1
|
Caetano-Anollés K, Aziz MF, Mughal F, Caetano-Anollés G. On Protein Loops, Prior Molecular States and Common Ancestors of Life. J Mol Evol 2024; 92:624-646. [PMID: 38652291 PMCID: PMC11458777 DOI: 10.1007/s00239-024-10167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
The principle of continuity demands the existence of prior molecular states and common ancestors responsible for extant macromolecular structure. Here, we focus on the emergence and evolution of loop prototypes - the elemental architects of protein domain structure. Phylogenomic reconstruction spanning superkingdoms and viruses generated an evolutionary chronology of prototypes with six distinct evolutionary phases defining a most parsimonious evolutionary progression of cellular life. Each phase was marked by strategic prototype accumulation shaping the structures and functions of common ancestors. The last universal common ancestor (LUCA) of cells and viruses and the last universal cellular ancestor (LUCellA) defined stem lines that were structurally and functionally complex. The evolutionary saga highlighted transformative forces. LUCA lacked biosynthetic ribosomal machinery, while the pivotal LUCellA lacked essential DNA biosynthesis and modern transcription. Early proteins therefore relied on RNA for genetic information storage but appeared initially decoupled from it, hinting at transformative shifts of genetic processing. Urancestral loop types suggest advanced folding designs were present at an early evolutionary stage. An exploration of loop geometric properties revealed gradual replacement of prototypes with α-helix and β-strand bracing structures over time, paving the way for the dominance of other loop types. AlphFold2-generated atomic models of prototype accretion described patterns of fold emergence. Our findings favor a ‛processual' model of evolving stem lines aligned with Woese's vision of a communal world. This model prompts discussing the 'problem of ancestors' and the challenges that lie ahead for research in taxonomy, evolution and complexity.
Collapse
Affiliation(s)
- Kelsey Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Callout Biotech, Albuquerque, NM, 87112, USA
| | - M Fayez Aziz
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
2
|
Budimir I, Giampieri E, Saccenti E, Suarez-Diez M, Tarozzi M, Dall'Olio D, Merlotti A, Curti N, Remondini D, Castellani G, Sala C. Intraspecies characterization of bacteria via evolutionary modeling of protein domains. Sci Rep 2022; 12:16595. [PMID: 36198716 PMCID: PMC9534902 DOI: 10.1038/s41598-022-21036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/22/2022] [Indexed: 12/04/2022] Open
Abstract
The ability to detect and characterize bacteria within a biological sample is crucial for the monitoring of infections and epidemics, as well as for the study of human health and its relationship with commensal microorganisms. To this aim, a commonly used technique is the 16S rRNA gene targeted sequencing. PCR-amplified 16S sequences derived from the sample of interest are usually clustered into the so-called Operational Taxonomic Units (OTUs) based on pairwise similarities. Then, representative OTU sequences are compared with reference (human-made) databases to derive their phylogeny and taxonomic classification. Here, we propose a new reference-free approach to define the phylogenetic distance between bacteria based on protein domains, which are the evolving units of proteins. We extract the protein domain profiles of 3368 bacterial genomes and we use an ecological approach to model their Relative Species Abundance distribution. Based on the model parameters, we then derive a new measurement of phylogenetic distance. Finally, we show that such model-based distance is capable of detecting differences between bacteria in cases in which the 16S rRNA-based method fails, providing a possibly complementary approach , which is particularly promising for the analysis of bacterial populations measured by shotgun sequencing.
Collapse
Affiliation(s)
- Iva Budimir
- Department of Physics and Astronomy 'Augusto Righi', University of Bologna, 40127, Bologna, Italy
| | - Enrico Giampieri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138, Bologna, Italy
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands
| | - Martina Tarozzi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138, Bologna, Italy
| | - Daniele Dall'Olio
- Department of Physics and Astronomy 'Augusto Righi', University of Bologna, 40127, Bologna, Italy
| | - Alessandra Merlotti
- Department of Physics and Astronomy 'Augusto Righi', University of Bologna, 40127, Bologna, Italy
| | - Nico Curti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138, Bologna, Italy
| | - Daniel Remondini
- Department of Physics and Astronomy 'Augusto Righi', University of Bologna, 40127, Bologna, Italy
| | - Gastone Castellani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138, Bologna, Italy.
| | - Claudia Sala
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138, Bologna, Italy
| |
Collapse
|
3
|
Nowitzke J, Popa I. What Is the Force-per-Molecule Inside a Biomaterial Having Randomly Oriented Units? J Phys Chem Lett 2022; 13:7139-7146. [PMID: 35901371 DOI: 10.1021/acs.jpclett.2c01720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Both synthetic and natural protein-based materials are made of randomly oriented cross-linked molecules. Here we introduce a coarse-grained approach to estimate the average force-per-molecule for materials made from globular proteins. Our approach has three steps: placement of molecules inside a unit volume, cross-linking, and trimming to remove the protein domains that do not participate to the force response. Following this procedure, we estimate the number of active domains per cross-section area, that allows for a direct calculation of the force-per-domain. Among the variables considered, we found that concentration was the most sensitive parameter. We then synthesized protein hydrogels made from BSA and polyprotein L and measured the stresses that these materials can withstand. We found that forces-per-molecules of up to 17 pN per domain can be obtained experimentally using protein hydrogels. Our approach represents an important step toward understanding the scaling of tension in biomaterials.
Collapse
Affiliation(s)
- Joel Nowitzke
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
4
|
Abstract
Domains are the structural, functional and evolutionary units of proteins. They combine to form multidomain proteins. The evolutionary history of this molecular combinatorics has been studied with phylogenomic methods. Here, we construct networks of domain organization and explore their evolution. A time series of networks revealed two ancient waves of structural novelty arising from ancient 'p-loop' and 'winged helix' domains and a massive 'big bang' of domain organization. The evolutionary recruitment of domains was highly modular, hierarchical and ongoing. Domain rearrangements elicited non-random and scale-free network structure. Comparative analyses of preferential attachment, randomness and modularity showed yin-and-yang complementary transition and biphasic patterns along the structural chronology. Remarkably, the evolving networks highlighted a central evolutionary role of cofactor-supporting structures of non-ribosomal peptide synthesis pathways, likely crucial to the early development of the genetic code. Some highly modular domains featured dual response regulation in two-component signal transduction systems with DNA-binding activity linked to transcriptional regulation of responses to environmental change. Interestingly, hub domains across the evolving networks shared the historical role of DNA binding and editing, an ancient protein function in molecular evolution. Our investigation unfolds historical source-sink patterns of evolutionary recruitment that further our understanding of protein architectures and functions.
Collapse
|
5
|
Bokhari RH, Amirjan N, Jeong H, Kim KM, Caetano-Anollés G, Nasir A. Bacterial Origin and Reductive Evolution of the CPR Group. Genome Biol Evol 2020; 12:103-121. [PMID: 32031619 PMCID: PMC7093835 DOI: 10.1093/gbe/evaa024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2020] [Indexed: 12/24/2022] Open
Abstract
The candidate phyla radiation (CPR) is a proposed subdivision within the bacterial domain comprising several candidate phyla. CPR organisms are united by small genome and physical sizes, lack several metabolic enzymes, and populate deep branches within the bacterial subtree of life. These features raise intriguing questions regarding their origin and mode of evolution. In this study, we performed a comparative and phylogenomic analysis to investigate CPR origin and evolution. Unlike previous gene/protein sequence-based reports of CPR evolution, we used protein domain superfamilies classified by protein structure databases to resolve the evolutionary relationships of CPR with non-CPR bacteria, Archaea, Eukarya, and viruses. Across all supergroups, CPR shared maximum superfamilies with non-CPR bacteria and were placed as deep branching bacteria in most phylogenomic trees. CPR contributed 1.22% of new superfamilies to bacteria including the ribosomal protein L19e and encoded four core superfamilies that are likely involved in cell-to-cell interaction and establishing episymbiotic lifestyles. Although CPR and non-CPR bacterial proteomes gained common superfamilies over the course of evolution, CPR and Archaea had more common losses. These losses mostly involved metabolic superfamilies. In fact, phylogenies built from only metabolic protein superfamilies separated CPR and non-CPR bacteria. These findings indicate that CPR are bacterial organisms that have probably evolved in an Archaea-like manner via the early loss of metabolic functions. We also discovered that phylogenies built from metabolic and informational superfamilies gave contrasting views of the groupings among Archaea, Bacteria, and Eukarya, which add to the current debate on the evolutionary relationships among superkingdoms.
Collapse
Affiliation(s)
| | - Nooreen Amirjan
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Hyeonsoo Jeong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Kyung Mo Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana
| | - Arshan Nasir
- Department of Biosciences, COMSATS University Islamabad, Pakistan
- Theoretical Biology & Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| |
Collapse
|
6
|
Hernandez-Guerrero R, Galán-Vásquez E, Pérez-Rueda E. The protein architecture in Bacteria and Archaea identifies a set of promiscuous and ancient domains. PLoS One 2019; 14:e0226604. [PMID: 31856202 PMCID: PMC6922389 DOI: 10.1371/journal.pone.0226604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/29/2019] [Indexed: 11/19/2022] Open
Abstract
In this work, we describe a systematic comparative genomic analysis of promiscuous domains in genomes of Bacteria and Archaea. A quantitative measure of domain promiscuity, the weighted domain architecture score (WDAS), was used and applied to 1317 domains in 1320 genomes of Bacteria and Archaea. A functional analysis associated with the WDAS per genome showed that 18 of 50 functional categories were identified as significantly enriched in the promiscuous domains; in particular, small-molecule binding domains, transferases domains, DNA binding domains (transcription factors), and signal transduction domains were identified as promiscuous. In contrast, non-promiscuous domains were identified as associated with 6 of 50 functional categories, and the category Function unknown was enriched. In addition, the WDASs of 52 domains correlated with genome size, i.e., WDAS values decreased as the genome size increased, suggesting that the number of combinations at larger domains increases, including domains in the superfamilies Winged helix-turn-helix and P-loop-containing nucleoside triphosphate hydrolases. Finally, based on classification of the domains according to their ancestry, we determined that the set of 52 promiscuous domains are also ancient and abundant among all the genomes, in contrast to the non-promiscuous domains. In summary, we consider that the association between these two classes of protein domains (promiscuous and non-promiscuous) provides bacterial and archaeal cells with the ability to respond to diverse environmental challenges.
