays 2023; 45:e2200085. [PMID: 36456469 DOI: 10.1002/bies.202200085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
Integrative mobile genetic elements (MGEs), such as transposons and insertion sequences, propagate within bacterial genomes, but persistence times in individual lineages are short. For long-term survival, MGEs must continuously invade new hosts by horizontal transfer. Theoretically, MGEs that persist for millions of years in single lineages, and are thus subject to vertical inheritance, should not exist. Here we draw attention to an exception - a class of MGE termed REPIN. REPINs are non-autonomous MGEs whose duplication depends on non-jumping RAYT transposases. Comparisons of REPINs and typical MGEs show that replication rates of REPINs are orders of magnitude lower, REPIN population size fluctuations correlate with changes in available genome space, REPIN conservation depends on RAYT function, and REPIN diversity accumulates within host lineages. These data lead to the hypothesis that REPINs form enduring, beneficial associations with eubacterial chromosomes. Given replicative nesting, our hypothesis predicts conflicts arising from the diverging effects of selection acting simultaneously on REPINs and host genomes. Evidence in support comes from patterns of REPIN abundance and diversity in two distantly related bacterial species. Together this bolsters the conclusion that REPINs are the genetic counterpart of mutualistic endosymbiotic bacteria.
Collapse
Affiliation(s)
- Frederic Bertels
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Paul B Rainey
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL, CNRS, Paris, France
| |
Collapse
|
5
|
Hoshino T, Fujiwara T. The findings of glucosyltransferase enzymes derived from oral streptococci. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:328-335. [PMID: 36340584 PMCID: PMC9630777 DOI: 10.1016/j.jdsr.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022] Open
Abstract
Glucosyltransferase enzymes (Gtfs) distribute among some streptococcal species in oral cavity and are known as key enzymes contributing to the development of oral biofilm such as dental plaque. In 18 streptococcal species, 45 glucosyltransferase genes (gtf) are detected from genome database. Gtfs catalyze the synthesis of the glucans, which are polymers of glucose, from sucrose and they are main component of oral biofilm. Especially, the Gtfs from Streptococcus mutans are recognized as one of dental caries pathogens since they contribute to the formation of dental plaque and the establishment of S. mutans in the tooth surface. Therefore, Gtfs has been studied particularly by many researchers in the dentistry field to develop the anti- caries vaccine. However, it is not still accomplished. In these days, the phylogenetic and crystal structure analyses of Gtfs were performed and the study of Gtfs will enter new situation from the technique in the past old viewpoint. The findings from those analyses will affect the development of the anti-caries vaccine very much after this. In this review, we summarize the findings of oral streptococcal Gtfs and consider the perspectives of the dental caries prevention which targeted Gtf.
Collapse
|
6
|
Repeat sequences limit the effectiveness of lateral gene transfer and favored the evolution of meiotic sex in early eukaryotes. Proc Natl Acad Sci U S A 2022; 119:e2205041119. [PMID: 35994648 PMCID: PMC9436333 DOI: 10.1073/pnas.2205041119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The transition from prokaryotic lateral gene transfer to eukaryotic meiotic sex is poorly understood. Phylogenetic evidence suggests that it was tightly linked to eukaryogenesis, which involved an unprecedented rise in both genome size and the density of genetic repeats. Expansion of genome size raised the severity of Muller's ratchet, while limiting the effectiveness of lateral gene transfer (LGT) at purging deleterious mutations. In principle, an increase in recombination length combined with higher rates of LGT could solve this problem. Here, we show using a computational model that this solution fails in the presence of genetic repeats prevalent in early eukaryotes. The model demonstrates that dispersed repeat sequences allow ectopic recombination, which leads to the loss of genetic information and curtails the capacity of LGT to prevent mutation accumulation. Increasing recombination length in the presence of repeat sequences exacerbates the problem. Mutational decay can only be resisted with homology along extended sequences of DNA. We conclude that the transition to homologous pairing along linear chromosomes was a key innovation in meiotic sex, which was instrumental in the expansion of eukaryotic genomes and morphological complexity.
Collapse
|
7
|
Queffelec J, Postma A, Allison JD, Slippers B. Remnants of horizontal transfers of Wolbachia genes in a Wolbachia-free woodwasp. BMC Ecol Evol 2022; 22:36. [PMID: 35346038 PMCID: PMC8962096 DOI: 10.1186/s12862-022-01995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background Wolbachia is a bacterial endosymbiont of many arthropod and nematode species. Due to its capacity to alter host biology, Wolbachia plays an important role in arthropod and nematode ecology and evolution. Sirex noctilio is a woodwasp causing economic loss in pine plantations of the Southern Hemisphere. An investigation into the genome of this wasp revealed the presence of Wolbachia sequences. Due to the potential impact of Wolbachia on the populations of this wasp, as well as its potential use as a biological control agent against invasive insects, this discovery warranted investigation.
Results In this study we first investigated the presence of Wolbachia in S. noctilio and demonstrated that South African populations of the wasp are unlikely to be infected. We then screened the full genome of S. noctilio and found 12 Wolbachia pseudogenes. Most of these genes constitute building blocks of various transposable elements originating from the Wolbachia genome. Finally, we demonstrate that these genes are distributed in all South African populations of the wasp.
Conclusions Our results provide evidence that S. noctilio might be compatible with a Wolbachia infection and that the bacteria could potentially be used in the future to regulate invasive populations of the wasp. Understanding the mechanisms that led to a loss of Wolbachia infection in S. noctilio could indicate which host species or host population should be sampled to find a Wolbachia strain that could be used as a biological control against S. noctilio. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01995-x.
Collapse
Affiliation(s)
- Joséphine Queffelec
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lunnon Road, Pretoria, 0002, South Africa. .,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Alisa Postma
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lunnon Road, Pretoria, 0002, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Jeremy D Allison
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lunnon Road, Pretoria, 0002, South Africa.,Great Lakes Forestry Center, Natural Resources Canada, Canadian Forest Service, Sault St Marie, Canada.,Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Bernard Slippers
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lunnon Road, Pretoria, 0002, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
8
|
Brkljacic J, Wittler B, Lindsey BE, Ganeshan VD, Sovic MG, Niehaus J, Ajibola W, Bachle SM, Fehér T, Somers DE. Frequency, composition and mobility of Escherichia coli-derived transposable elements in holdings of plasmid repositories. Microb Biotechnol 2022; 15:455-468. [PMID: 34875147 PMCID: PMC8867978 DOI: 10.1111/1751-7915.13962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
By providing the scientific community with uniform and standardized resources of consistent quality, plasmid repositories play an important role in enabling scientific reproducibility. Plasmids containing insertion sequence elements (IS elements) represent a challenge from this perspective, as they can change the plasmid structure and function. In this study, we conducted a systematic analysis of a subset of plasmid stocks distributed by plasmid repositories (The Arabidopsis Biological Resource Center and Addgene) which carry unintended integrations of bacterial mobile genetic elements. The integration of insertion sequences was most often found in, but not limited to, pBR322-derived vectors, and did not affect the function of the specific plasmids. In certain cases, the entire stock was affected, but the majority of the stocks tested contained a mixture of the wild-type and the mutated plasmids, suggesting that the acquisition of IS elements likely occurred after the plasmids were acquired by the repositories. However, comparison of the sequencing results of the original samples revealed that some plasmids already carried insertion mutations at the time of donation. While an extensive BLAST analysis of 47 877 plasmids sequenced from the Addgene repository uncovered IS elements in only 1.12%, suggesting that IS contamination is not widespread, further tests showed that plasmid integration of IS elements can propagate in conventional Escherichia coli hosts over a few tens of generations. Use of IS-free E. coli hosts prevented the emergence of IS insertions as well as that of small indels, suggesting that the use of IS-free hosts by donors and repositories could help limit unexpected and unwanted IS integrations into plasmids.
Collapse
Affiliation(s)
| | - Bettina Wittler
- Arabidopsis Biological Resource CenterColumbusOHUSA
- Present address:
Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
| | | | | | - Michael G. Sovic
- Center For Applied Plant SciencesThe Ohio State UniversityColumbusOHUSA
| | | | - Walliyulahi Ajibola
- Systems and Synthetic Biology UnitInstitute of BiochemistryBiological Research Centre of the Eötvös Lóránd Research NetworkSzegedHungary
- Doctoral School in BiologyUniversity of SzegedSzegedHungary
| | | | - Tamás Fehér
- Systems and Synthetic Biology UnitInstitute of BiochemistryBiological Research Centre of the Eötvös Lóránd Research NetworkSzegedHungary
| | - David E. Somers
- Arabidopsis Biological Resource CenterColumbusOHUSA
- Center For Applied Plant SciencesThe Ohio State UniversityColumbusOHUSA
- Department of Molecular GeneticsThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
9
|
Gu Y, Lü Z, Cao C, Sheng H, Li W, Cui S, Li R, Lü X, Yang B. Cunning plasmid fusion mediates antibiotic resistance genes represented by ESBLs encoding genes transfer in foodborne Salmonella. Int J Food Microbiol 2021; 355:109336. [PMID: 34352499 DOI: 10.1016/j.ijfoodmicro.2021.109336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022]
Abstract
Foodborne disease caused by antibiotic resistant Salmonella is quite difficult to deal with. In order to further explore the antibiotic resistance associated with gene transfer among foodborne Salmonella, several wild-type Salmonella strains were used as donors and recipients, respectively, to investigate how extended spectrum β-lactamases (ESBLs) encoding genes co-transfer with transposable elements to transmit antibiotic resistance. Antibiotic susceptibility was determined by agar dilution method, the transposase encoding gene was detected via PCR combined with DNA sequencing, S1 nuclease and pulsed field gel electrophoresis (S1-PFGE), and southern-blot. Illumina HiSeq 4000 platform and Nanopore MinION long-read sequencing technology were used to determine the antibiotic resistance encoding genes (ARGs) and their surrounding gene environment. The results indicated that the conjugation frequency was from ×10-4 to ×10-5 per recipient cell. A 185,608-bp-long DNA fragment and two short backbone protein encoding regions in pG19 in the donor fused with part genes in pS3 in the recipient during conjugation, the size of this fusion plasmid is as same as that of pG19. Cefoxitin resistance of the transconjugant was mediated by a tnpA21-related blaDHA-1 transfer. Resistance of Salmonella to ceftriaxone, cefoperazone and ceftiofur was mediated by a tnpU1548 related blaTEM-1B and blaCTX-M-3 transfer. The study indicated that transposase synergy and plasmid selective fusion act as important roles for foodborne Salmonella gathering ARGs. The consistent size of the plasmid before and after fusion suggested the invisibility and complexity of bacterial conjugation without DNA sequencing, the fact reminded us that the rampant transmission of antibiotic-resistance encoding genes would pose tremendous threat to food safety.