Collapse
Affiliation(s)
- Rafael Hernandez-Guerrero
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- * E-mail:
| |
Collapse
|
7
|
V K MA, Chandrasekaran VM, Pandurangan S. Protein Domain Level Cancer Drug Targets in the Network of MAPK Pathways. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:2057-2065. [PMID: 29993692 DOI: 10.1109/tcbb.2018.2829507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Proteins in the MAPK pathways considered as potential drug targets for cancer treatment. Pathways along with the cross-talks increase their scope to view them as a network of MAPK pathways. Side effect causing targeted domains act as a proxy for drug targets due to its structural similarity and frequent reuse of their variants. We proposed to identify non-repeatable protein domains as the drug targets to disrupt the signal transduction than targeting the whole protein. Network based approach is used to understand the contribution of 52 domains in non-hub, non-essential, and intra-pathway cancerous nodes and to identify potential drug target domains. 34 distinct domains in the cancerous proteins are playing vital roles in making cancer as a complex disease and pose challenges to identify potential drug targets. Distribution of domain families follows the power law in the network. Single promiscuous domains are contributing to the formation of hubs like Pkinease, Pkinease Tyr, and Ras. Hub nodes are positively correlated with the domain coverage and targeting them would disrupt functional properties of the proteins. EIF 4EBP, alpha Kinase, Sel1, ROKNT, and KH 1 are the domains identified as potential domain targets for the disruption of the signaling mechanism involved in cancer.
Collapse
|
8
|
Abstract
Genomes appear similar to natural language texts, and protein domains can be treated as analogs of words. To investigate the linguistic properties of genomes further, we calculated the complexity of the “protein languages” in all major branches of life and identified a nearly universal value of information gain associated with the transition from a random domain arrangement to the current protein domain architecture. An exploration of the evolutionary relationship of the protein languages identified the domain combinations that discriminate between the major branches of cellular life. We conclude that there exists a “quasi-universal grammar” of protein domains and that the nearly constant information gain we identified corresponds to the minimal complexity required to maintain a functional cell. From an abstract, informational perspective, protein domains appear analogous to words in natural languages in which the rules of word association are dictated by linguistic rules, or grammar. Such rules exist for protein domains as well, because only a small fraction of all possible domain combinations is viable in evolution. We employ a popular linguistic technique, n-gram analysis, to probe the “proteome grammar”—that is, the rules of association of domains that generate various domain architectures of proteins. Comparison of the complexity measures of “protein languages” in major branches of life shows that the relative entropy difference (information gain) between the observed domain architectures and random domain combinations is highly conserved in evolution and is close to being a universal constant, at ∼1.2 bits. Substantial deviations from this constant are observed in only two major groups of organisms: a subset of Archaea that appears to be cells simplified to the limit, and animals that display extreme complexity. We also identify the n-grams that represent signatures of the major branches of cellular life. The results of this analysis bolster the analogy between genomes and natural language and show that a “quasi-universal grammar” underlies the evolution of domain architectures in all divisions of cellular life. The nearly universal value of information gain by the domain architectures could reflect the minimum complexity of signal processing that is required to maintain a functioning cell.
Collapse
|
9
|
Caetano-Anollés G, Nasir A, Kim KM, Caetano-Anollés D. Rooting Phylogenies and the Tree of Life While Minimizing Ad Hoc and Auxiliary Assumptions. Evol Bioinform Online 2018; 14:1176934318805101. [PMID: 30364468 PMCID: PMC6196624 DOI: 10.1177/1176934318805101] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/05/2018] [Indexed: 12/25/2022] Open
Abstract
Phylogenetic methods unearth evolutionary history when supported by three starting points of reason: (1) the continuity axiom begs the existence of a "model" of evolutionary change, (2) the singularity axiom defines the historical ground plan (phylogeny) in which biological entities (taxa) evolve, and (3) the memory axiom demands identification of biological attributes (characters) with historical information. Axiom consequences are interlinked, making the retrodiction enterprise an endeavor of reciprocal fulfillment. In particular, establishing direction of evolutionary change (character polarization) roots phylogenies and enables testing the existence of historical memory (homology). Unfortunately, rooting phylogenies, especially the "tree of life," generally follow narratives instead of integrating empirical and theoretical knowledge of retrodictive exploration. This stems mostly from a focus on molecular sequence analysis and uncertainties about rooting methods. Here, we review available rooting criteria, highlighting the need to minimize both ad hoc and auxiliary assumptions, especially argumentative ad hocness. We show that while the outgroup comparison method has been widely adopted, the generality criterion of nesting and additive phylogenetic change embodied in Weston rule offers the most powerful rooting approach. We also propose a change of focus, from phylogenies that describe the evolution of biological systems to those that describe the evolution of parts of those systems. This weakens violation of character independence, helps formalize the generality criterion of rooting, and provides new ways to study the problem of evolution.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Arshan Nasir
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Kyung Mo Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Derek Caetano-Anollés
- Department of Evolutionary Genetics, Max-Planck-Institut für Evolutionsbiologie, Plön, Germany
| |
Collapse
|
10
|
Harish A. What is an archaeon and are the Archaea really unique? PeerJ 2018; 6:e5770. [PMID: 30357005 PMCID: PMC6196074 DOI: 10.7717/peerj.5770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/05/2018] [Indexed: 12/05/2022] Open
Abstract
The recognition of the group Archaea as a major branch of the tree of life (ToL) prompted a new view of the evolution of biodiversity. The genomic representation of archaeal biodiversity has since significantly increased. In addition, advances in phylogenetic modeling of multi-locus datasets have resolved many recalcitrant branches of the ToL. Despite the technical advances and an expanded taxonomic representation, two important aspects of the origins and evolution of the Archaea remain controversial, even as we celebrate the 40th anniversary of the monumental discovery. These issues concern (i) the uniqueness (monophyly) of the Archaea, and (ii) the evolutionary relationships of the Archaea to the Bacteria and the Eukarya; both of these are relevant to the deep structure of the ToL. To explore the causes for this persistent ambiguity, I examine multiple datasets and different phylogenetic approaches that support contradicting conclusions. I find that the uncertainty is primarily due to a scarcity of information in standard datasets-universal core-genes datasets-to reliably resolve the conflicts. These conflicts can be resolved efficiently by comparing patterns of variation in the distribution of functional genomic signatures, which are less diffused unlike patterns of primary sequence variation. Relatively lower heterogeneity in distribution patterns minimizes uncertainties and supports statistically robust phylogenetic inferences, especially of the earliest divergences of life. This case study further highlights the limitations of primary sequence data in resolving difficult phylogenetic problems, and raises questions about evolutionary inferences drawn from the analyses of sequence alignments of a small set of core genes. In particular, the findings of this study corroborate the growing consensus that reversible substitution mutations may not be optimal phylogenetic markers for resolving early divergences in the ToL, nor for determining the polarity of evolutionary transitions across the ToL.
Collapse
Affiliation(s)
- Ajith Harish
- Department of Cell and Molecular Biology, Program in Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Staley JT, Caetano-Anollés G. Archaea-First and the Co-Evolutionary Diversification of Domains of Life. Bioessays 2018; 40:e1800036. [PMID: 29944192 DOI: 10.1002/bies.201800036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/12/2018] [Indexed: 12/13/2022]
Abstract
The origins and evolution of the Archaea, Bacteria, and Eukarya remain controversial. Phylogenomic-wide studies of molecular features that are evolutionarily conserved, such as protein structural domains, suggest Archaea is the first domain of life to diversify from a stem line of descent. This line embodies the last universal common ancestor of cellular life. Here, we propose that ancestors of Euryarchaeota co-evolved with those of Bacteria prior to the diversification of Eukarya. This co-evolutionary scenario is supported by comparative genomic and phylogenomic analyses of the distributions of fold families of domains in the proteomes of free-living organisms, which show horizontal gene recruitments and informational process homologies. It also benefits from the molecular study of cell physiologies responsible for membrane phospholipids, methanogenesis, methane oxidation, cell division, gas vesicles, and the cell wall. Our theory however challenges popular cell fusion and two-domain of life scenarios derived from sequence analysis, demanding phylogenetic reconciliation. Also see the video abstract here: https://youtu.be/9yVWn_Q9faY.
Collapse
Affiliation(s)
- James T Staley
- Department of Microbiology and Astrobiology Program, University of Washington, Seattle, WA, 98195, USA
| | - Gustavo Caetano-Anollés
- Department of Crop Sciences, C. R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
12
|
Mehrotra P, Ami VKG, Srinivasan N. Clustering of multi-domain protein sequences. Proteins 2018; 86:759-776. [PMID: 29675880 DOI: 10.1002/prot.25510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 11/06/2022]
Abstract
The overall function of a multi-domain protein is determined by the functional and structural interplay of its constituent domains. Traditional sequence alignment-based methods commonly utilize domain-level information and provide classification only at the level of domains. Such methods are not capable of taking into account the contributions of other domains in the proteins, and domain-linker regions and classify multi-domain proteins. An alignment-free protein sequence comparison tool, CLAP (CLAssification of Proteins) was previously developed in our laboratory to especially handle multi-domain protein sequences without a requirement of defining domain boundaries and sequential order of domains. Through this method we aim to achieve a biologically meaningful classification scheme for multi-domain protein sequences. In this article, CLAP-based classification has been explored on 5 datasets of multi-domain proteins and we present detailed analysis for proteins containing (1) Tyrosine phosphatase and (2) SH3 domain. At the domain-level CLAP-based classification scheme resulted in a clustering similar to that obtained from an alignment-based method. CLAP-based clusters obtained for full-length datasets were shown to comprise of proteins with similar functions and domain architectures. Our study demonstrates that multi-domain proteins could be classified effectively by considering full-length sequences without a requirement of identification of domains in the sequence.
Collapse
Affiliation(s)
- Prachi Mehrotra
- Indian Institute of Science Mathematics Initiative, Bangalore, 560012, India.,Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Vimla Kany G Ami
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, 560100, India
| | | |
Collapse
|
13
|
Harish A, Kurland CG. Mitochondria are not captive bacteria. J Theor Biol 2017; 434:88-98. [PMID: 28754286 DOI: 10.1016/j.jtbi.2017.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2022]
Abstract
Lynn Sagan's conjecture (1967) that three of the fundamental organelles observed in eukaryote cells, specifically mitochondria, plastids and flagella were once free-living primitive (prokaryotic) cells was accepted after considerable opposition. Even though the idea was swiftly refuted for the specific case of origins of flagella in eukaryotes, the symbiosis model in general was accepted for decades as a realistic hypothesis to describe the endosymbiotic origins of eukaryotes. However, a systematic analysis of the origins of the mitochondrial proteome based on empirical genome evolution models now indicates that 97% of modern mitochondrial protein domains as well their homologues in bacteria and archaea were present in the universal common ancestor (UCA) of the modern tree of life (ToL). These protein domains are universal modular building blocks of modern genes and genomes, each of which is identified by a unique tertiary structure and a specific biochemical function as well as a characteristic sequence profile. Further, phylogeny reconstructed from genome-scale evolution models reveals that Eukaryotes and Akaryotes (archaea and bacteria) descend independently from UCA. That is to say, Eukaryotes and Akaryotes are both primordial lineages that evolved in parallel. Finally, there is no indication of massive inter-lineage exchange of coding sequences during the descent of the two lineages. Accordingly, we suggest that the evolution of the mitochondrial proteome was autogenic (endogenic) and not endosymbiotic (exogenic).
Collapse
Affiliation(s)
- Ajith Harish
- Department of Cell and Molecular Biology, Section of Structural and Molecular Biology, Uppsala University, Uppsala, Sweden.
| | - Charles G Kurland
- Department of Biology, Section of Microbial Ecology, Lund University, Lund, Sweden.
| |
Collapse
|
14
|
Koç I, Caetano-Anollés G. The natural history of molecular functions inferred from an extensive phylogenomic analysis of gene ontology data. PLoS One 2017; 12:e0176129. [PMID: 28467492 PMCID: PMC5414959 DOI: 10.1371/journal.pone.0176129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 04/05/2017] [Indexed: 11/18/2022] Open
Abstract
The origin and natural history of molecular functions hold the key to the emergence of cellular organization and modern biochemistry. Here we use a genomic census of Gene Ontology (GO) terms to reconstruct phylogenies at the three highest (1, 2 and 3) and the lowest (terminal) levels of the hierarchy of molecular functions, which reflect the broadest and the most specific GO definitions, respectively. These phylogenies define evolutionary timelines of functional innovation. We analyzed 249 free-living organisms comprising the three superkingdoms of life, Archaea, Bacteria, and Eukarya. Phylogenies indicate catalytic, binding and transport functions were the oldest, suggesting a 'metabolism-first' origin scenario for biochemistry. Metabolism made use of increasingly complicated organic chemistry. Primordial features of ancient molecular functions and functional recruitments were further distilled by studying the oldest child terms of the oldest level 1 GO definitions. Network analyses showed the existence of an hourglass pattern of enzyme recruitment in the molecular functions of the directed acyclic graph of molecular functions. Older high-level molecular functions were thoroughly recruited at younger lower levels, while very young high-level functions were used throughout the timeline. This pattern repeated in every one of the three mappings, which gave a criss-cross pattern. The timelines and their mappings were remarkable. They revealed the progressive evolutionary development of functional toolkits, starting with the early rise of metabolic activities, followed chronologically by the rise of macromolecular biosynthesis, the establishment of controlled interactions with the environment and self, adaptation to oxygen, and enzyme coordinated regulation, and ending with the rise of structural and cellular complexity. This historical account holds important clues for dissection of the emergence of biomcomplexity and life.
Collapse
Affiliation(s)
- Ibrahim Koç
- Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| |
Collapse
|
15
|
Arguments Reinforcing the Three-Domain View of Diversified Cellular Life. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:1851865. [PMID: 28050162 PMCID: PMC5165138 DOI: 10.1155/2016/1851865] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/18/2016] [Accepted: 11/03/2016] [Indexed: 11/18/2022]
Abstract
The archaeal ancestor scenario (AAS) for the origin of eukaryotes implies the emergence of a new kind of organism from the fusion of ancestral archaeal and bacterial cells. Equipped with this “chimeric” molecular arsenal, the resulting cell would gradually accumulate unique genes and develop the complex molecular machineries and cellular compartments that are hallmarks of modern eukaryotes. In this regard, proteins related to phagocytosis and cell movement should be present in the archaeal ancestor, thus identifying the recently described candidate archaeal phylum “Lokiarchaeota” as resembling a possible candidate ancestor of eukaryotes. Despite its appeal, AAS seems incompatible with the genomic, molecular, and biochemical differences that exist between Archaea and Eukarya. In particular, the distribution of conserved protein domain structures in the proteomes of cellular organisms and viruses appears hard to reconcile with the AAS. In addition, concerns related to taxon and character sampling, presupposing bacterial outgroups in phylogenies, and nonuniform effects of protein domain structure rearrangement and gain/loss in concatenated alignments of protein sequences cast further doubt on AAS-supporting phylogenies. Here, we evaluate AAS against the traditional “three-domain” world of cellular organisms and propose that the discovery of Lokiarchaeota could be better reconciled under the latter view, especially in light of several additional biological and technical considerations.
Collapse
|
16
|
Kurland CG, Harish A. The phylogenomics of protein structures: The backstory. Biochimie 2015; 119:284-302. [DOI: 10.1016/j.biochi.2015.07.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 07/28/2015] [Indexed: 12/11/2022]
|
17
|
Nasir A, Caetano-Anollés G. A phylogenomic data-driven exploration of viral origins and evolution. SCIENCE ADVANCES 2015; 1:e1500527. [PMID: 26601271 PMCID: PMC4643759 DOI: 10.1126/sciadv.1500527] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/30/2015] [Indexed: 05/05/2023]
Abstract
The origin of viruses remains mysterious because of their diverse and patchy molecular and functional makeup. Although numerous hypotheses have attempted to explain viral origins, none is backed by substantive data. We take full advantage of the wealth of available protein structural and functional data to explore the evolution of the proteomic makeup of thousands of cells and viruses. Despite the extremely reduced nature of viral proteomes, we established an ancient origin of the "viral supergroup" and the existence of widespread episodes of horizontal transfer of genetic information. Viruses harboring different replicon types and infecting distantly related hosts shared many metabolic and informational protein structural domains of ancient origin that were also widespread in cellular proteomes. Phylogenomic analysis uncovered a universal tree of life and revealed that modern viruses reduced from multiple ancient cells that harbored segmented RNA genomes and coexisted with the ancestors of modern cells. The model for the origin and evolution of viruses and cells is backed by strong genomic and structural evidence and can be reconciled with existing models of viral evolution if one considers viruses to have originated from ancient cells and not from modern counterparts.
Collapse
|
18
|
Zhang ZN, Wu QY, Zhang GZ, Zhu YY, Murphy RW, Liu Z, Zou CG. Systematic analyses reveal uniqueness and origin of the CFEM domain in fungi. Sci Rep 2015; 5:13032. [PMID: 26255557 PMCID: PMC4530338 DOI: 10.1038/srep13032] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/16/2015] [Indexed: 11/25/2022] Open
Abstract
CFEM domain commonly occurs in fungal extracellular membrane proteins. To provide insights for understanding putative functions of CFEM, we investigate the evolutionary dynamics of CFEM domains by systematic comparative genomic analyses among diverse animals, plants, and more than 100 fungal species, which are representative across the entire group of fungi. We here show that CFEM domain is unique to fungi. Experiments using tissue culture demonstrate that the CFEM-containing ESTs in some plants originate from endophytic fungi. We also find that CFEM domain does not occur in all fungi. Its single origin dates to the most recent common ancestors of Ascomycota and Basidiomycota, instead of multiple origins. Although the length and architecture of CFEM domains are relatively conserved, the domain-number varies significantly among different fungal species. In general, pathogenic fungi have a larger number of domains compared to other species. Domain-expansion across fungal genomes appears to be driven by domain duplication and gene duplication via recombination. These findings generate a clear evolutionary trajectory of CFEM domains and provide novel insights into the functional exchange of CFEM-containing proteins from cell-surface components to mediators in host-pathogen interactions.
Collapse
Affiliation(s)
- Zhen-Na Zhang
- 1] Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China [2] Xiamen Tobacco Industrial CO., LTD, Xiamen, China
| | - Qin-Yi Wu
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| | | | - Yue-Yan Zhu
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhen Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Cheng-Gang Zou
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| |
Collapse
|
19
|
Caetano-Anollés G, Caetano-Anollés D. Computing the origin and evolution of the ribosome from its structure - Uncovering processes of macromolecular accretion benefiting synthetic biology. Comput Struct Biotechnol J 2015; 13:427-47. [PMID: 27096056 PMCID: PMC4823900 DOI: 10.1016/j.csbj.2015.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/16/2015] [Accepted: 07/19/2015] [Indexed: 12/11/2022] Open
Abstract
Accretion occurs pervasively in nature at widely different timeframes. The process also manifests in the evolution of macromolecules. Here we review recent computational and structural biology studies of evolutionary accretion that make use of the ideographic (historical, retrodictive) and nomothetic (universal, predictive) scientific frameworks. Computational studies uncover explicit timelines of accretion of structural parts in molecular repertoires and molecules. Phylogenetic trees of protein structural domains and proteomes and their molecular functions were built from a genomic census of millions of encoded proteins and associated terminal Gene Ontology terms. Trees reveal a ‘metabolic-first’ origin of proteins, the late development of translation, and a patchwork distribution of proteins in biological networks mediated by molecular recruitment. Similarly, the natural history of ancient RNA molecules inferred from trees of molecular substructures built from a census of molecular features shows patchwork-like accretion patterns. Ideographic analyses of ribosomal history uncover the early appearance of structures supporting mRNA decoding and tRNA translocation, the coevolution of ribosomal proteins and RNA, and a first evolutionary transition that brings ribosomal subunits together into a processive protein biosynthetic complex. Nomothetic structural biology studies of tertiary interactions and ancient insertions in rRNA complement these findings, once concentric layering assumptions are removed. Patterns of coaxial helical stacking reveal a frustrated dynamics of outward and inward ribosomal growth possibly mediated by structural grafting. The early rise of the ribosomal ‘turnstile’ suggests an evolutionary transition in natural biological computation. Results make explicit the need to understand processes of molecular growth and information transfer of macromolecules.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101W. Peabody Drive, Urbana, IL 61801, USA; C.R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Derek Caetano-Anollés
- C.R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
20
|
Nasir A, Kim KM, Caetano-Anollés G. Viral evolution: Primordial cellular origins and late adaptation to parasitism. Mob Genet Elements 2014; 2:247-252. [PMID: 23550145 PMCID: PMC3575434 DOI: 10.4161/mge.22797] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Explaining the origin of viruses remains an important challenge for evolutionary biology. Previous explanatory frameworks described viruses as founders of cellular life, as parasitic reductive products of ancient cellular organisms or as escapees of modern genomes. Each of these frameworks endow viruses with distinct molecular, cellular, dynamic and emergent properties that carry broad and important implications for many disciplines, including biology, ecology and epidemiology. In a recent genome-wide structural phylogenomic analysis, we have shown that large-to-medium-sized viruses coevolved with cellular ancestors and have chosen the evolutionary reductive route. Here we interpret these results and provide a parsimonious hypothesis for the origin of viruses that is supported by molecular data and objective evolutionary bioinformatic approaches. Results suggest two important phases in the evolution of viruses: (1) origin from primordial cells and coexistence with cellular ancestors, and (2) prolonged pressure of genome reduction and relatively late adaptation to the parasitic lifestyle once virions and diversified cellular life took over the planet. Under this evolutionary model, new viral lineages can evolve from existing cellular parasites and enhance the diversity of the world’s virosphere.