Collapse
Affiliation(s)
- Yaxin Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Zexun Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Chenyang Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
10
|
Monat C, Cousineau B. The circle to lariat ratio of the Ll.LtrB group II intron from Lactococcus lactis is greatly influenced by a variety of biological determinants in vivo. PLoS One 2020; 15:e0237367. [PMID: 32810148 PMCID: PMC7444581 DOI: 10.1371/journal.pone.0237367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/23/2020] [Indexed: 11/18/2022] Open
Abstract
Bacterial group II introns mostly behave as versatile retromobile genetic elements going through distinct cycles of gain and loss. These large RNA molecules are also ribozymes splicing autocatalytically from their interrupted pre-mRNA transcripts by two different concurrent pathways, branching and circularization. These two splicing pathways were shown to release in bacterial cells significant amounts of branched intron lariats and perfect end-to-end intron circles respectively. On one hand, released intron lariats can invade new sites in RNA and/or DNA by reverse branching while released intron circles are dead end spliced products since they cannot reverse splice through circularization. The presence of two parallel and competing group II intron splicing pathways in bacteria led us to investigate the conditions that influence the overall circle to lariat ratio in vivo. Here we unveil that removing a prominent processing site within the Ll.LtrB group II intron, raising growth temperature of Lactococcus lactis host cells and increasing the expression level of the intron-interrupted gene all increased the relative amount of released intron circles compared to lariats. Strengthening and weakening the base pairing interaction between the intron and its upstream exon respectively increased and decreased the overall levels of released intron circles in comparison to lariats. Host environment was also found to impact the circle to lariat ratio of the Ll.LtrB and Ll.RlxA group II introns from L. lactis and the Ef.PcfG intron from Enterococcus faecalis. Overall, our data show that multiple factors significantly influence the balance between released intron circles and lariats in bacterial cells.
Collapse
Affiliation(s)
- Caroline Monat
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Benoit Cousineau
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
11
|
Characterization of the IS200/IS605 Insertion Sequence Family in Halanaerobium Hydrogeniformans. Genes (Basel) 2020; 11:genes11050484. [PMID: 32365520 PMCID: PMC7290912 DOI: 10.3390/genes11050484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 11/16/2022] Open
Abstract
Mobile DNA elements play a significant evolutionary role by promoting genome plasticity. Insertion sequences are the smallest prokaryotic transposable elements. They are highly diverse elements, and the ability to accurately identify, annotate, and infer the full genomic impact of insertion sequences is lacking. Halanaerobium hydrogeniformans is a haloalkaliphilic bacterium with an abnormally high number of insertion sequences. One family, IS200/IS605, showed several interesting features distinct from other elements in this genome. Twenty-three loci harbor elements of this family in varying stages of decay, from nearly intact to an ends-only sequence. The loci were characterized with respect to two divergent open reading frames (ORF), tnpA and tnpB, and left and right ends of the elements. The tnpB ORF contains two nearly identical insert sequences that suggest recombination between tnpB ORF is occurring. From these results, insertion sequence activity can be inferred, including transposition capability and element interaction.
Collapse
|
12
|
Enforcement is central to the evolution of cooperation. Nat Ecol Evol 2019; 3:1018-1029. [PMID: 31239554 DOI: 10.1038/s41559-019-0907-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/26/2019] [Indexed: 01/21/2023]
Abstract
Cooperation occurs at all levels of life, from genomes, complex cells and multicellular organisms to societies and mutualisms between species. A major question for evolutionary biology is what these diverse systems have in common. Here, we review the full breadth of cooperative systems and find that they frequently rely on enforcement mechanisms that suppress selfish behaviour. We discuss many examples, including the suppression of transposable elements, uniparental inheritance of mitochondria and plastids, anti-cancer mechanisms, reciprocation and punishment in humans and other vertebrates, policing in eusocial insects and partner choice in mutualisms between species. To address a lack of accompanying theory, we develop a series of evolutionary models that show that the enforcement of cooperation is widely predicted. We argue that enforcement is an underappreciated, and often critical, ingredient for cooperation across all scales of biological organization.
Collapse
|
13
|
Sultan I, Rahman S, Jan AT, Siddiqui MT, Mondal AH, Haq QMR. Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Front Microbiol 2018; 9:2066. [PMID: 30298054 PMCID: PMC6160567 DOI: 10.3389/fmicb.2018.02066] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/13/2018] [Indexed: 12/28/2022] Open
Abstract
History of mankind is regarded as struggle against infectious diseases. Rather than observing the withering away of bacterial diseases, antibiotic resistance has emerged as a serious global health concern. Medium of antibiotic resistance in bacteria varies greatly and comprises of target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Further aggravation to prevailing situation arose on observing bacteria gradually becoming resistant to different classes of antibiotics through acquisition of resistance genes from same and different genera of bacteria. Attributing bacteria with feature of better adaptability, dispersal of antibiotic resistance genes to minimize effects of antibiotics by various means including horizontal gene transfer (conjugation, transformation, and transduction), Mobile genetic elements (plasmids, transposons, insertion sequences, integrons, and integrative-conjugative elements) and bacterial toxin-antitoxin system led to speedy bloom of antibiotic resistance amongst bacteria. Proficiency of bacteria to obtain resistance genes generated an unpleasant situation; a grave, but a lot unacknowledged, feature of resistance gene transfer.
Collapse
Affiliation(s)
- Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | | | | | | |
Collapse
|
14
|
Hall JPJ, Brockhurst MA, Harrison E. Sampling the mobile gene pool: innovation via horizontal gene transfer in bacteria. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0424. [PMID: 29061896 DOI: 10.1098/rstb.2016.0424] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2017] [Indexed: 12/26/2022] Open
Abstract
In biological systems, evolutionary innovations can spread not only from parent to offspring (i.e. vertical transmission), but also 'horizontally' between individuals, who may or may not be related. Nowhere is this more apparent than in bacteria, where novel ecological traits can spread rapidly within and between species through horizontal gene transfer (HGT). This important evolutionary process is predominantly a by-product of the infectious spread of mobile genetic elements (MGEs). We will discuss the ecological conditions that favour the spread of traits by HGT, the evolutionary and social consequences of sharing traits, and how HGT is shaped by inherent conflicts between bacteria and MGEs.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'.
Collapse
Affiliation(s)
- James P J Hall
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Ellie Harrison
- P3 Institute, Department of Animal and Plant Sciences, Arthur Willis Environment Centre, University of Sheffield, 1 Maxfield Avenue, Sheffield S10 1AE, UK
| |
Collapse
|
15
|
BICHSEL MANUEL, BARBOUR AD, WAGNER ANDREAS. DYNAMICS OF AN INSERTION SEQUENCE INFECTION IN A SPATIALLY STRUCTURED ENVIRONMENT. J BIOL SYST 2018. [DOI: 10.1142/s0218339018500079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial insertion sequences (ISs), the simplest form of autonomous mobile DNA, depend on their prokaryote hosts to spread in a spatially structured environment. We use a spatially explicit metapopulation model to simulate the spread of an IS that can have both detrimental and beneficial effects on its host cell. We find that, on the one hand, the spatial structure of the metapopulation and cell dispersal between subpopulations have no strong effect on the time to full infection of the metapopulation. On the other hand, factors that influence the IS infection dynamics within a subpopulation have a strong effect on that time. These factors are mainly the fitness benefit of an IS and the rate of horizontal gene transfer. We also find that the infection process of a metapopulation is very erratic in its early phase. Finally, we show that the infection’s success depends critically on the initially infected subpopulation.
Collapse
Affiliation(s)
- MANUEL BICHSEL
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Switzerland
| | - A. D. BARBOUR
- Institute of Mathematics, University of Zürich, Switzerland
| | - ANDREAS WAGNER
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Switzerland
| |
Collapse
|
16
|
Vigil-Stenman T, Ininbergs K, Bergman B, Ekman M. High abundance and expression of transposases in bacteria from the Baltic Sea. THE ISME JOURNAL 2017; 11:2611-2623. [PMID: 28731472 PMCID: PMC5649170 DOI: 10.1038/ismej.2017.114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/23/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
Abstract
Transposases are mobile genetic elements suggested to have an important role in bacterial genome plasticity and host adaptation but their transcriptional activity in natural bacterial communities is largely unexplored. Here we analyzed metagenomes and -transcriptomes of size fractionated (0.1-0.8, 0.8-3.0 and 3.0-200 μm) bacterial communities from the brackish Baltic Sea, and adjacent marine waters. The Baltic Sea transposase levels, up to 1.7% of bacterial genes and 2% of bacterial transcripts, were considerably higher than in marine waters and similar to levels reported for extreme environments. Large variations in expression were found between transposase families and groups of bacteria, with a two-fold higher transcription in Cyanobacteria than in any other phylum. The community-level results were corroborated at the genus level by Synechococcus transposases reaching up to 5.2% of genes and 6.9% of transcripts, which is in contrast to marine Synechococcus that largely lack these genes. Levels peaked in Synechococcus from the largest size fraction, suggesting high frequencies of lateral gene transfer and high genome plasticity in colony-forming picocyanobacteria. Together, the results support an elevated rate of transposition-based genome change and adaptation in bacterial populations of the Baltic Sea, and possibly also of other highly dynamic estuarine waters.