Collapse
Affiliation(s)
- Arshan Nasir
- Department of Crop Science; University of Illinois at Urbana-Champaign; Urbana, IL USA ; Illinois Informatics Institute; University of Illinois at Urbana-Champaign; Urbana, IL USA
| | | | | |
Collapse
|
21
|
Hybrid and rogue kinases encoded in the genomes of model eukaryotes. PLoS One 2014; 9:e107956. [PMID: 25255313 PMCID: PMC4177888 DOI: 10.1371/journal.pone.0107956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/18/2014] [Indexed: 11/19/2022] Open
Abstract
The highly modular nature of protein kinases generates diverse functional roles mediated by evolutionary events such as domain recombination, insertion and deletion of domains. Usually domain architecture of a kinase is related to the subfamily to which the kinase catalytic domain belongs. However outlier kinases with unusual domain architectures serve in the expansion of the functional space of the protein kinase family. For example, Src kinases are made-up of SH2 and SH3 domains in addition to the kinase catalytic domain. A kinase which lacks these two domains but retains sequence characteristics within the kinase catalytic domain is an outlier that is likely to have modes of regulation different from classical src kinases. This study defines two types of outlier kinases: hybrids and rogues depending on the nature of domain recombination. Hybrid kinases are those where the catalytic kinase domain belongs to a kinase subfamily but the domain architecture is typical of another kinase subfamily. Rogue kinases are those with kinase catalytic domain characteristic of a kinase subfamily but the domain architecture is typical of neither that subfamily nor any other kinase subfamily. This report provides a consolidated set of such hybrid and rogue kinases gleaned from six eukaryotic genomes-S.cerevisiae, D. melanogaster, C.elegans, M.musculus, T.rubripes and H.sapiens-and discusses their functions. The presence of such kinases necessitates a revisiting of the classification scheme of the protein kinase family using full length sequences apart from classical classification using solely the sequences of kinase catalytic domains. The study of these kinases provides a good insight in engineering signalling pathways for a desired output. Lastly, identification of hybrids and rogues in pathogenic protozoa such as P.falciparum sheds light on possible strategies in host-pathogen interactions.
Collapse
|
22
|
A phylogenomic census of molecular functions identifies modern thermophilic archaea as the most ancient form of cellular life. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014; 2014:706468. [PMID: 25249790 PMCID: PMC4164138 DOI: 10.1155/2014/706468] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 11/20/2013] [Accepted: 01/17/2014] [Indexed: 12/30/2022]
Abstract
The origins of diversified life remain mysterious despite considerable efforts devoted to untangling the roots of the universal tree of life. Here we reconstructed phylogenies that described the evolution of molecular functions and the evolution of species directly from a genomic census of gene ontology (GO) definitions. We sampled 249 free-living genomes spanning organisms in the three superkingdoms of life, Archaea, Bacteria, and Eukarya, and used the abundance of GO terms as molecular characters to produce rooted phylogenetic trees. Results revealed an early thermophilic origin of Archaea that was followed by genome reduction events in microbial superkingdoms. Eukaryal genomes displayed extraordinary functional diversity and were enriched with hundreds of novel molecular activities not detected in the akaryotic microbial cells. Remarkably, the majority of these novel functions appeared quite late in evolution, synchronized with the diversification of the eukaryal superkingdom. The distribution of GO terms in superkingdoms confirms that Archaea appears to be the simplest and most ancient form of cellular life, while Eukarya is the most diverse and recent.
Collapse
|
23
|
Kim KM, Nasir A, Hwang K, Caetano-Anollés G. A tree of cellular life inferred from a genomic census of molecular functions. J Mol Evol 2014; 79:240-62. [PMID: 25128982 DOI: 10.1007/s00239-014-9637-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
Abstract
Phylogenomics aims to describe evolutionary relatedness between organisms by analyzing genomic data. The common practice is to produce phylogenomic trees from molecular information in the sequence, order, and content of genes in genomes. These phylogenies describe the evolution of life and become valuable tools for taxonomy. The recent availability of structural and functional data for hundreds of genomes now offers the opportunity to study evolution using more deep, conserved, and reliable sets of molecular features. Here, we reconstruct trees of life from the functions of proteins. We start by inferring rooted phylogenomic trees and networks of organisms directly from Gene Ontology annotations. Phylogenies and networks yield novel insights into the emergence and evolution of cellular life. The ancestor of Archaea originated earlier than the ancestors of Bacteria and Eukarya and was thermophilic. In contrast, basal bacterial lineages were non-thermophilic. A close relationship between Plants and Metazoa was also identified that disagrees with the traditional Fungi-Metazoa grouping. While measures of evolutionary reticulation were minimum in Eukarya and maximum in Bacteria, the massive role of horizontal gene transfer in microbes did not materialize in phylogenomic networks. Phylogenies and networks also showed that the best reconstructions were recovered when problematic taxa (i.e., parasitic/symbiotic organisms) and horizontally transferred characters were excluded from analysis. Our results indicate that functionomic data represent a useful addition to the set of molecular characters used for tree reconstruction and that trees of cellular life carry in deep branches considerable predictive power to explain the evolution of living organisms.
Collapse
Affiliation(s)
- Kyung Mo Kim
- Microbial Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Korea
| | | | | | | |
Collapse
|
24
|
A daily-updated tree of (sequenced) life as a reference for genome research. Sci Rep 2014; 3:2015. [PMID: 23778980 PMCID: PMC6504836 DOI: 10.1038/srep02015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/10/2013] [Indexed: 11/08/2022] Open
Abstract
We report a daily-updated sequenced/species Tree Of Life (sTOL) as a reference for the increasing number of cellular organisms with their genomes sequenced. The sTOL builds on a likelihood-based weight calibration algorithm to consolidate NCBI taxonomy information in concert with unbiased sampling of molecular characters from whole genomes of all sequenced organisms. Via quantifying the extent of agreement between taxonomic and molecular data, we observe there are many potential improvements that can be made to the status quo classification, particularly in the Fungi kingdom; we also see that the current state of many animal genomes is rather poor. To augment the use of sTOL in providing evolutionary contexts, we integrate an ontology infrastructure and demonstrate its utility for evolutionary understanding on: nuclear receptors, stem cells and eukaryotic genomes. The sTOL (http://supfam.org/SUPERFAMILY/sTOL) provides a binary tree of (sequenced) life, and contributes to an analytical platform linking genome evolution, function and phenotype.
Collapse
|
25
|
Kim KM, Nasir A, Caetano-Anollés G. The importance of using realistic evolutionary models for retrodicting proteomes. Biochimie 2014; 99:129-37. [DOI: 10.1016/j.biochi.2013.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/22/2013] [Indexed: 01/16/2023]
|
26
|
Global patterns of protein domain gain and loss in superkingdoms. PLoS Comput Biol 2014; 10:e1003452. [PMID: 24499935 PMCID: PMC3907288 DOI: 10.1371/journal.pcbi.1003452] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/03/2013] [Indexed: 12/21/2022] Open
Abstract
Domains are modules within proteins that can fold and function independently and are evolutionarily conserved. Here we compared the usage and distribution of protein domain families in the free-living proteomes of Archaea, Bacteria and Eukarya and reconstructed species phylogenies while tracing the history of domain emergence and loss in proteomes. We show that both gains and losses of domains occurred frequently during proteome evolution. The rate of domain discovery increased approximately linearly in evolutionary time. Remarkably, gains generally outnumbered losses and the gain-to-loss ratios were much higher in akaryotes compared to eukaryotes. Functional annotations of domain families revealed that both Archaea and Bacteria gained and lost metabolic capabilities during the course of evolution while Eukarya acquired a number of diverse molecular functions including those involved in extracellular processes, immunological mechanisms, and cell regulation. Results also highlighted significant contemporary sharing of informational enzymes between Archaea and Eukarya and metabolic enzymes between Bacteria and Eukarya. Finally, the analysis provided useful insights into the evolution of species. The archaeal superkingdom appeared first in evolution by gradual loss of ancestral domains, bacterial lineages were the first to gain superkingdom-specific domains, and eukaryotes (likely) originated when an expanding proto-eukaryotic stem lineage gained organelles through endosymbiosis of already diversified bacterial lineages. The evolutionary dynamics of domain families in proteomes and the increasing number of domain gains is predicted to redefine the persistence strategies of organisms in superkingdoms, influence the make up of molecular functions, and enhance organismal complexity by the generation of new domain architectures. This dynamics highlights ongoing secondary evolutionary adaptations in akaryotic microbes, especially Archaea.
Collapse
|
27
|
Bhaskara RM, Mehrotra P, Rakshambikai R, Gnanavel M, Martin J, Srinivasan N. The relationship between classification of multi-domain proteins using an alignment-free approach and their functions: a case study with immunoglobulins. MOLECULAR BIOSYSTEMS 2014; 10:1082-93. [DOI: 10.1039/c3mb70443b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Comparative analysis of proteomes and functionomes provides insights into origins of cellular diversification. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2013; 2013:648746. [PMID: 24492748 PMCID: PMC3892558 DOI: 10.1155/2013/648746] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 11/22/2022]
Abstract
Reconstructing the evolutionary history of modern species is a difficult problem complicated by the conceptual and technical limitations of phylogenetic tree building methods. Here, we propose a comparative proteomic and functionomic inferential framework for genome evolution that allows resolving the tripartite division of cells and sketching their history. Evolutionary inferences were derived from the spread of conserved molecular features, such as molecular structures and functions, in the proteomes and functionomes of contemporary organisms. Patterns of use and reuse of these traits yielded significant insights into the origins of cellular diversification. Results uncovered an unprecedented strong evolutionary association between Bacteria and Eukarya while revealing marked evolutionary reductive tendencies in the archaeal genomic repertoires. The effects of nonvertical evolutionary processes (e.g., HGT, convergent evolution) were found to be limited while reductive evolution and molecular innovation appeared to be prevalent during the evolution of cells. Our study revealed a strong vertical trace in the history of proteins and associated molecular functions, which was reliably recovered using the comparative genomics approach. The trace supported the existence of a stem line of descent and the very early appearance of Archaea as a diversified superkingdom, but failed to uncover a hidden canonical pattern in which Bacteria was the first superkingdom to deploy superkingdom-specific structures and functions.