Collapse
Affiliation(s)
- Theoden Vigil-Stenman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Karolina Ininbergs
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Birgitta Bergman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Martin Ekman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
17
|
Lorenz SC, Gonzalez-Escalona N, Kotewicz ML, Fischer M, Kase JA. Genome sequencing and comparative genomics of enterohemorrhagic Escherichia coli O145:H25 and O145:H28 reveal distinct evolutionary paths and marked variations in traits associated with virulence & colonization. BMC Microbiol 2017; 17:183. [PMID: 28830351 PMCID: PMC5567499 DOI: 10.1186/s12866-017-1094-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/14/2017] [Indexed: 12/14/2022] Open
Abstract
Background Enterohemorrhagic Escherichia coli (EHEC) O145 are among the top non-O157 serogroups associated with severe human disease worldwide. Two serotypes, O145:H25 and O145:H28 have been isolated from human patients but little information is available regarding the virulence repertoire, origin and evolutionary relatedness of O145:H25. Hence, we sequenced the complete genome of two O145:H25 strains associated with hemolytic uremic syndrome (HUS) and compared the genomes with those of previously sequenced O145:H28 and other EHEC strains. Results The genomes of the two O145:H25 strains were 5.3 Mbp in size; slightly smaller than those of O145:H28 and other EHEC strains. Both strains contained three nearly identical plasmids and several prophages and integrative elements, many of which differed significantly in size, gene content and organization as compared to those present in O145:H28 and other EHECs. Furthermore, notable variations were observed in several fimbrial gene cluster and intimin types possessed by O145:H25 and O145:H28 indicating potential adaptation to distinct areas of host colonization. Comparative genomics further revealed that O145:H25 are genetically more similar to other non-O157 EHEC strains than to O145:H28. Conclusion Phylogenetic analysis accompanied by comparative genomics revealed that O145:H25 and O145:H28 evolved from two separate clonal lineages and that horizontal gene transfer and gene loss played a major role in the divergence of these EHEC serotypes. The data provide further evidence that ruminants might be a possible reservoir for O145:H25 but that they might be impaired in their ability to establish a persistent colonization as compared to other EHEC strains. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1094-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra C Lorenz
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Microbiology, College Park, MD, 20740, USA. .,University of Hamburg, Hamburg School of Food Science, Institute of Food Chemistry, 20146, Hamburg, Germany.
| | - Narjol Gonzalez-Escalona
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Microbiology, College Park, MD, 20740, USA
| | - Michael L Kotewicz
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Molecular Biology, Laurel, MD, 20708, USA
| | - Markus Fischer
- University of Hamburg, Hamburg School of Food Science, Institute of Food Chemistry, 20146, Hamburg, Germany
| | - Julie A Kase
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Microbiology, College Park, MD, 20740, USA
| |
Collapse
|
18
|
Novikova O, Belfort M. Mobile Group II Introns as Ancestral Eukaryotic Elements. Trends Genet 2017; 33:773-783. [PMID: 28818345 DOI: 10.1016/j.tig.2017.07.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 01/09/2023]
Abstract
The duality of group II introns, capable of carrying out both self-splicing and retromobility reactions, is hypothesized to have played a profound role in the evolution of eukaryotes. These introns likely provided the framework for the emergence of eukaryotic retroelements, spliceosomal introns and other key components of the spliceosome. Group II introns are found in all three domains of life and are therefore considered to be exceptionally successful mobile genetic elements. Initially identified in organellar genomes, group II introns are found in bacteria, chloroplasts, and mitochondria of plants and fungi, but not in nuclear genomes. Although there is no doubt that prokaryotic and organellar group II introns are evolutionary related, there are remarkable differences in survival strategies between them. Furthermore, an evolutionary relationship of group II introns to eukaryotic retroelements, including telomeres, and spliceosomes is unmistakable.
Collapse
Affiliation(s)
- Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA; Department of Biomedical Sciences, School of Public Health, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA.
| |
Collapse
|
19
|
Plague GR, Boodram KS, Dougherty KM, Bregg S, Gilbert DP, Bakshi H, Costa D. Transposable Elements Mediate Adaptive Debilitation of Flagella in Experimental Escherichia coli Populations. J Mol Evol 2017. [PMID: 28646326 DOI: 10.1007/s00239-017-9797-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although insertion sequence (IS) elements are generally considered genomic parasites, they can mediate adaptive genetic changes in bacterial genomes. We discovered that among 12 laboratory-evolved Escherichia coli populations, three had experienced at least six different IS1-mediated deletions of flagellar genes. These deletions all involved the master flagellar regulator flhDC, and as such completely incapacitate motility. Two lines of evidence strongly suggest that these deletions were adaptive in our evolution experiment: (1) parallel evolution in three independent populations is highly unlikely just by chance, and (2) one of these deletion mutations swept to fixation within ~1000 generations, which is over two million times faster than expected if this deletion was instead selectively neutral and thus evolving by genetic drift. Because flagella are energetically expensive to synthesize and operate, we suspect that debilitating their construction conferred a fitness advantage in our well-stirred evolution experiment. These findings underscore the important role that IS elements can play in mediating adaptive loss-of-function mutations in bacteria.
Collapse
Affiliation(s)
- Gordon R Plague
- Department of Biology, State University of New York at Potsdam, Potsdam, NY, 13676, USA.
| | | | - Kevin M Dougherty
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Sandar Bregg
- Department of Biology, State University of New York at Potsdam, Potsdam, NY, 13676, USA.,Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Daniel P Gilbert
- Department of Biology, State University of New York at Potsdam, Potsdam, NY, 13676, USA.,School of Engineering Lab, Clarkson University, Potsdam, NY, USA
| | - Hira Bakshi
- Department of Biology, State University of New York at Potsdam, Potsdam, NY, 13676, USA
| | - Daniel Costa
- Department of Biology, State University of New York at Potsdam, Potsdam, NY, 13676, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
20
|
Cuecas A, Kanoksilapatham W, Gonzalez JM. Evidence of horizontal gene transfer by transposase gene analyses in Fervidobacterium species. PLoS One 2017; 12:e0173961. [PMID: 28426805 PMCID: PMC5398504 DOI: 10.1371/journal.pone.0173961] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/01/2017] [Indexed: 11/25/2022] Open
Abstract
Horizontal Gene Transfer (HGT) plays an important role in the physiology and evolution of microorganisms above all thermophilic prokaryotes. Some members of the Phylum Thermotogae (i.e., Thermotoga spp.) have been reported to present genomes constituted by a mosaic of genes from a variety of origins. This study presents a novel approach to search on the potential plasticity of Fervidobacterium genomes using putative transposase-encoding genes as the target of analysis. Transposases are key proteins involved in genomic DNA rearrangements. A comprehensive comparative analysis, including phylogeny, non-metric multidimensional scaling analysis of tetranucleotide frequencies, repetitive flanking sequences and divergence estimates, was performed on the transposase genes detected in four Fervidobacterium genomes: F. nodosum, F. pennivorans, F. islandicum and a new isolate (Fervidobacterium sp. FC2004). Transposase sequences were classified in different groups by their degree of similarity. The different methods used in this study pointed that over half of the transposase genes represented putative HGT events with closest relative sequences within the phylum Firmicutes, being Caldicellulosiruptor the genus showing highest gene sequence proximity. These results confirmed a direct evolutionary relationship through HGT between specific Fervidobacterium species and thermophilic Firmicutes leading to potential gene sequence and functionality sharing to thrive under similar environmental conditions. Transposase-encoding genes represent suitable targets to approach the plasticity and potential mosaicism of bacterial genomes.
Collapse
Affiliation(s)
- Alba Cuecas
- Institute of Natural Resources and Agrobiology, Spanish Council for Research, IRNAS-CSIC, Avda. Rena Mercedes 10, Sevilla, Spain
| | - Wirojne Kanoksilapatham
- Department of Microbiology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Juan M. Gonzalez
- Institute of Natural Resources and Agrobiology, Spanish Council for Research, IRNAS-CSIC, Avda. Rena Mercedes 10, Sevilla, Spain
- * E-mail:
| |
Collapse
|
21
|
LaRoche-Johnston F, Monat C, Cousineau B. Recent horizontal transfer, functional adaptation and dissemination of a bacterial group II intron. BMC Evol Biol 2016; 16:223. [PMID: 27765015 PMCID: PMC5072309 DOI: 10.1186/s12862-016-0789-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/04/2016] [Indexed: 11/30/2022] Open
Abstract
Background Group II introns are catalytically active RNA and mobile retroelements present in certain eukaryotic organelles, bacteria and archaea. These ribozymes self-splice from the pre-mRNA of interrupted genes and reinsert within target DNA sequences by retrohoming and retrotransposition. Evolutionary hypotheses place these retromobile elements at the origin of over half the human genome. Nevertheless, the evolution and dissemination of group II introns was found to be quite difficult to infer. Results We characterized the functional and evolutionary relationship between the model group II intron from Lactococcus lactis, Ll.LtrB, and Ef.PcfG, a newly discovered intron from a clinical strain of Enterococcus faecalis. Ef.PcfG was found to be homologous to Ll.LtrB and to splice and mobilize in its native environment as well as in L. lactis. Interestingly, Ef.PcfG was shown to splice at the same level as Ll.LtrB but to be significantly less efficient to invade the Ll.LtrB recognition site. We also demonstrated that specific point mutations between the IEPs of both introns correspond to functional adaptations which developed in L. lactis as a response to selective pressure on mobility efficiency independently of splicing. The sequence of all the homologous full-length variants of Ll.LtrB were compared and shown to share a conserved pattern of mutation acquisition. Conclusions This work shows that Ll.LtrB and Ef.PcfG are homologous and have a common origin resulting from a recent lateral transfer event followed by further adaptation to the new target site and/or host environment. We hypothesize that Ef.PcfG is the ancestor of Ll.LtrB and was initially acquired by L. lactis, most probably by conjugation, via a single event of horizontal transfer. Strong selective pressure on homing site invasion efficiency then led to the emergence of beneficial point mutations in the IEP, enabling the successful establishment and survival of the group II intron in its novel lactococcal environment. The current colonization state of Ll.LtrB in L. lactis was probably later achieved through recurring episodes of conjugation-based horizontal transfer as well as independent intron mobility events. Overall, our data provide the first evidence of functional adaptation of a group II intron upon invading a new host, offering strong experimental support to the theory that bacterial group II introns, in sharp contrast to their organellar counterparts, behave mostly as mobile elements. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0789-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Félix LaRoche-Johnston
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre (MDTC), McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Caroline Monat
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre (MDTC), McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Benoit Cousineau
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre (MDTC), McGill University, Montréal, Québec, H3A 2B4, Canada.