Collapse
|
29
|
Yafremava LS, Wielgos M, Thomas S, Nasir A, Wang M, Mittenthal JE, Caetano-Anollés G. A general framework of persistence strategies for biological systems helps explain domains of life. Front Genet 2013; 4:16. [PMID: 23443991 PMCID: PMC3580334 DOI: 10.3389/fgene.2013.00016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/28/2013] [Indexed: 11/13/2022] Open
Abstract
The nature and cause of the division of organisms in superkingdoms is not fully understood. Assuming that environment shapes physiology, here we construct a novel theoretical framework that helps identify general patterns of organism persistence. This framework is based on Jacob von Uexküll's organism-centric view of the environment and James G. Miller's view of organisms as matter-energy-information processing molecular machines. Three concepts describe an organism's environmental niche: scope, umwelt, and gap. Scope denotes the entirety of environmental events and conditions to which the organism is exposed during its lifetime. Umwelt encompasses an organism's perception of these events. The gap is the organism's blind spot, the scope that is not covered by umwelt. These concepts bring organisms of different complexity to a common ecological denominator. Ecological and physiological data suggest organisms persist using three strategies: flexibility, robustness, and economy. All organisms use umwelt information to flexibly adapt to environmental change. They implement robustness against environmental perturbations within the gap generally through redundancy and reliability of internal constituents. Both flexibility and robustness improve survival. However, they also incur metabolic matter-energy processing costs, which otherwise could have been used for growth and reproduction. Lineages evolve unique tradeoff solutions among strategies in the space of what we call "a persistence triangle." Protein domain architecture and other evidence support the preferential use of flexibility and robustness properties. Archaea and Bacteria gravitate toward the triangle's economy vertex, with Archaea biased toward robustness. Eukarya trade economy for survivability. Protista occupy a saddle manifold separating akaryotes from multicellular organisms. Plants and the more flexible Fungi share an economic stratum, and Metazoa are locked in a positive feedback loop toward flexibility.
Collapse
Affiliation(s)
- Liudmila S Yafremava
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois Urbana, IL, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Moore AD, Grath S, Schüler A, Huylmans AK, Bornberg-Bauer E. Quantification and functional analysis of modular protein evolution in a dense phylogenetic tree. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:898-907. [PMID: 23376183 DOI: 10.1016/j.bbapap.2013.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/06/2013] [Accepted: 01/09/2013] [Indexed: 12/24/2022]
Abstract
Modularity is a hallmark of molecular evolution. Whether considering gene regulation, the components of metabolic pathways or signaling cascades, the ability to reuse autonomous modules in different molecular contexts can expedite evolutionary innovation. Similarly, protein domains are the modules of proteins, and modular domain rearrangements can create diversity with seemingly few operations in turn allowing for swift changes to an organism's functional repertoire. Here, we assess the patterns and functional effects of modular rearrangements at high resolution. Using a well resolved and diverse group of pancrustaceans, we illustrate arrangement diversity within closely related organisms, estimate arrangement turnover frequency and establish, for the first time, branch-specific rate estimates for fusion, fission, domain addition and terminal loss. Our results show that roughly 16 new arrangements arise per million years and that between 64% and 81% of these can be explained by simple, single-step modular rearrangement events. We find evidence that the frequencies of fission and terminal deletion events increase over time, and that modular rearrangements impact all levels of the cellular signaling apparatus and thus may have strong adaptive potential. Novel arrangements that cannot be explained by simple modular rearrangements contain a significant amount of repeat domains that occur in complex patterns which we term "supra-repeats". Furthermore, these arrangements are significantly longer than those with a single-step rearrangement solution, suggesting that such arrangements may result from multi-step events. In summary, our analysis provides an integrated view and initial quantification of the patterns and functional impact of modular protein evolution in a well resolved phylogenetic tree. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.
Collapse
Affiliation(s)
- Andrew D Moore
- Institute for Evolution and Biodiversity, Münster, Germany
| | | | | | | | | |
Collapse
|
31
|
Larroque M, Barriot R, Bottin A, Barre A, Rougé P, Dumas B, Gaulin E. The unique architecture and function of cellulose-interacting proteins in oomycetes revealed by genomic and structural analyses. BMC Genomics 2012; 13:605. [PMID: 23140525 PMCID: PMC3532174 DOI: 10.1186/1471-2164-13-605] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/25/2012] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Oomycetes are fungal-like microorganisms evolutionary distinct from true fungi, belonging to the Stramenopile lineage and comprising major plant pathogens. Both oomycetes and fungi express proteins able to interact with cellulose, a major component of plant and oomycete cell walls, through the presence of carbohydrate-binding module belonging to the family 1 (CBM1). Fungal CBM1-containing proteins were implicated in cellulose degradation whereas in oomycetes, the Cellulose Binding Elicitor Lectin (CBEL), a well-characterized CBM1-protein from Phytophthora parasitica, was implicated in cell wall integrity, adhesion to cellulosic substrates and induction of plant immunity. RESULTS To extend our knowledge on CBM1-containing proteins in oomycetes, we have conducted a comprehensive analysis on 60 fungi and 7 oomycetes genomes leading to the identification of 518 CBM1-containing proteins. In plant-interacting microorganisms, the larger number of CBM1-protein coding genes is expressed by necrotroph and hemibiotrophic pathogens, whereas a strong reduction of these genes is observed in symbionts and biotrophs. In fungi, more than 70% of CBM1-containing proteins correspond to enzymatic proteins in which CBM1 is associated with a catalytic unit involved in cellulose degradation. In oomycetes more than 90% of proteins are similar to CBEL in which CBM1 is associated with a non-catalytic PAN/Apple domain, known to interact with specific carbohydrates or proteins. Distinct Stramenopile genomes like diatoms and brown algae are devoid of CBM1 coding genes. A CBM1-PAN/Apple association 3D structural modeling was built allowing the identification of amino acid residues interacting with cellulose and suggesting the putative interaction of the PAN/Apple domain with another type of glucan. By Surface Plasmon Resonance experiments, we showed that CBEL binds to glycoproteins through galactose or N-acetyl-galactosamine motifs. CONCLUSIONS This study provides insight into the evolution and biological roles of CBM1-containing proteins from oomycetes. We show that while CBM1s from fungi and oomycetes are similar, they team up with different protein domains, either in proteins implicated in the degradation of plant cell wall components in the case of fungi or in proteins involved in adhesion to polysaccharidic substrates in the case of oomycetes. This work highlighted the unique role and evolution of CBM1 proteins in oomycete among the Stramenopile lineage.
Collapse
Affiliation(s)
- Mathieu Larroque
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
| | - Roland Barriot
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaire, Toulouse F-31000, France
- Centre National de la Recherche Scientifique; LMGM, Toulouse F-31000, France
| | - Arnaud Bottin
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
| | - Annick Barre
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
- Present address: Université de Toulouse, UPS, Laboratoire PHARMA-DEV IRD UMR 152, 35 Chemin des Maraîchers, Toulouse 31400, France
| | - Pierre Rougé
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
- Present address: Université de Toulouse, UPS, Laboratoire PHARMA-DEV IRD UMR 152, 35 Chemin des Maraîchers, Toulouse 31400, France
| | - Bernard Dumas
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
| | - Elodie Gaulin
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
| |
Collapse
|
32
|
Goldman AD, Baross JA, Samudrala R. The enzymatic and metabolic capabilities of early life. PLoS One 2012; 7:e39912. [PMID: 22970111 PMCID: PMC3438178 DOI: 10.1371/journal.pone.0039912] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 06/04/2012] [Indexed: 12/24/2022] Open
Abstract
We introduce the concept of metaconsensus and employ it to make high confidence predictions of early enzyme functions and the metabolic properties that they may have produced. Several independent studies have used comparative bioinformatics methods to identify taxonomically broad features of genomic sequence data, protein structure data, and metabolic pathway data in order to predict physiological features that were present in early, ancestral life forms. But all such methods carry with them some level of technical bias. Here, we cross-reference the results of these previous studies to determine enzyme functions predicted to be ancient by multiple methods. We survey modern metabolic pathways to identify those that maintain the highest frequency of metaconsensus enzymes. Using the full set of modern reactions catalyzed by these metaconsensus enzyme functions, we reconstruct a representative metabolic network that may reflect the core metabolism of early life forms. Our results show that ten enzyme functions, four hydrolases, three transferases, one oxidoreductase, one lyase, and one ligase, are determined by metaconsensus to be present at least as late as the last universal common ancestor. Subnetworks within central metabolic processes related to sugar and starch metabolism, amino acid biosynthesis, phospholipid metabolism, and CoA biosynthesis, have high frequencies of these enzyme functions. We demonstrate that a large metabolic network can be generated from this small number of enzyme functions.
Collapse
Affiliation(s)
- Aaron David Goldman
- Department of Ecology and Evolutionary Biology, Princeton, New Jersey, United States of America.
| | | | | |
Collapse
|
33
|
Nasir A, Kim KM, Caetano-Anolles G. Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya. BMC Evol Biol 2012; 12:156. [PMID: 22920653 PMCID: PMC3570343 DOI: 10.1186/1471-2148-12-156] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/22/2012] [Indexed: 11/17/2022] Open
Abstract
Background The discovery of giant viruses with genome and physical size comparable to cellular organisms, remnants of protein translation machinery and virus-specific parasites (virophages) have raised intriguing questions about their origin. Evidence advocates for their inclusion into global phylogenomic studies and their consideration as a distinct and ancient form of life. Results Here we reconstruct phylogenies describing the evolution of proteomes and protein domain structures of cellular organisms and double-stranded DNA viruses with medium-to-very-large proteomes (giant viruses). Trees of proteomes define viruses as a ‘fourth supergroup’ along with superkingdoms Archaea, Bacteria, and Eukarya. Trees of domains indicate they have evolved via massive and primordial reductive evolutionary processes. The distribution of domain structures suggests giant viruses harbor a significant number of protein domains including those with no cellular representation. The genomic and structural diversity embedded in the viral proteomes is comparable to the cellular proteomes of organisms with parasitic lifestyles. Since viral domains are widespread among cellular species, we propose that viruses mediate gene transfer between cells and crucially enhance biodiversity. Conclusions Results call for a change in the way viruses are perceived. They likely represent a distinct form of life that either predated or coexisted with the last universal common ancestor (LUCA) and constitute a very crucial part of our planet’s biosphere.