| |
Collapse
|
22
|
Dann LM, Rosales S, McKerral J, Paterson JS, Smith RJ, Jeffries TC, Oliver RL, Mitchell JG. Marine and giant viruses as indicators of a marine microbial community in a riverine system. Microbiologyopen 2016; 5:1071-1084. [PMID: 27506856 PMCID: PMC5221468 DOI: 10.1002/mbo3.392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 12/30/2022] Open
Abstract
Viral communities are important for ecosystem function as they are involved in critical biogeochemical cycles and controlling host abundance. This study investigates riverine viral communities around a small rural town that influences local water inputs. Myoviridae, Siphoviridae, Phycodnaviridae, Mimiviridae, Herpesviridae, and Podoviridae were the most abundant families. Viral species upstream and downstream of the town were similar, with Synechoccocus phage, salinus, Prochlorococcus phage, Mimivirus A, and Human herpes 6A virus most abundant, contributing to 4.9-38.2% of average abundance within the metagenomic profiles, with Synechococcus and Prochlorococcus present in metagenomes as the expected hosts for the phage. Overall, the majority of abundant viral species were or were most similar to those of marine origin. At over 60 km to the river mouth, the presence of marine communities provides some support for the Baas-Becking hypothesis "everything is everywhere, but, the environment selects." We conclude marine microbial species may occur more frequently in freshwater systems than previously assumed, and hence may play important roles in some freshwater ecosystems within tens to a hundred kilometers from the sea.
Collapse
Affiliation(s)
- Lisa M Dann
- School of Biological Sciences at Flinders University, Adelaide, South Australia, Australia
| | - Stephanie Rosales
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Jody McKerral
- School of Computer Science, Engineering and Mathematics, Flinders University, Adelaide, Australia
| | - James S Paterson
- School of Biological Sciences at Flinders University, Adelaide, South Australia, Australia
| | - Renee J Smith
- School of Biological Sciences at Flinders University, Adelaide, South Australia, Australia
| | - Thomas C Jeffries
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Rod L Oliver
- Land and Water Research Division at the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia
| | - James G Mitchell
- School of Biological Sciences at Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
23
|
Wu Y, Aandahl RZ, Tanaka MM. Dynamics of bacterial insertion sequences: can transposition bursts help the elements persist? BMC Evol Biol 2015; 15:288. [PMID: 26690348 PMCID: PMC4687120 DOI: 10.1186/s12862-015-0560-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/06/2015] [Indexed: 01/22/2023] Open
Abstract
Background Currently there is no satisfactory explanation for why bacterial insertion sequences (ISs) widely occur across prokaryotes despite being mostly harmful to their host genomes. Rates of horizontal gene transfer are likely to be too low to maintain ISs within a population. IS-induced beneficial mutations may be important for both prevalence of ISs and microbial adaptation to changing environments but may be too rare to sustain IS elements in the long run. Environmental stress can induce elevated rates of IS transposition activities; such episodes are known as ‘transposition bursts’. By examining how selective forces and transposition events interact to influence IS dynamics, this study asks whether transposition bursts can lead to IS persistence. Results We show through a simulation model that ISs are gradually eliminated from a population even if IS transpositions occasionally cause advantageous mutations. With beneficial mutations, transposition bursts create variation in IS copy numbers and improve cell fitness on average. However, these benefits are not usually sufficient to overcome the negative selection against the elements, and transposition bursts amplify the mean fitness effect which, if negative, simply accelerates the extinction of ISs. If down regulation of transposition occurs, IS extinctions are reduced while ISs still generate variation amongst bacterial genomes. Conclusions Transposition bursts do not help ISs persist in a bacterial population in the long run because most burst-induced mutations are deleterious and therefore not favoured by natural selection. However, bursts do create more genetic variation through which occasional advantageous mutations can help organisms adapt. Regulation of IS transposition bursts and stronger positive selection of the elements interact to slow down the burst-induced extinction of ISs. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0560-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yue Wu
- School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, 2052, NSW, Australia. .,Evolution & Ecology Research Centre, University of New South Wales, Sydney, 2052, NSW, Australia. .,Present address: Telethon Kids Institute, University of Western Australia, Perth, 6008, WA, Australia.
| | - Richard Z Aandahl
- School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, 2052, NSW, Australia. .,Evolution & Ecology Research Centre, University of New South Wales, Sydney, 2052, NSW, Australia.
| | - Mark M Tanaka
- School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, 2052, NSW, Australia. .,Evolution & Ecology Research Centre, University of New South Wales, Sydney, 2052, NSW, Australia.
| |
Collapse
|
24
|
Biswas A, Gauthier DT, Ranjan D, Zubair M. ISQuest: finding insertion sequences in prokaryotic sequence fragment data. Bioinformatics 2015; 31:3406-12. [PMID: 26116929 DOI: 10.1093/bioinformatics/btv388] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/20/2015] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Insertion sequences (ISs) are transposable elements present in most bacterial and archaeal genomes that play an important role in genomic evolution. The increasing availability of sequenced prokaryotic genomes offers the opportunity to study ISs comprehensively, but development of efficient and accurate tools is required for discovery and annotation. Additionally, prokaryotic genomes are frequently deposited as incomplete, or draft stage because of the substantial cost and effort required to finish genome assembly projects. Development of methods to identify IS directly from raw sequence reads or draft genomes are therefore desirable. Software tools such as Optimized Annotation System for Insertion Sequences and IScan currently identify IS elements in completely assembled and annotated genomes; however, to our knowledge no methods have been developed to identify ISs from raw fragment data or partially assembled genomes. We have developed novel methods to solve this computationally challenging problem, and implemented these methods in the software package ISQuest. This software identifies bacterial ISs and their sequence elements-inverted and direct repeats-in raw read data or contigs using flexible search parameters. ISQuest is capable of finding ISs in hundreds of partially assembled genomes within hours, making it a valuable high-throughput tool for a global search of IS elements. We tested ISQuest on simulated read libraries of 3810 complete bacterial genomes and plasmids in GenBank and were capable of detecting 82% of the ISs and transposases annotated in GenBank with 80% sequence identity. CONTACT abiswas@cs.odu.edu.
Collapse
Affiliation(s)
| | - David T Gauthier
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, USA
| | | | | |
Collapse
|
25
|
Thabet S, Namouchi A, Mardassi H. Evolutionary Trends of the Transposase-Encoding Open Reading Frames A and B (orfA and orfB) of the Mycobacterial IS6110 Insertion Sequence. PLoS One 2015; 10:e0130161. [PMID: 26087177 PMCID: PMC4473070 DOI: 10.1371/journal.pone.0130161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/17/2015] [Indexed: 12/25/2022] Open
Abstract
Background The IS6110 insertion sequence, a member of the IS3 family of insertion sequences, was found to be specific to the Mycobacterium tuberculosis complex (MTBC). Although IS6110 has been extensively characterized as a transposable genetic marker, the evolutionary history of its own transposase-encoding sequence has not, to the best of our knowledge, been investigated. Methodology/Principal Findings Here we explored the evolution of the IS6110 sequence by analysing the genetic variability and the selective forces acting on its transposase-encoding open reading frames (ORFs) A and B (orfA and orfB). For this purpose, we used a strain collection consisting of smooth tubercle bacilli (STB), an early branching lineage of the MTBC, and present-day M. tuberculosis strains representing the full breadth of genetic diversity in Tunisia. In each ORF, we found a major haplotype that dominated over a flat distribution of rare descendent haplotypes, consisting mainly of single- and double-nucleotide variant singletons. The predominant haplotypes consisted of both ancestral and present-day strains, suggesting that IS6110 acquisition predated the emergence of the MTBC. There was no evidence of recombination and both ORFs were subjected to strict purifying selection, as demonstrated by their dN/dS ratios (0.29 and 0.51, respectively), as well as their significantly negative Tajima’s D statistics. Strikingly, the purifying selection acting on orfA proved much more stringent, suggesting its critical role in regulating the transpositional process. Maximum likelihood analyses further excluded any possibility of positive selection acting on single amino acid residues. Conclusions/Significance Taken together our data fit with an evolutionary scenario according to which the observed variability pattern of the IS6110 transposase-encoding ORFs is generated mainly through random point mutations that accrued on a functionally optimal IS6110 copy, whose acquisition predated the emergence of the MTBC complex. Background selection acting against deleterious mutations led to an excess of low-frequency variants.