Collapse
Affiliation(s)
- Arshan Nasir
- Evolutionary Bioinformatics Laboratory, Department of Crop Science, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
34
|
Alvarez-Venegas R, Avramova Z. Evolution of the PWWP-domain encoding genes in the plant and animal lineages. BMC Evol Biol 2012; 12:101. [PMID: 22734652 PMCID: PMC3457860 DOI: 10.1186/1471-2148-12-101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 06/06/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Conserved domains are recognized as the building blocks of eukaryotic proteins. Domains showing a tendency to occur in diverse combinations ('promiscuous' domains) are involved in versatile architectures in proteins with different functions. Current models, based on global-level analyses of domain combinations in multiple genomes, have suggested that the propensity of some domains to associate with other domains in high-level architectures increases with organismal complexity. Alternative models using domain-based phylogenetic trees propose that domains have become promiscuous independently in different lineages through convergent evolution and are, thus, random with no functional or structural preferences. Here we test whether complex protein architectures have occurred by accretion from simpler systems and whether the appearance of multidomain combinations parallels organismal complexity. As a model, we analyze the modular evolution of the PWWP domain and ask whether its appearance in combinations with other domains into multidomain architectures is linked with the occurrence of more complex life-forms. Whether high-level combinations of domains are conserved and transmitted as stable units (cassettes) through evolution is examined in the genomes of plant or metazoan species selected for their established position in the evolution of the respective lineages. RESULTS Using the domain-tree approach, we analyze the evolutionary origins and distribution patterns of the promiscuous PWWP domain to understand the principles of its modular evolution and its existence in combination with other domains in higher-level protein architectures. We found that as a single module the PWWP domain occurs only in proteins with a limited, mainly, species-specific distribution. Earlier, it was suggested that domain promiscuity is a fast-changing (volatile) feature shaped by natural selection and that only a few domains retain their promiscuity status throughout evolution. In contrast, our data show that most of the multidomain PWWP combinations in extant multicellular organisms (humans or land plants) are present in their unicellular ancestral relatives suggesting they have been transmitted through evolution as conserved linear arrangements ('cassettes'). Among the most interesting biologically relevant results is the finding that the genes of the two plant Trithorax family subgroups (ATX1/2 and ATX3/4/5) have different phylogenetic origins. The two subgroups occur together in the earliest land plants Physcomitrella patens and Selaginella moellendorffii. CONCLUSION Gain/loss of a single PWWP domain is observed throughout evolution reflecting dynamic lineage- or species-specific events. In contrast, higher-level protein architectures involving the PWWP domain have survived as stable arrangements driven by evolutionary descent. The association of PWWP domains with the DNA methyltransferases in O. tauri and in the metazoan lineage seems to have occurred independently consistent with convergent evolution. Our results do not support models wherein more complex protein architectures involving the PWWP domain occur with the appearance of more evolutionarily advanced life forms.
Collapse
Affiliation(s)
- Raúl Alvarez-Venegas
- Department of Genetic Engineering, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Irapuato Gto., 36821, Mexico
| | | |
Collapse
|
35
|
Harish A, Caetano-Anollés G. Ribosomal history reveals origins of modern protein synthesis. PLoS One 2012; 7:e32776. [PMID: 22427882 PMCID: PMC3299690 DOI: 10.1371/journal.pone.0032776] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 01/30/2012] [Indexed: 02/06/2023] Open
Abstract
The origin and evolution of the ribosome is central to our understanding of the cellular world. Most hypotheses posit that the ribosome originated in the peptidyl transferase center of the large ribosomal subunit. However, these proposals do not link protein synthesis to RNA recognition and do not use a phylogenetic comparative framework to study ribosomal evolution. Here we infer evolution of the structural components of the ribosome. Phylogenetic methods widely used in morphometrics are applied directly to RNA structures of thousands of molecules and to a census of protein structures in hundreds of genomes. We find that components of the small subunit involved in ribosomal processivity evolved earlier than the catalytic peptidyl transferase center responsible for protein synthesis. Remarkably, subunit RNA and proteins coevolved, starting with interactions between the oldest proteins (S12 and S17) and the oldest substructure (the ribosomal ratchet) in the small subunit and ending with the rise of a modern multi-subunit ribosome. Ancestral ribonucleoprotein components show similarities to in vitro evolved RNA replicase ribozymes and protein structures in extant replication machinery. Our study therefore provides important clues about the chicken-or-egg dilemma associated with the central dogma of molecular biology by showing that ribosomal history is driven by the gradual structural accretion of protein and RNA structures. Most importantly, results suggest that functionally important and conserved regions of the ribosome were recruited and could be relics of an ancient ribonucleoprotein world.
Collapse
Affiliation(s)
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana-Champaign, Illinois, United States of America
| |
Collapse
|
36
|
Kim KM, Caetano-Anollés G. The evolutionary history of protein fold families and proteomes confirms that the archaeal ancestor is more ancient than the ancestors of other superkingdoms. BMC Evol Biol 2012; 12:13. [PMID: 22284070 PMCID: PMC3306197 DOI: 10.1186/1471-2148-12-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 01/27/2012] [Indexed: 11/23/2022] Open
Abstract
Background The entire evolutionary history of life can be studied using myriad sequences generated by genomic research. This includes the appearance of the first cells and of superkingdoms Archaea, Bacteria, and Eukarya. However, the use of molecular sequence information for deep phylogenetic analyses is limited by mutational saturation, differential evolutionary rates, lack of sequence site independence, and other biological and technical constraints. In contrast, protein structures are evolutionary modules that are highly conserved and diverse enough to enable deep historical exploration. Results Here we build phylogenies that describe the evolution of proteins and proteomes. These phylogenetic trees are derived from a genomic census of protein domains defined at the fold family (FF) level of structural classification. Phylogenomic trees of FF structures were reconstructed from genomic abundance levels of 2,397 FFs in 420 proteomes of free-living organisms. These trees defined timelines of domain appearance, with time spanning from the origin of proteins to the present. Timelines are divided into five different evolutionary phases according to patterns of sharing of FFs among superkingdoms: (1) a primordial protein world, (2) reductive evolution and the rise of Archaea, (3) the rise of Bacteria from the common ancestor of Bacteria and Eukarya and early development of the three superkingdoms, (4) the rise of Eukarya and widespread organismal diversification, and (5) eukaryal diversification. The relative ancestry of the FFs shows that reductive evolution by domain loss is dominant in the first three phases and is responsible for both the diversification of life from a universal cellular ancestor and the appearance of superkingdoms. On the other hand, domain gains are predominant in the last two phases and are responsible for organismal diversification, especially in Bacteria and Eukarya. Conclusions The evolution of functions that are associated with corresponding FFs along the timeline reveals that primordial metabolic domains evolved earlier than informational domains involved in translation and transcription, supporting the metabolism-first hypothesis rather than the RNA world scenario. In addition, phylogenomic trees of proteomes reconstructed from FFs appearing in each of the five phases of the protein world show that trees reconstructed from ancient domain structures were consistently rooted in archaeal lineages, supporting the proposal that the archaeal ancestor is more ancient than the ancestors of other superkingdoms.
Collapse
Affiliation(s)
- Kyung Mo Kim
- Evolutionary Bioinformatics Laboratory, Department of Crop Science, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
37
|
Zhang XC, Wang Z, Zhang X, Le MH, Sun J, Xu D, Cheng J, Stacey G. Evolutionary dynamics of protein domain architecture in plants. BMC Evol Biol 2012; 12:6. [PMID: 22252370 PMCID: PMC3310802 DOI: 10.1186/1471-2148-12-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 01/17/2012] [Indexed: 12/17/2022] Open
Abstract
Background Protein domains are the structural, functional and evolutionary units of the protein. Protein domain architectures are the linear arrangements of domain(s) in individual proteins. Although the evolutionary history of protein domain architecture has been extensively studied in microorganisms, the evolutionary dynamics of domain architecture in the plant kingdom remains largely undefined. To address this question, we analyzed the lineage-based protein domain architecture content in 14 completed green plant genomes. Results Our analyses show that all 14 plant genomes maintain similar distributions of species-specific, single-domain, and multi-domain architectures. Approximately 65% of plant domain architectures are universally present in all plant lineages, while the remaining architectures are lineage-specific. Clear examples are seen of both the loss and gain of specific protein architectures in higher plants. There has been a dynamic, lineage-wise expansion of domain architectures during plant evolution. The data suggest that this expansion can be largely explained by changes in nuclear ploidy resulting from rounds of whole genome duplications. Indeed, there has been a decrease in the number of unique domain architectures when the genomes were normalized into a presumed ancestral genome that has not undergone whole genome duplications. Conclusions Our data show the conservation of universal domain architectures in all available plant genomes, indicating the presence of an evolutionarily conserved, core set of protein components. However, the occurrence of lineage-specific domain architectures indicates that domain architecture diversity has been maintained beyond these core components in plant genomes. Although several features of genome-wide domain architecture content are conserved in plants, the data clearly demonstrate lineage-wise, progressive changes and expansions of individual protein domain architectures, reinforcing the notion that plant genomes have undergone dynamic evolution.
Collapse
Affiliation(s)
- Xue-Cheng Zhang
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
The phylogenomic roots of modern biochemistry: origins of proteins, cofactors and protein biosynthesis. J Mol Evol 2012; 74:1-34. [PMID: 22210458 DOI: 10.1007/s00239-011-9480-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 12/12/2011] [Indexed: 12/20/2022]
Abstract
The complexity of modern biochemistry developed gradually on early Earth as new molecules and structures populated the emerging cellular systems. Here, we generate a historical account of the gradual discovery of primordial proteins, cofactors, and molecular functions using phylogenomic information in the sequence of 420 genomes. We focus on structural and functional annotations of the 54 most ancient protein domains. We show how primordial functions are linked to folded structures and how their interaction with cofactors expanded the functional repertoire. We also reveal protocell membranes played a crucial role in early protein evolution and show translation started with RNA and thioester cofactor-mediated aminoacylation. Our findings allow elaboration of an evolutionary model of early biochemistry that is firmly grounded in phylogenomic information and biochemical, biophysical, and structural knowledge. The model describes how primordial α-helical bundles stabilized membranes, how these were decorated by layered arrangements of β-sheets and α-helices, and how these arrangements became globular. Ancient forms of aminoacyl-tRNA synthetase (aaRS) catalytic domains and ancient non-ribosomal protein synthetase (NRPS) modules gave rise to primordial protein synthesis and the ability to generate a code for specificity in their active sites. These structures diversified producing cofactor-binding molecular switches and barrel structures. Accretion of domains and molecules gave rise to modern aaRSs, NRPS, and ribosomal ensembles, first organized around novel emerging cofactors (tRNA and carrier proteins) and then more complex cofactor structures (rRNA). The model explains how the generation of protein structures acted as scaffold for nucleic acids and resulted in crystallization of modern translation.
Collapse
|
39
|
Pang E, Tan T, Lin K. Promiscuous domains: facilitating stability of the yeast protein–protein interaction network. ACTA ACUST UNITED AC 2012; 8:766-71. [DOI: 10.1039/c1mb05364g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Moore AD, Bornberg-Bauer E. The dynamics and evolutionary potential of domain loss and emergence. Mol Biol Evol 2011; 29:787-96. [PMID: 22016574 PMCID: PMC3258042 DOI: 10.1093/molbev/msr250] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The wealth of available genomic data presents an unrivaled opportunity to study the molecular basis of evolution. Studies on gene family expansions and site-dependent analyses have already helped establish important insights into how proteins facilitate adaptation. However, efforts to conduct full-scale cross-genomic comparisons between species are challenged by both growing amounts of data and the inherent difficulty in accurately inferring homology between deeply rooted species. Proteins, in comparison, evolve by means of domain rearrangements, a process more amenable to study given the strength of profile-based homology inference and the lower rates with which rearrangements occur. However, adapting to a constantly changing environment can require molecular modulations beyond reach of rearrangement alone. Here, we explore rates and functional implications of novel domain emergence in contrast to domain gain and loss in 20 arthropod species of the pancrustacean clade. Emerging domains are more likely disordered in structure and spread more rapidly within their genomes than established domains. Furthermore, although domain turnover occurs at lower rates than gene family turnover, we find strong evidence that the emergence of novel domains is foremost associated with environmental adaptation such as abiotic stress response. The results presented here illustrate the simplicity with which domain-based analyses can unravel key players of nature's adaptational machinery, complementing the classical site-based analyses of adaptation.
Collapse
Affiliation(s)
- Andrew D Moore
- Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, University of Muenster, Germany
| | | |
Collapse
|
41
|
Reynaud EG, Devos DP. Transitional forms between the three domains of life and evolutionary implications. Proc Biol Sci 2011; 278:3321-8. [PMID: 21920985 PMCID: PMC3177640 DOI: 10.1098/rspb.2011.1581] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The question as to the origin and relationship between the three domains of life is lodged in a phylogenetic impasse. The dominant paradigm is to see the three domains as separated. However, the recently characterized bacterial species have suggested continuity between the three domains. Here, we review the evidence in support of this hypothesis and evaluate the implications for and against the models of the origin of the three domains of life. The existence of intermediate steps between the three domains discards the need for fusion to explain eukaryogenesis and suggests that the last universal common ancestor was complex. We propose a scenario in which the ancestor of the current bacterial Planctomycetes, Verrucomicrobiae and Chlamydiae superphylum was related to the last archaeal and eukaryotic common ancestor, thus providing a way out of the phylogenetic impasse.
Collapse
Affiliation(s)
- Emmanuel G Reynaud
- School of Biology and Environmental Science, UCD Science Centre, Belfield, Dublin 4, Ireland.
| | | |
Collapse
|
42
|
Rathankar N, Nirmala KA, Khanduja V, Nagendra HG. Identification of potential drug targets implicated in Parkinson's disease from human genome: insights of using fused domains in hypothetical proteins as probes. ISRN NEUROLOGY 2011; 2011:265253. [PMID: 22389811 PMCID: PMC3263550 DOI: 10.5402/2011/265253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 05/21/2011] [Indexed: 12/31/2022]
Abstract
High-throughput genome sequencing has led to data explosion in sequence databanks, with an imbalance of sequence-structure-function relationships, resulting in a substantial fraction of proteins known as hypothetical proteins. Functions of such proteins can be assigned based on the analysis and characterization of the domains that they are made up of. Domains are basic evolutionary units of proteins and most proteins contain multiple domains. A subset of multidomain proteins is fused domains (overlapping domains), wherein sequence overlaps between two or more domains occur. These fused domains are a result of gene fusion events and their implication in diseases is well established. Hence, an attempt has been made in this paper to identify the fused domain containing hypothetical proteins from human genome homologous to parkinsonian targets present in KEGG database. The results of this research identified 18 hypothetical proteins, with domains fused with ubiquitin domains and having homology with targets present in parkinsonian pathway.
Collapse
Affiliation(s)
- N Rathankar
- Department of Bioinformatics, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu 603 203, India
| | | | | | | |
Collapse
|
43
|
Xie X, Jin J, Mao Y. Evolutionary versatility of eukaryotic protein domains revealed by their bigram networks. BMC Evol Biol 2011; 11:242. [PMID: 21849086 PMCID: PMC3167776 DOI: 10.1186/1471-2148-11-242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 08/18/2011] [Indexed: 11/21/2022] Open
Abstract
Background Protein domains are globular structures of independently folded polypeptides that exert catalytic or binding activities. Their sequences are recognized as evolutionary units that, through genome recombination, constitute protein repertoires of linkage patterns. Via mutations, domains acquire modified functions that contribute to the fitness of cells and organisms. Recent studies have addressed the evolutionary selection that may have shaped the functions of individual domains and the emergence of particular domain combinations, which led to new cellular functions in multi-cellular animals. This study focuses on modeling domain linkage globally and investigates evolutionary implications that may be revealed by novel computational analysis. Results A survey of 77 completely sequenced eukaryotic genomes implies a potential hierarchical and modular organization of biological functions in most living organisms. Domains in a genome or multiple genomes are modeled as a network of hetero-duplex covalent linkages, termed bigrams. A novel computational technique is introduced to decompose such networks, whereby the notion of domain "networking versatility" is derived and measured. The most and least "versatile" domains (termed "core domains" and "peripheral domains" respectively) are examined both computationally via sequence conservation measures and experimentally using selected domains. Our study suggests that such a versatility measure extracted from the bigram networks correlates with the adaptivity of domains during evolution, where the network core domains are highly adaptive, significantly contrasting the network peripheral domains. Conclusions Domain recombination has played a major part in the evolution of eukaryotes attributing to genome complexity. From a system point of view, as the results of selection and constant refinement, networks of domain linkage are structured in a hierarchical modular fashion. Domains with high degree of networking versatility appear to be evolutionary adaptive, potentially through functional innovations. Domain bigram networks are informative as a model of biological functions. The networking versatility indices extracted from such networks for individual domains reflect the strength of evolutionary selection that the domains have experienced.
Collapse
Affiliation(s)
- Xueying Xie
- Research Center for Learning Science, Southeast University, Sipai Lou 2, Nanjing 210096 China.
| | | | | |
Collapse
|
44
|
Reassessing domain architecture evolution of metazoan proteins: major impact of gene prediction errors. Genes (Basel) 2011; 2:449-501. [PMID: 24710207 PMCID: PMC3927609 DOI: 10.3390/genes2030449] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 06/14/2011] [Accepted: 06/20/2011] [Indexed: 11/17/2022] Open
Abstract
In view of the fact that appearance of novel protein domain architectures (DA) is closely associated with biological innovations, there is a growing interest in the genome-scale reconstruction of the evolutionary history of the domain architectures of multidomain proteins. In such analyses, however, it is usually ignored that a significant proportion of Metazoan sequences analyzed is mispredicted and that this may seriously affect the validity of the conclusions. To estimate the contribution of errors in gene prediction to differences in DA of predicted proteins, we have used the high quality manually curated UniProtKB/Swiss-Prot database as a reference. For genome-scale analysis of domain architectures of predicted proteins we focused on RefSeq, EnsEMBL and NCBI's GNOMON predicted sequences of Metazoan species with completely sequenced genomes. Comparison of the DA of UniProtKB/Swiss-Prot sequences of worm, fly, zebrafish, frog, chick, mouse, rat and orangutan with those of human Swiss-Prot entries have identified relatively few cases where orthologs had different DA, although the percentage with different DA increased with evolutionary distance. In contrast with this, comparison of the DA of human, orangutan, rat, mouse, chicken, frog, zebrafish, worm and fly RefSeq, EnsEMBL and NCBI's GNOMON predicted protein sequences with those of the corresponding/orthologous human Swiss-Prot entries identified a significantly higher proportion of domain architecture differences than in the case of the comparison of Swiss-Prot entries. Analysis of RefSeq, EnsEMBL and NCBI's GNOMON predicted protein sequences with DAs different from those of their Swiss-Prot orthologs confirmed that the higher rate of domain architecture differences is due to errors in gene prediction, the majority of which could be corrected with our FixPred protocol. We have also demonstrated that contamination of databases with incomplete, abnormal or mispredicted sequences introduces a bias in DA differences in as much as it increases the proportion of terminal over internal DA differences. Here we have shown that in the case of RefSeq, EnsEMBL and NCBI's GNOMON predicted protein sequences of Metazoan species, the contribution of gene prediction errors to domain architecture differences of orthologs is comparable to or greater than those due to true gene rearrangements. We have also demonstrated that domain architecture comparison may serve as a useful tool for the quality control of gene predictions and may thus guide the correction of sequence errors. Our findings caution that earlier genome-scale studies based on comparison of predicted (frequently mispredicted) protein sequences may have led to some erroneous conclusions about the evolution of novel domain architectures of multidomain proteins. A reassessment of the DA evolution of orthologous and paralogous proteins is presented in an accompanying paper [1].
Collapse
|
45
|
Kim KM, Caetano-Anollés G. The proteomic complexity and rise of the primordial ancestor of diversified life. BMC Evol Biol 2011; 11:140. [PMID: 21612591 PMCID: PMC3123224 DOI: 10.1186/1471-2148-11-140] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/25/2011] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The last universal common ancestor represents the primordial cellular organism from which diversified life was derived. This urancestor accumulated genetic information before the rise of organismal lineages and is considered to be either a simple 'progenote' organism with a rudimentary translational apparatus or a more complex 'cenancestor' with almost all essential biological processes. Recent comparative genomic studies support the latter model and propose that the urancestor was similar to modern organisms in terms of gene content. However, most of these studies were based on molecular sequences, which are fast evolving and of limited value for deep evolutionary explorations. RESULTS Here we engage in a phylogenomic study of protein domain structure in the proteomes of 420 free-living fully sequenced organisms. Domains were defined at the highly conserved fold superfamily (FSF) level of structural classification and an iterative phylogenomic approach was used to reconstruct max_set and min_set FSF repertoires as upper and lower bounds of the urancestral proteome. While the functional make up of the urancestral sets was complex, they represent only 5-11% of the 1,420 FSFs of extant proteomes and their make up and reuse was at least 5 and 3 times smaller than proteomes of free-living organisms, repectively. Trees of proteomes reconstructed directly from FSFs or from molecular functions, which included the max_set and min_set as articial taxa, showed that urancestors were always placed at their base and rooted the tree of life in Archaea. Finally, a molecular clock of FSFs suggests the min_set reflects urancestral genetic make up more reliably and confirms diversified life emerged about 2.9 billion years ago during the start of planet oxygenation. CONCLUSIONS The minimum urancestral FSF set reveals the urancestor had advanced metabolic capabilities, was especially rich in nucleotide metabolism enzymes, had pathways for the biosynthesis of membrane sn1,2 glycerol ester and ether lipids, and had crucial elements of translation, including a primordial ribosome with protein synthesis capabilities. It lacked however fundamental functions, including transcription, processes for extracellular communication, and enzymes for deoxyribonucleotide synthesis. Proteomic history reveals the urancestor is closer to a simple progenote organism but harbors a rather complex set of modern molecular functions.