Collapse
Affiliation(s)
- Sara Thabet
- Unit of Typing and Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development; Institut Pasteur de Tunis, Tunis, Tunisia
| | - Amine Namouchi
- Unit of Typing and Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development; Institut Pasteur de Tunis, Tunis, Tunisia
| | - Helmi Mardassi
- Unit of Typing and Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development; Institut Pasteur de Tunis, Tunis, Tunisia
- * E-mail:
| |
Collapse
|
26
|
Isolation and characterization of three new IS4-family insertion sequences in Wolbachia of insects. Symbiosis 2015. [DOI: 10.1007/s13199-015-0323-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Insertion sequence elements in Lactococcus garvieae. Gene 2014; 555:291-6. [PMID: 25447909 DOI: 10.1016/j.gene.2014.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/10/2014] [Accepted: 11/10/2014] [Indexed: 11/20/2022]
Abstract
Insertion sequences are the simplest intracellular Mobile Genetic Elements which can occur in very high numbers in prokaryotic genomes, where they play an important evolutionary role by promoting genome plasticity. As such, the studies on the diversity and distribution of insertion sequences in genomes not yet investigated can contribute to improve the knowledge on a bacterial species and to identify new transposable elements. The present work describes the occurrence of insertion sequences in Lactococcus garvieae, an opportunistic emerging zoonotic and human pathogen, also associated with different food matrices. To date, no insertion elements have been described for L. garvieae in the IS element database. The analysis of the twelve published L. garvieae genomes identified 15 distinct insertion sequences that are members of the IS3, IS982, IS6, IS21 and IS256 families, including five new elements. Most of the insertion sequences in L. garvieae show substantial homology to the Lactococcus lactis elements, suggesting the movement of IS between these two species phylogenetically closely related. ISLL6 elements belonging to IS3 family were most abundant, with several copies distributed in 9 of the 12 genomes analyzed. An alignment analysis of two complete genomes carrying multi-copies of this insertion sequence indicates a possible involvement of ISLL6 in chromosomal rearrangement.
Collapse
|
28
|
Pál C, Papp B. From passengers to drivers: Impact of bacterial transposable elements on evolvability. Mob Genet Elements 2014; 3:e23617. [PMID: 23734296 PMCID: PMC3661142 DOI: 10.4161/mge.23617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/15/2013] [Indexed: 11/19/2022] Open
Abstract
Microbes have several mechanisms that promote evolutionary adaptation in stressful environments. The corresponding molecular pathways promote diversity through modulating rates of recombination, mutation or influence the activity of transposable genetic elements. Recent experimental studies suggest an evolutionary conflict between these mechanisms. Specifically, presence of mismatch repair mutator alleles in a bacterial population dramatically reduced fixation of bacterial insertion sequence elements. When rare, these elements had only a limited impact on adaptive evolution compared with other mutation-generating pathways. IS elements may initially spread like molecular parasites, but once present in many copies in a given genome, they might become generators of novelty during bacterial evolution.
Collapse
Affiliation(s)
- Csaba Pál
- Synthetic and Systems Biology Unit; Institute of Biochemistry; Biological Research Center; Szeged, Hungary
| | | |
Collapse
|
29
|
Pulkkinen E, Haapa-Paananen S, Savilahti H. An assay to monitor the activity of DNA transposition complexes yields a general quality control measure for transpositional recombination reactions. Mob Genet Elements 2014; 4:1-8. [PMID: 26442171 PMCID: PMC4590003 DOI: 10.4161/21592543.2014.969576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/22/2014] [Accepted: 09/01/2014] [Indexed: 12/20/2022] Open
Abstract
Transposon-based technologies have many applications in molecular biology and can be used for gene delivery into prokaryotic and eukaryotic cells. Common transpositional activity measurement assays suitable for many types of transposons would be beneficial, as diverse transposon systems could be compared for their performance attributes. Therefore, we developed a general-purpose assay to enable and standardize the activity measurement for DNA transposition complexes (transpososomes), using phage Mu transposition as a test platform. This assay quantifies transpositional recombination efficiency and is based on an in vitro transposition reaction with a target plasmid carrying a lethal ccdB gene. If transposition targets ccdB, this gene becomes inactivated, enabling plasmid-receiving Escherichia coli cells to survive and to be scored as colonies on selection plates. The assay was validated with 3 mini-Mu transposons varying in size and differing in their marker gene constitution. Tests with different amounts of transposon DNA provided a linear response and yielded a 10-fold operational range for the assay. The colony formation capacity was linearly correlated with the competence status of the E.coli cells, enabling normalization of experimental data obtained with different batches of recipient cells. The developed assay can now be used to directly compare transpososome activities with all types of mini-Mu transposons, regardless of their aimed use. Furthermore, the assay should be directly applicable to other transposition-based systems with a functional in vitro reaction, and it provides a dependable quality control measure that previously has been lacking but is highly important for the evaluation of current and emerging transposon-based applications.
Collapse
Affiliation(s)
- Elsi Pulkkinen
- Division of Genetics and Physiology; Department of Biology; University of Turku; Turku, Finland
| | - Saija Haapa-Paananen
- Division of Genetics and Physiology; Department of Biology; University of Turku; Turku, Finland
| | - Harri Savilahti
- Division of Genetics and Physiology; Department of Biology; University of Turku; Turku, Finland
| |
Collapse
|
30
|
Iranzo J, Gómez MJ, López de Saro FJ, Manrubia S. Large-scale genomic analysis suggests a neutral punctuated dynamics of transposable elements in bacterial genomes. PLoS Comput Biol 2014; 10:e1003680. [PMID: 24967627 PMCID: PMC4072520 DOI: 10.1371/journal.pcbi.1003680] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/08/2014] [Indexed: 11/18/2022] Open
Abstract
Insertion sequences (IS) are the simplest and most abundant form of transposable DNA found in bacterial genomes. When present in multiple copies, it is thought that they can promote genomic plasticity and genetic exchange, thus being a major force of evolutionary change. The main processes that determine IS content in genomes are, though, a matter of debate. In this work, we take advantage of the large amount of genomic data currently available and study the abundance distributions of 33 IS families in 1811 bacterial chromosomes. This allows us to test simple models of IS dynamics and estimate their key parameters by means of a maximum likelihood approach. We evaluate the roles played by duplication, lateral gene transfer, deletion and purifying selection. We find that the observed IS abundances are compatible with a neutral scenario where IS proliferation is controlled by deletions instead of purifying selection. Even if there may be some cases driven by selection, neutral behavior dominates over large evolutionary scales. According to this view, IS and hosts tend to coexist in a dynamic equilibrium state for most of the time. Our approach also allows for a detection of recent IS expansions, and supports the hypothesis that rapid expansions constitute transient events—punctuations—during which the state of coexistence of IS and host becomes perturbated. Insertion sequences (IS) are mobile genetic elements found in most prokaryotic genomes. They are able to autonomously change position and proliferate in chromosomes. The nature of the coevolutionary dynamics of IS with the genome that hosts them is a matter of debate: Do IS proliferate to the point of causing the extinction of the host? Is it possible that IS and hosts stably coexist? Can environmental perturbations cause IS expansions? What is the role of selection in controlling IS copy number? In this study, we have analysed abundance patterns of IS families to test two different evolutionary hypotheses: in the first one IS evolve neutrally, while in the second case they are affected by selection. Our results indicate that, most of the time, IS and their hosts coexist stably in a neutral scenario where the proliferation of IS through duplications and lateral gene transfer is balanced by regular deletions. Occasionally, though, this balance may be disrupted, causing temporary explosions of IS abundance.
Collapse
Affiliation(s)
- Jaime Iranzo
- Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, Madrid, Spain
| | - Manuel J. Gómez
- Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, Madrid, Spain
| | | | - Susanna Manrubia
- Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- * E-mail:
| |
Collapse
|
31
|
Kamoun C, Payen T, Hua-Van A, Filée J. Improving prokaryotic transposable elements identification using a combination of de novo and profile HMM methods. BMC Genomics 2013; 14:700. [PMID: 24118975 PMCID: PMC3852290 DOI: 10.1186/1471-2164-14-700] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 09/25/2013] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Insertion Sequences (ISs) and their non-autonomous derivatives (MITEs) are important components of prokaryotic genomes inducing duplication, deletion, rearrangement or lateral gene transfers. Although ISs and MITEs are relatively simple and basic genetic elements, their detection remains a difficult task due to their remarkable sequence diversity. With the advent of high-throughput genome and metagenome sequencing technologies, the development of fast, reliable and sensitive methods of ISs and MITEs detection become an important challenge. So far, almost all studies dealing with prokaryotic transposons have used classical BLAST-based detection methods against reference libraries. Here we introduce alternative methods of detection either taking advantages of the structural properties of the elements (de novo methods) or using an additional library-based method using profile HMM searches. RESULTS In this study, we have developed three different work flows dedicated to ISs and MITEs detection: the first two use de novo methods detecting either repeated sequences or presence of Inverted Repeats; the third one use 28 in-house transposase alignment profiles with HMM search methods. We have compared the respective performances of each method using a reference dataset of 30 archaeal and 30 bacterial genomes in addition to simulated and real metagenomes. Compared to a BLAST-based method using ISFinder as library, de novo methods significantly improve ISs and MITEs detection. For example, in the 30 archaeal genomes, we discovered 30 new elements (+20%) in addition to the 141 multi-copies elements already detected by the BLAST approach. Many of the new elements correspond to ISs belonging to unknown or highly divergent families. The total number of MITEs has even doubled with the discovery of elements displaying very limited sequence similarities with their respective autonomous partners (mainly in the Inverted Repeats of the elements). Concerning metagenomes, with the exception of short reads data (<300 bp) for which both techniques seem equally limited, profile HMM searches considerably ameliorate the detection of transposase encoding genes (up to +50%) generating low level of false positives compare to BLAST-based methods. CONCLUSION Compared to classical BLAST-based methods, the sensitivity of de novo and profile HMM methods developed in this study allow a better and more reliable detection of transposons in prokaryotic genomes and metagenomes. We believed that future studies implying ISs and MITEs identification in genomic data should combine at least one de novo and one library-based method, with optimal results obtained by running the two de novo methods in addition to a library-based search. For metagenomic data, profile HMM search should be favored, a BLAST-based step is only useful to the final annotation into groups and families.