Collapse
Affiliation(s)
- Kyung Mo Kim
- Evolutionary Bioinformatics Laboratory, Department of Crop Science, University of Illinois, Urbana, IL 61801, USA
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Korea
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Science, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
46
|
Proteome evolution and the metabolic origins of translation and cellular life. J Mol Evol 2010; 72:14-33. [PMID: 21082171 DOI: 10.1007/s00239-010-9400-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 10/25/2010] [Indexed: 12/27/2022]
Abstract
The origin of life has puzzled molecular scientists for over half a century. Yet fundamental questions remain unanswered, including which came first, the metabolic machinery or the encoding nucleic acids. In this study we take a protein-centric view and explore the ancestral origins of proteins. Protein domain structures in proteomes are highly conserved and embody molecular functions and interactions that are needed for cellular and organismal processes. Here we use domain structure to study the evolution of molecular function in the protein world. Timelines describing the age and function of protein domains at fold, fold superfamily, and fold family levels of structural complexity were derived from a structural phylogenomic census in hundreds of fully sequenced genomes. These timelines unfold congruent hourglass patterns in rates of appearance of domain structures and functions, functional diversity, and hierarchical complexity, and revealed a gradual build up of protein repertoires associated with metabolism, translation and DNA, in that order. The most ancient domain architectures were hydrolase enzymes and the first translation domains had catalytic functions for the aminoacylation and the molecular switch-driven transport of RNA. Remarkably, the most ancient domains had metabolic roles, did not interact with RNA, and preceded the gradual build-up of translation. In fact, the first translation domains had also a metabolic origin and were only later followed by specialized translation machinery. Our results explain how the generation of structure in the protein world and the concurrent crystallization of translation and diversified cellular life created further opportunities for proteomic diversification.
Collapse
|
47
|
Kim KM, Caetano-Anollés G. Emergence and evolution of modern molecular functions inferred from phylogenomic analysis of ontological data. Mol Biol Evol 2010; 27:1710-33. [PMID: 20418223 DOI: 10.1093/molbev/msq106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The biological processes that characterize the phenotypes of a living system are embodied in the function of molecules and hold the key to evolutionary history, delimiting natural selection and change. These processes and functions provide direct insight into the emergence, development, and organization of cellular life. However, detailed molecular functions make up a network-like hierarchy of relationships that tells little of evolutionary links between structure and function in biology. For example, Gene Ontology terms represent widely-used vocabularies of processes and functions with evolutionary relationships that are implicit but not defined. Here, we uncover patterns of global evolutionary history in ontological terms associated with the sequence of 38 genomes. These patterns unfold the metabolic origins of modern molecular functions and major biological transitions in evolution toward complex life. Phylogenies reveal the primordial appearance of hydrolases and transferases, with ATPase, GTPase, and helicase activities being the most ancient. This indicates that ancient catalysts were crucial for binding and transport, the emergence of nucleic acids and protein biopolymers, and the communication of primordial cells with the environment. Finally, the history of biological processes showed that cellular biopolymer metabolic processes preceded biopolymer biosynthesis and essential processes related to macromolecular formation, directly challenging the existence of an RNA world. Phylogenomic systematization of biological function takes the structure and function paradigm to a completely new level of abstraction, demonstrating a "metabolic first" origin of life. The approach uncovers patterns in the morphing of function that are unprecedented and necessary for systematic views in biology.
Collapse
Affiliation(s)
- Kyung Mo Kim
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, IL, USA
| | | |
Collapse
|
48
|
Sun FJ, Caetano-Anollés G. The ancient history of the structure of ribonuclease P and the early origins of Archaea. BMC Bioinformatics 2010; 11:153. [PMID: 20334683 PMCID: PMC2858038 DOI: 10.1186/1471-2105-11-153] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/24/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ribonuclease P is an ancient endonuclease that cleaves precursor tRNA and generally consists of a catalytic RNA subunit (RPR) and one or more proteins (RPPs). It represents an important macromolecular complex and model system that is universally distributed in life. Its putative origins have inspired fundamental hypotheses, including the proposal of an ancient RNA world. RESULTS To study the evolution of this complex, we constructed rooted phylogenetic trees of RPR molecules and substructures and estimated RPP age using a cladistic method that embeds structure directly into phylogenetic analysis. The general approach was used previously to study the evolution of tRNA, SINE RNA and 5S rRNA, the origins of metabolism, and the evolution and complexity of the protein world, and revealed here remarkable evolutionary patterns. Trees of molecules uncovered the tripartite nature of life and the early origin of archaeal RPRs. Trees of substructures showed molecules originated in stem P12 and were accessorized with a catalytic P1-P4 core structure before the first substructure was lost in Archaea. This core currently interacts with RPPs and ancient segments of the tRNA molecule. Finally, a census of protein domain structure in hundreds of genomes established RPPs appeared after the rise of metabolic enzymes at the onset of the protein world. CONCLUSIONS The study provides a detailed account of the history and early diversification of a fundamental ribonucleoprotein and offers further evidence in support of the existence of a tripartite organismal world that originated by the segregation of archaeal lineages from an ancient community of primordial organisms.
Collapse
Affiliation(s)
- Feng-Jie Sun
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun 130024, Jilin Province, PR China
- W.M. Keck Center for Comparative and Functional Genomics, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
49
|
Santarella-Mellwig R, Franke J, Jaedicke A, Gorjanacz M, Bauer U, Budd A, Mattaj IW, Devos DP. The compartmentalized bacteria of the planctomycetes-verrucomicrobia-chlamydiae superphylum have membrane coat-like proteins. PLoS Biol 2010; 8:e1000281. [PMID: 20087413 PMCID: PMC2799638 DOI: 10.1371/journal.pbio.1000281] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 12/08/2009] [Indexed: 02/06/2023] Open
Abstract
Compartmentalized bacteria have proteins that are structurally related to eukaryotic membrane coats, and one of these proteins localizes at the membrane of vesicles formed inside bacterial cells. The development of the endomembrane system was a major step in eukaryotic evolution. Membrane coats, which exhibit a unique arrangement of β-propeller and α-helical repeat domains, play key roles in shaping eukaryotic membranes. Such proteins are likely to have been present in the ancestral eukaryote but cannot be detected in prokaryotes using sequence-only searches. We have used a structure-based detection protocol to search all proteomes for proteins with this domain architecture. Apart from the eukaryotes, we identified this protein architecture only in the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) bacterial superphylum, many members of which share a compartmentalized cell plan. We determined that one such protein is partly localized at the membranes of vesicles formed inside the cells in the planctomycete Gemmata obscuriglobus. Our results demonstrate similarities between bacterial and eukaryotic compartmentalization machinery, suggesting that the bacterial PVC superphylum contributed significantly to eukaryogenesis. Despite decades of research, the origin of eukaryotic cells remains an unsolved issue. The endomembrane system defines the eukaryotic cell, and its origin is linked to that of eukaryotes. A search was conducted within all known sequences for proteins that are characteristic of the eukaryotic endomembrane system, using a combination of fold types that is uniquely found in the membrane coat proteins. Outside eukaryotes, such proteins were solely found in the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) bacterial superphylum. By immuno-electron microscopy, one of these bacterial proteins was found to localize adjacent to the membranes of vesicles found within the cells of one member of the PVC superphylum. Thus, there appear to be similarities between bacterial and eukaryotic compartmentalization systems, suggesting that the bacterial PVC superphylum may have contributed significantly to eukaryogenesis.
Collapse
Affiliation(s)
| | - Josef Franke
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, United States of America
| | | | | | - Ulrike Bauer
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Aidan Budd
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Iain W. Mattaj
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Damien P. Devos
- European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
50
|
Sun FJ, Caetano-Anollés G. The evolutionary history of the structure of 5S ribosomal RNA. J Mol Evol 2009; 69:430-43. [PMID: 19639237 DOI: 10.1007/s00239-009-9264-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Accepted: 07/03/2009] [Indexed: 02/05/2023]
Abstract
5S rRNA is the smallest nucleic acid component of the large ribosomal subunit, contributing to ribosomal assembly, stability, and function. Despite being a model for the study of RNA structure and RNA-protein interactions, the evolution of this universally conserved molecule remains unclear. Here, we explore the history of the three-domain structure of 5S rRNA using phylogenetic trees that are reconstructed directly from molecular structure. A total of 46 structural characters describing the geometry of 666 5S rRNAs were used to derive intrinsically rooted trees of molecules and molecular substructures. Trees of molecules revealed the tripartite nature of life. In these trees, superkingdom Archaea formed a paraphyletic basal group, while Bacteria and Eukarya were monophyletic and derived. Trees of molecular substructures supported an origin of the molecule in a segment that is homologous to helix I (alpha domain), its initial enhancement with helix III (beta domain), and the early formation of the three-domain structure typical of modern 5S rRNA in Archaea. The delayed formation of the branched structure in Bacteria and Eukarya lends further support to the archaeal rooting of the tree of life. Remarkably, the evolution of molecular interactions between 5S rRNA and associated ribosomal proteins inferred from a census of domain structure in hundreds of genomes established a tight relationship between the age of 5S rRNA helices and the age of ribosomal proteins. Results suggest 5S rRNA originated relatively quickly but quite late in evolution, at a time when primordial metabolic enzymes and translation machinery were already in place. The molecule therefore represents a late evolutionary addition to the ribosomal ensemble that occurred prior to the early diversification of Archaea.
Collapse
Affiliation(s)
- Feng-Jie Sun
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 332 National Soybean Research Center, 1101 West Peabody Drive, Urbana, IL 61801, USA
| | | |
Collapse
|