Collapse
Affiliation(s)
- Choumouss Kamoun
- Laboratoire Evolution, Génomes, Spéciation, CNRS UPR9034/Université Paris-Sud, Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
32
|
Rapid quantification of sequence repeats to resolve the size, structure and contents of bacterial genomes. BMC Genomics 2013; 14:537. [PMID: 23924250 PMCID: PMC3751351 DOI: 10.1186/1471-2164-14-537] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The numerous classes of repeats often impede the assembly of genome sequences from the short reads provided by new sequencing technologies. We demonstrate a simple and rapid means to ascertain the repeat structure and total size of a bacterial or archaeal genome without the need for assembly by directly analyzing the abundances of distinct k-mers among reads. RESULTS The sensitivity of this procedure to resolve variation within a bacterial species is demonstrated: genome sizes and repeat structure of five environmental strains of E. coli from short Illumina reads were estimated by this method, and total genome sizes corresponded well with those obtained for the same strains by pulsed-field gel electrophoresis. In addition, this approach was applied to read-sets for completed genomes and shown to be accurate over a wide range of microbial genome sizes. CONCLUSIONS Application of these procedures, based solely on k-mer abundances in short read data sets, allows aspects of genome structure to be resolved that are not apparent from conventional short read assemblies. This knowledge of the repetitive content of genomes provides insights into genome evolution and diversity.
Collapse
|
33
|
Petrova M, Shcherbatova N, Gorlenko Z, Mindlin S. A new subgroup of the IS3 family and properties of its representative member ISPpy1. MICROBIOLOGY-SGM 2013; 159:1900-1910. [PMID: 23832000 DOI: 10.1099/mic.0.068676-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, we described a novel insertion element, ISPpy1, isolated from a permafrost strain of Psychrobacter maritimus. In this work, we demonstrated that ISPpy1 is a member of a novel subgroup of the IS3 family of insertion sequences (ISs) that was not identified and characterized previously. IS elements of this subgroup termed the ISPpy1 subgroup are broadly distributed among different taxa of Eubacteria, including Geobacteraceae, Chlorobiaceae, Desulfobacteraceae, Methylobacteriaceae, Nitrosomonadaceae and Cyanobacteria. While displaying characteristic features of the IS3-family elements, ISPpy1 subgroup elements exhibit some unusual features. In particular, most of them have longer terminal repeats with unconventional ends and frameshifting box with an atypical organization, and, unlike many other IS3-family elements, do not exhibit any distinct IS specificity. We studied the transposition and mutagenic properties of a representative member of this subgroup, ISPpy1 and showed that in contrast to the original P. maritimus host, in a heterologous host, Escherichia coli K-12, it is able to translocate with extremely high efficiency into the chromosome, either by itself or as a part of a composite transposon containing two ISPpy1 copies. The majority of transposants carry multiple chromosomal copies (up to 12) of ISPpy1. It was discovered that ISPpy1 is characterized by a marked mutagenic activity in E. coli: its chromosomal insertions generate various types of mutations, including auxotrophic, pleiotropic and rifampicin-resistance mutations. The distribution of IS elements of the novel subgroup among different bacteria, their role in the formation of composite transposons and the horizontal transfer of genes are examined and discussed.
Collapse
Affiliation(s)
- Mayya Petrova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Natalya Shcherbatova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Zhosephine Gorlenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Sofia Mindlin
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| |
Collapse
|
34
|
Lateral transfers of insertion sequences between Wolbachia, Cardinium and Rickettsia bacterial endosymbionts. Heredity (Edinb) 2013; 111:330-7. [PMID: 23759724 DOI: 10.1038/hdy.2013.56] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 11/09/2022] Open
Abstract
Various bacteria live exclusively within arthropod cells and collectively act as an important driver of arthropod evolutionary ecology. Whereas rampant intra-generic DNA transfers were recently shown to have a pivotal role in the evolution of the most common of these endosymbionts, Wolbachia, the present study show that inter-generic DNA transfers also commonly take place, constituting a potent source of rapid genomic change. Bioinformatic, molecular and phylogenetic data provide evidence that a selfish genetic element, the insertion sequence ISRpe1, is widespread in the Wolbachia, Cardinium and Rickettsia endosymbionts and experiences recent (and likely ongoing) transfers over long evolutionary distances. Although many ISRpe1 copies were clearly expanding and leading to rapid endosymbiont diversification, degraded copies are also frequently found, constituting an unusual genomic fossil record suggestive of ancient ISRpe1 expansions. Overall, the present data highlight how ecological connections within the arthropod intracellular environment facilitate lateral DNA transfers between distantly related bacterial lineages.
Collapse
|
35
|
Dahle H, Roalkvam I, Thorseth IH, Pedersen RB, Steen IH. The versatile in situ gene expression of an Epsilonproteobacteria-dominated biofilm from a hydrothermal chimney. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:282-290. [PMID: 23584970 DOI: 10.1111/1758-2229.12016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 10/03/2012] [Accepted: 11/05/2012] [Indexed: 06/02/2023]
Abstract
The Epsilonproteobacteria, including members of the genus Sulfurovum, are regarded as important primary producers in hydrothermal systems. However, their in situ gene expression in this habitat has so far not been investigated. We report a metatranscriptomic analysis of a Sulfurovum-dominated biofilm from one of the chimneys at the Loki's Castle hydrothermal system, located at the Arctic Mid Ocean Ridge. Transcripts involved in hydrogen oxidation, oxidation of sulfur species, aerobic respiration and denitrification were abundant and mostly assigned to Sulfurovum, indicating that members of this genus utilize multiple chemical energy sources simultaneously for primary production. Sulfurovum also seemed to have a diverse expression of transposases, potentially involved in horizontal gene transfer. Other transcripts were involved in CO₂ fixation by the reverse TCA cycle, the CRISPR-Cas system, heavy metal resistance, and sensing and responding to changing environmental conditions. Through pyrosequencing of PCR amplified 16S rRNA genes, the Sulfurovum-dominated biofilm was compared with another biofilm from the same chimney, revealing a large shift in the community structure of Epsilonproteobacteria-dominated biofilms over a few metres.
Collapse
Affiliation(s)
- Håkon Dahle
- Department of Biology, Centre for Geobiology, University of Bergen, Norway.
| | | | | | | | | |
Collapse
|
36
|
Iyer A, Barbour E, Azhar E, Salabi AAE, Hassan HMA, Qadri I, Chaudhary A, Abuzenadah A, Kumosani T, Damanhouri G, Alawi M, Na’was T, Nour AMA, Harakeh S. Transposable elements in <i>Escherichia coli</i> antimicrobial resistance. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.43a055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Kong Y, Ma JH, Warren K, Tsang RS, Low DE, Jamieson FB, Alexander DC, Hao W. Homologous recombination drives both sequence diversity and gene content variation in Neisseria meningitidis. Genome Biol Evol 2013; 5:1611-27. [PMID: 23902748 PMCID: PMC3787668 DOI: 10.1093/gbe/evt116] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2013] [Indexed: 01/13/2023] Open
Abstract
The study of genetic and phenotypic variation is fundamental for understanding the dynamics of bacterial genome evolution and untangling the evolution and epidemiology of bacterial pathogens. Neisseria meningitidis (Nm) is among the most intriguing bacterial pathogens in genomic studies due to its dynamic population structure and complex forms of pathogenicity. Extensive genomic variation within identical clonal complexes (CCs) in Nm has been recently reported and suggested to be the result of homologous recombination, but the extent to which recombination contributes to genomic variation within identical CCs has remained unclear. In this study, we sequenced two Nm strains of identical serogroup (C) and multi-locus sequence type (ST60), and conducted a systematic analysis with an additional 34 Nm genomes. Our results revealed that all gene content variation between the two ST60 genomes was introduced by homologous recombination at the conserved flanking genes, and 94.25% or more of sequence divergence was caused by homologous recombination. Recombination was found in genes associated with virulence factors, antigenic outer membrane proteins, and vaccine targets, suggesting an important role of homologous recombination in rapidly altering the pathogenicity and antigenicity of Nm. Recombination was also evident in genes of the restriction and modification systems, which may undermine barriers to DNA exchange. In conclusion, homologous recombination can drive both gene content variation and sequence divergence in Nm. These findings shed new light on the understanding of the rapid pathoadaptive evolution of Nm and other recombinogenic bacterial pathogens.
Collapse
Affiliation(s)
- Ying Kong
- Department of Biological Sciences, Wayne State University
| | - Jennifer H. Ma
- Public Health Laboratories, Public Health Ontario, Toronto, Ontario, Canada
| | - Keisha Warren
- Public Health Laboratories, Public Health Ontario, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Raymond S.W. Tsang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Donald E. Low
- Public Health Laboratories, Public Health Ontario, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Frances B. Jamieson
- Public Health Laboratories, Public Health Ontario, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - David C. Alexander
- Public Health Laboratories, Public Health Ontario, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Weilong Hao
- Department of Biological Sciences, Wayne State University
| |
Collapse
|
38
|
Leclercq S, Cordaux R. Selection-driven extinction dynamics for group II introns in Enterobacteriales. PLoS One 2012; 7:e52268. [PMID: 23251705 PMCID: PMC3522654 DOI: 10.1371/journal.pone.0052268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/12/2012] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Some TEs were proposed to evolve under a pattern of periodic extinctions-recolonizations, in which elements recurrently invade and quickly proliferate within their host genomes, then start to disappear until total extinction. Depending on the model, TE extinction is assumed to be driven by purifying selection against colonized host genomes (Sel-DE model) or by saturation of host genomes (Sat-DE model). Bacterial group II introns are suspected to follow an extinction-recolonization model of evolution, but whether they follow Sel-DE or Sat-DE dynamics is not known. Our analysis of almost 200 group II intron copies from 90 sequenced Enterobacteriales genomes confirms their extinction-recolonization dynamics: patchy element distributions among genera and even among strains within genera, acquisition of new group II introns through plasmids or other mobile genetic elements, and evidence for recent proliferations in some genomes. Distributions of recent and past proliferations and of their respective homing sites further provide strong support for the Sel-DE model, suggesting that group II introns are deleterious to their hosts. Overall, our observations emphasize the critical impact of host properties on TE dynamics.
Collapse
Affiliation(s)
- Sébastien Leclercq
- Université de Poitiers, CNRS UMR 7267 Ecologie et Biologie des Interactions, Poitiers, France
| | - Richard Cordaux
- Université de Poitiers, CNRS UMR 7267 Ecologie et Biologie des Interactions, Poitiers, France
- * E-mail:
| |
Collapse
|
39
|
Factors behind junk DNA in bacteria. Genes (Basel) 2012; 3:634-50. [PMID: 24705080 PMCID: PMC3899985 DOI: 10.3390/genes3040634] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/11/2012] [Accepted: 09/25/2012] [Indexed: 11/16/2022] Open
Abstract
Although bacterial genomes have been traditionally viewed as being very compact, with relatively low amounts of repetitive and non-coding DNA, this view has dramatically changed in recent years. The increase of available complete bacterial genomes has revealed that many species present abundant repetitive DNA (i.e., insertion sequences, prophages or paralogous genes) and that many of these sequences are not functional but can have evolutionary consequences as concerns the adaptation to specialized host-related ecological niches. Comparative genomics analyses with close relatives that live in non-specialized environments reveal the nature and fate of this bacterial junk DNA. In addition, the number of insertion sequences and pseudogenes, as well as the size of the intergenic regions, can be used as markers of the evolutionary stage of a genome.
Collapse
|
40
|
Robinson DG, Lee MC, Marx CJ. OASIS: an automated program for global investigation of bacterial and archaeal insertion sequences. Nucleic Acids Res 2012; 40:e174. [PMID: 22904081 PMCID: PMC3526298 DOI: 10.1093/nar/gks778] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Insertion sequences (ISs) are simple transposable elements present in most bacterial and archaeal genomes and play an important role in genomic evolution. The recent expansion of sequenced genomes offers the opportunity to study ISs comprehensively, but this requires efficient and accurate tools for IS annotation. We have developed an open-source program called OASIS, or Optimized Annotation System for Insertion Sequences, which automatically annotates ISs within sequenced genomes. OASIS annotations of 1737 bacterial and archaeal genomes offered an unprecedented opportunity to examine IS evolution. At a broad scale, we found that most IS families are quite widespread; however, they are not present randomly across taxa. This may indicate differential loss, barriers to exchange and/or insufficient time to equilibrate across clades. The number of ISs increases with genome length, but there is both tremendous variation and no increase in IS density for genomes >2 Mb. At the finer scale of recently diverged genomes, the proportion of shared IS content falls sharply, suggesting loss and/or emergence of barriers to successful cross-infection occurs rapidly. Surprisingly, even after controlling for 16S rRNA sequence divergence, the same ISs were more likely to be shared between genomes labeled as the same species rather than as different species.
Collapse
Affiliation(s)
- David G Robinson
- Department of Organismic and Evolutionary Biology and Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
41
|
Hoshino T, Fujiwara T, Kawabata S. Evolution of cariogenic character in Streptococcus mutans: horizontal transmission of glycosyl hydrolase family 70 genes. Sci Rep 2012; 2:518. [PMID: 22816041 PMCID: PMC3399136 DOI: 10.1038/srep00518] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/03/2012] [Indexed: 12/04/2022] Open
Abstract
Acquisition of the ability to produce polysaccharides from sucrose, i.e. the gtf gene encoding glucosyltransferase (GTF), is the key evolutionary event enabling dental biofilm formation by streptococci. To clarify the ancestry of streptococcal GTFs, time of its occurrence, and order of specific events, we investigated the distribution of GTFs among bacteria by phylogenetic analysis of the glycosyl hydrolase family 70 enzymes. We found that streptococcal GTFs were derived from other lactic acid bacteria such as Lactobacillus and Leuconostoc, and propose the following evolutionary model: horizontal gene transfer via transposons occurred when streptococci encountered lactic acid bacteria contained in fermented food. Intra-genomic gene duplication occurred by a secondary selection pressure such as consumption of refined sugar. Our findings concerning this evolution in Streptococcus mutans provide an important background for studies of the relationship between the historical spread of dental caries and anthropological factors.
Collapse
Affiliation(s)
- Tomonori Hoshino
- Department of Pediatric Dentistry, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | | | | |
Collapse
|
42
|
El Gharniti F, Dols-Lafargue M, Bon E, Claisse O, Miot-Sertier C, Lonvaud A, Le Marrec C. IS30 elements are mediators of genetic diversity in Oenococcus oeni. Int J Food Microbiol 2012; 158:14-22. [PMID: 22809637 DOI: 10.1016/j.ijfoodmicro.2012.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/11/2012] [Accepted: 06/16/2012] [Indexed: 01/23/2023]
Abstract
Oenococcus oeni is responsible for the malolactic fermentation of wines. Genomic diversity has been recently established in the species and extensive attention is now being given to the genomic bases of strain-specific differences. We explored the role of insertion sequences (IS), which are considered as driving forces for novel genotypic and phenotypic variants in prokaryotes. The present study focuses on members of the IS30 family, which are widespread among lactic acid bacteria. An in silico analysis of the three available genomes of O. oeni in combination with the use of an inverse PCR strategy targeting conserved IS30-related sequences indicated the presence of seven IS30 copies in the pangenome of O. oeni. A primer designed to anneal to the conserved 3' end of the IS30 element was paired with each of the seven primers selected to bind to unique sequences upstream of each of the seven mobile elements identified. The study presents an overview of the abundance, and the genomic environment of IS30 elements in the O. oeni pangenome and shows that the two existing genetic sub-populations previously described in the species through multilocus sequence typing analysis (MLST) differ in their IS30 content. Possible IS30 impacts on bacterial adaptation are discussed.
Collapse
|
43
|
Bichsel M, Barbour AD, Wagner A. Estimating the fitness effect of an insertion sequence. J Math Biol 2012; 66:95-114. [PMID: 22252506 DOI: 10.1007/s00285-012-0504-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 10/30/2011] [Indexed: 11/26/2022]
Abstract
Since its discovery, mobile DNA has fascinated researchers. In particular, many researchers have debated why insertion sequences persist in prokaryote genomes and populations. While some authors think that insertion sequences persist only because of occasional beneficial effects they have on their hosts, others argue that horizontal gene transfer is strong enough to overcome their generally detrimental effects. In this study, we model the long-term fate of a prokaryote cell population, of which a small proportion of cells has been infected with one insertion sequence per cell. Based on our model and the distribution of IS5, an insertion sequence for which sufficient data is available in 525 fully sequenced proteobacterial genomes, we show that the fitness cost of insertion sequences is so small that they are effectively neutral or only slightly detrimental. We also show that an insertion sequence infection can persist and reach the empirically observed distribution if the rate of horizontal gene transfer is at least as large as the fitness cost, and that this rate is well within the rates of horizontal gene transfer observed in nature. In addition, we show that the time needed to reach the observed prevalence of IS5 is unrealistically long for the fitness cost and horizontal gene transfer rate that we computed. Occasional beneficial effects may thus have played an important role in the fast spreading of insertion sequences like IS5.
Collapse
Affiliation(s)
- Manuel Bichsel
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zuerich, Switzerland.
| | | | | |
Collapse
|
44
|
Bire S, Rouleux-Bonnin F. Transposable elements as tools for reshaping the genome: it is a huge world after all! Methods Mol Biol 2012; 859:1-28. [PMID: 22367863 DOI: 10.1007/978-1-61779-603-6_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transposable elements (TEs) are discrete pieces of DNA that can move from one site to another within genomes and sometime between genomes. They are found in all major branches of life. Because of their wide distribution and considerable diversity, they are a considerable source of genomic variation and as such, they constitute powerful drivers of genome evolution. Moreover, it is becoming clear that the epigenetic regulation of certain genes is derived from defense mechanisms against the activity of ancestral transposable elements. TEs now tend to be viewed as natural molecular tools that can reshape the genome, which challenges the idea that TEs are natural tools used to answer biological questions. In the first part of this chapter, we review the classification and distribution of TEs, and look at how they have contributed to the structural and transcriptional reshaping of genomes. In the second part, we describe methodological innovations that have modified their contribution as molecular tools.
Collapse
Affiliation(s)
- Solenne Bire
- GICC, UMR CNRS 6239, Université François Rabelais, UFR des Sciences et Technques, Tours, France
| | | |
Collapse
|
45
|
Hao W, Ma JH, Warren K, Tsang RSW, Low DE, Jamieson FB, Alexander DC. Extensive genomic variation within clonal complexes of Neisseria meningitidis. Genome Biol Evol 2011; 3:1406-18. [PMID: 22084315 PMCID: PMC3242501 DOI: 10.1093/gbe/evr119] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Meningococcal disease is a widely distributed complex disease affecting all age categories. It can cause severe meningitis and septicemia, especially in unvaccinated infants and young children. The causative agent, Neisseria meningitidis (Nm), can be phenotypically and genetically differentiated into serogroups and sequence types (STs) and has a highly dynamic population structure. To obtain a deeper understanding of the epidemiology of Nm, we sequenced seven Nm genomes. Large-scale genomic analysis was conducted with these 7 Nm genomes, 27 additional Nm genomes from GenBank, and 4 other Neisseria genomes. We observed extensive homologous recombination in all gene functional categories among different Nm genomes. Homologous recombination is so frequent that it has resulted in numerous chimeric open reading frames, including genes in the capsule biosynthesis cluster and loci targeted by commercial vaccines. Our results reveal that, despite widespread use, evolutionary relationships inferred from the standard seven-gene multilocus sequence typing (MLST) method could not predict virulence gene content or strain phenotype. In fact, up to 28% of the virulence-associated genes could differ between strains of identical STs. Consistent with previous studies, we found that allelic recombination is also associated with alterations in antibiotic susceptibility. Overall, these findings emphasize the extensive genomic plasticity of Nm and the limitations of standard molecular methods to quantify this genotypic and phenotypic diversity.
Collapse
Affiliation(s)
- Weilong Hao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada.
| | | | | | | | | | | | | |
Collapse
|
46
|
Graindorge A, Menard A, Monnez C, Cournoyer B. Insertion sequence evolutionary patterns highlight convergent genetic inactivations and recent genomic island acquisitions among epidemic Burkholderia cenocepacia. J Med Microbiol 2011; 61:394-409. [PMID: 21980044 DOI: 10.1099/jmm.0.036822-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Burkholderia cenocepacia B&B clone was found previously to be responsible for an epidemic outbreak within an intensive care unit in France. This clone belongs to the ST32 clonal complex, which is one of the most prevalent among French cystic fibrosis patients and is known to be related to the highly virulent ET12 clonal complex. Genomic repartition biases of insertion sequences (ISs) were investigated to improve our understanding of the evolutionary events leading to B. cenocepacia diversification and the emergence of such epidemic lineages. IS were used for tracking convergent genetic inactivations and recent DNA acquisitions. B. cenocepacia IS families and subgroups were compared in terms of genetic diversity and genomic architecture using fully sequenced genomes, PCR screening and DNA blot analysis. These analyses revealed several features shared by the B&B and ET12 epidemic clones. IS elements showed a frequent localization on genomic islands (GI) and indicated convergent evolution towards inactivation of certain loci. The IS407 subgroup of the IS3 family was identified as a good indicator of recently acquired GIs in clone ET12. Several IS407 elements showed strain-specific or clonal complex-specific localizations. IS407 DNA probing of a DNA library built from the B. cenocepacia B&B epidemic clone led to the identification of a recently acquired IS407-tagged GI likely to be conjugative and integrative. The B&B clone showed significant differences in its IS architecture from that of ST32 strains isolated from Czech cystic fibrosis patients.
Collapse
Affiliation(s)
- Arnault Graindorge
- VetAgro Sup Veterinary School, Lyon, France.,Research Group on Bacterial Opportunistic Pathogens and Environment, Université de Lyon, UMR5557 Ecologie Microbienne, Université Lyon 1, CNRS, Lyon, France
| | - Aymeric Menard
- VetAgro Sup Veterinary School, Lyon, France.,Research Group on Bacterial Opportunistic Pathogens and Environment, Université de Lyon, UMR5557 Ecologie Microbienne, Université Lyon 1, CNRS, Lyon, France
| | - Claire Monnez
- VetAgro Sup Veterinary School, Lyon, France.,Research Group on Bacterial Opportunistic Pathogens and Environment, Université de Lyon, UMR5557 Ecologie Microbienne, Université Lyon 1, CNRS, Lyon, France
| | - Benoit Cournoyer
- Environmental Microbiology Lyon, Biological Resource Center, Université de Lyon, UMR5557 Ecologie Microbienne, Université Lyon 1, CNRS, Lyon, France.,VetAgro Sup Veterinary School, Lyon, France.,Research Group on Bacterial Opportunistic Pathogens and Environment, Université de Lyon, UMR5557 Ecologie Microbienne, Université Lyon 1, CNRS, Lyon, France
| |
Collapse
|
47
|
Schmitz-Esser S, Penz T, Spang A, Horn M. A bacterial genome in transition--an exceptional enrichment of IS elements but lack of evidence for recent transposition in the symbiont Amoebophilus asiaticus. BMC Evol Biol 2011; 11:270. [PMID: 21943072 PMCID: PMC3196728 DOI: 10.1186/1471-2148-11-270] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/26/2011] [Indexed: 11/18/2022] Open
Abstract
Background Insertion sequence (IS) elements are important mediators of genome plasticity and are widespread among bacterial and archaeal genomes. The 1.88 Mbp genome of the obligate intracellular amoeba symbiont Amoebophilus asiaticus contains an unusually large number of transposase genes (n = 354; 23% of all genes). Results The transposase genes in the A. asiaticus genome can be assigned to 16 different IS elements termed ISCaa1 to ISCaa16, which are represented by 2 to 24 full-length copies, respectively. Despite this high IS element load, the A. asiaticus genome displays a GC skew pattern typical for most bacterial genomes, indicating that no major rearrangements have occurred recently. Additionally, the high sequence divergence of some IS elements, the high number of truncated IS element copies (n = 143), as well as the absence of direct repeats in most IS elements suggest that the IS elements of A. asiaticus are transpositionally inactive. Although we could show transcription of 13 IS elements, we did not find experimental evidence for transpositional activity, corroborating our results from sequence analyses. However, we detected contiguous transcripts between IS elements and their downstream genes at nine loci in the A. asiaticus genome, indicating that some IS elements influence the transcription of downstream genes, some of which might be important for host cell interaction. Conclusions Taken together, the IS elements in the A. asiaticus genome are currently in the process of degradation and largely represent reflections of the evolutionary past of A. asiaticus in which its genome was shaped by their activity.
Collapse
Affiliation(s)
- Stephan Schmitz-Esser
- Department of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | | | | | | |
Collapse
|
48
|
Cerveau N, Leclercq S, Leroy E, Bouchon D, Cordaux R. Short- and long-term evolutionary dynamics of bacterial insertion sequences: insights from Wolbachia endosymbionts. Genome Biol Evol 2011; 3:1175-86. [PMID: 21940637 PMCID: PMC3205602 DOI: 10.1093/gbe/evr096] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Transposable elements (TE) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Long-term TE evolution can readily be reconstructed in eukaryotes, thanks to many degraded copies constituting genomic fossil records of past TE proliferations. By contrast, bacterial genomes usually experience high sequence turnover and short TE retention times, thereby obscuring ancient TE evolutionary patterns. We found that Wolbachia bacterial genomes contain 52–171 insertion sequence (IS) TEs. IS account for 11% of Wolbachia wRi, which is one of the highest IS genomic coverage reported in prokaryotes to date. We show that many IS groups are currently expanding in various Wolbachia genomes and that IS horizontal transfers are frequent among strains, which can explain the apparent synchronicity of these IS proliferations. Remarkably, >70% of Wolbachia IS are nonfunctional. They constitute an unusual bacterial IS genomic fossil record providing direct empirical evidence for a long-term IS evolutionary dynamics following successive periods of intense transpositional activity. Our results show that comprehensive IS annotations have the potential to provide new insights into prokaryote TE evolution and, more generally, prokaryote genome evolution. Indeed, the identification of an important IS genomic fossil record in Wolbachia demonstrates that IS elements are not always of recent origin, contrary to the conventional view of TE evolution in prokaryote genomes. Our results also raise the question whether the abundance of IS fossils is specific to Wolbachia or it may be a general, albeit overlooked, feature of prokaryote genomes.
Collapse
Affiliation(s)
- Nicolas Cerveau
- UMR CNRS 6556, Ecologie, Evolution, Symbiose, Université de Poitiers, France
| | | | | | | | | |
Collapse
|
49
|
Abstract
The distribution, dynamics, and evolution of insertion sequences (IS), the most frequent class of prokaryotic transposable elements, are conditioned by their ability to horizontally transfer between cells. IS horizontal transfer (HT) requires shuttling by other mobile genetic elements. It is widely assumed in the literature that these vectors are phages and plasmids. By examining the relative abundance of IS in 454 plasmid and 446 phage genomes, we found that IS are very frequent in plasmids but, surprisingly, very rare in phages. Our results indicate that IS rarity in phages reflects very strong and efficient postinsertional purifying selection, mainly caused by a higher density of deleterious insertion sites in phages compared to plasmids. As they do not tolerate IS insertions, we conclude that phages may be rather poor vectors of IS HT in prokaryotes, in sharp contrast with the conventional view.
Collapse
Affiliation(s)
- Sébastien Leclercq
- Université de Poitiers, UMR CNRS 6556 Ecologie Evolution Symbiose, 40 Avenue du Recteur Pineau, Poitiers, France
| | | |
Collapse
|
50
|
Phylogenomic networks. Trends Microbiol 2011; 19:483-91. [PMID: 21820313 DOI: 10.1016/j.tim.2011.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/04/2011] [Accepted: 07/08/2011] [Indexed: 01/15/2023]
Abstract
Phylogenomics is aimed at studying functional and evolutionary aspects of genome biology using phylogenetic analysis of whole genomes. Current approaches to genome phylogenies are commonly founded in terms of phylogenetic trees. However, several evolutionary processes are non tree-like in nature, including recombination and lateral gene transfer (LGT). Phylogenomic networks are a special type of phylogenetic network reconstructed from fully sequenced genomes. The network model, comprising genomes connected by pairwise evolutionary relations, enables the reconstruction of both vertical and LGT events. Modeling genome evolution in the form of a network enables the use of an extensive toolbox developed for network research. The structural properties of phylogenomic networks open up fundamentally new insights into genome evolution.
Collapse
|