1
|
Chan PP, Lin BY, Mak AJ, Lowe TM. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res 2021; 49:9077-9096. [PMID: 34417604 PMCID: PMC8450103 DOI: 10.1093/nar/gkab688] [Citation(s) in RCA: 576] [Impact Index Per Article: 192.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
tRNAscan-SE has been widely used for transfer RNA (tRNA) gene prediction for over twenty years, developed just as the first genomes were decoded. With the massive increase in quantity and phylogenetic diversity of genomes, the accurate detection and functional prediction of tRNAs has become more challenging. Utilizing a vastly larger training set, we created nearly one hundred specialized isotype- and clade-specific models, greatly improving tRNAscan-SE’s ability to identify and classify both typical and atypical tRNAs. We employ a new comparative multi-model strategy where predicted tRNAs are scored against a full set of isotype-specific covariance models, allowing functional prediction based on both the anticodon and the highest-scoring isotype model. Comparative model scoring has also enhanced the program's ability to detect tRNA-derived SINEs and other likely pseudogenes. For the first time, tRNAscan-SE also includes fast and highly accurate detection of mitochondrial tRNAs using newly developed models. Overall, tRNA detection sensitivity and specificity is improved for all isotypes, particularly those utilizing specialized models for selenocysteine and the three subtypes of tRNA genes encoding a CAU anticodon. These enhancements will provide researchers with more accurate and detailed tRNA annotation for a wider variety of tRNAs, and may direct attention to tRNAs with novel traits.
Collapse
Affiliation(s)
- Patricia P Chan
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Brian Y Lin
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Allysia J Mak
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Todd M Lowe
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
2
|
Grigoriev A. Transfer RNA and Origins of RNA Interference. Front Mol Biosci 2021; 8:708984. [PMID: 34368233 PMCID: PMC8343393 DOI: 10.3389/fmolb.2021.708984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/08/2021] [Indexed: 01/21/2023] Open
Affiliation(s)
- Andrey Grigoriev
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NY, Uinted States
| |
Collapse
|
3
|
Bowman JC, Petrov AS, Frenkel-Pinter M, Penev PI, Williams LD. Root of the Tree: The Significance, Evolution, and Origins of the Ribosome. Chem Rev 2020; 120:4848-4878. [PMID: 32374986 DOI: 10.1021/acs.chemrev.9b00742] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ribosome is an ancient molecular fossil that provides a telescope to the origins of life. Made from RNA and protein, the ribosome translates mRNA to coded protein in all living systems. Universality, economy, centrality and antiquity are ingrained in translation. The translation machinery dominates the set of genes that are shared as orthologues across the tree of life. The lineage of the translation system defines the universal tree of life. The function of a ribosome is to build ribosomes; to accomplish this task, ribosomes make ribosomal proteins, polymerases, enzymes, and signaling proteins. Every coded protein ever produced by life on Earth has passed through the exit tunnel, which is the birth canal of biology. During the root phase of the tree of life, before the last common ancestor of life (LUCA), exit tunnel evolution is dominant and unremitting. Protein folding coevolved with evolution of the exit tunnel. The ribosome shows that protein folding initiated with intrinsic disorder, supported through a short, primitive exit tunnel. Folding progressed to thermodynamically stable β-structures and then to kinetically trapped α-structures. The latter were enabled by a long, mature exit tunnel that partially offset the general thermodynamic tendency of all polypeptides to form β-sheets. RNA chaperoned the evolution of protein folding from the very beginning. The universal common core of the ribosome, with a mass of nearly 2 million Daltons, was finalized by LUCA. The ribosome entered stasis after LUCA and remained in that state for billions of years. Bacterial ribosomes never left stasis. Archaeal ribosomes have remained near stasis, except for the superphylum Asgard, which has accreted rRNA post LUCA. Eukaryotic ribosomes in some lineages appear to be logarithmically accreting rRNA over the last billion years. Ribosomal expansion in Asgard and Eukarya has been incremental and iterative, without substantial remodeling of pre-existing basal structures. The ribosome preserves information on its history.
Collapse
Affiliation(s)
- Jessica C Bowman
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anton S Petrov
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Moran Frenkel-Pinter
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Petar I Penev
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Loren Dean Williams
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Saito M, Sato A, Nagata S, Tamaki S, Tomita M, Suzuki H, Kanai A. Large-Scale Molecular Evolutionary Analysis Uncovers a Variety of Polynucleotide Kinase Clp1 Family Proteins in the Three Domains of Life. Genome Biol Evol 2020; 11:2713-2726. [PMID: 31513263 PMCID: PMC6777427 DOI: 10.1093/gbe/evz195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2019] [Indexed: 01/13/2023] Open
Abstract
Clp1, a polyribonucleotide 5′-hydroxyl kinase in eukaryotes, is involved in pretRNA splicing and mRNA 3′-end formation. Enzymes similar in amino acid sequence to Clp1, Nol9, and Grc3, are present in some eukaryotes and are involved in prerRNA processing. However, our knowledge of how these Clp1 family proteins evolved and diversified is limited. We conducted a large-scale molecular evolutionary analysis of the Clp1 family proteins in all living organisms for which protein sequences are available in public databases. The phylogenetic distribution and frequencies of the Clp1 family proteins were investigated in complete genomes of Bacteria, Archaea and Eukarya. In total, 3,557 Clp1 family proteins were detected in the three domains of life, Bacteria, Archaea, and Eukarya. Many were from Archaea and Eukarya, but a few were found in restricted, phylogenetically diverse bacterial species. The domain structures of the Clp1 family proteins also differed among the three domains of life. Although the proteins were, on average, 555 amino acids long (range, 196–2,728), 122 large proteins with >1,000 amino acids were detected in eukaryotes. These novel proteins contain the conserved Clp1 polynucleotide kinase domain and various other functional domains. Of these proteins, >80% were from Fungi or Protostomia. The polyribonucleotide kinase activity of Thermus scotoductus Clp1 (Ts-Clp1) was characterized experimentally. Ts-Clp1 preferentially phosphorylates single-stranded RNA oligonucleotides (Km value for ATP, 2.5 µM), or single-stranded DNA at higher enzyme concentrations. We propose a comprehensive assessment of the diversification of the Clp1 family proteins and the molecular evolution of their functional domains.
Collapse
Affiliation(s)
- Motofumi Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Asako Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Shohei Nagata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Satoshi Tamaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Haruo Suzuki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| |
Collapse
|
5
|
Rogers SO. Integrated evolution of ribosomal RNAs, introns, and intron nurseries. Genetica 2018; 147:103-119. [PMID: 30578455 DOI: 10.1007/s10709-018-0050-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022]
Abstract
The initial components of ribosomes first appeared more than 3.8 billion years ago during a time when many types of RNAs were evolving. While modern ribosomes are complex molecular machines consisting of rRNAs and proteins, they were assembled during early evolution by the association and joining of small functional RNA units. Introns may have provided the means to ligate many of these pieces together. All four classes of introns (group I, group II, spliceosomal, and archaeal) are present in many rRNA gene loci over a broad phylogenetic range. A survey of rRNA intron sequences across the three major life domains suggests that some of the classes of introns may have diverged from one another within rRNA gene loci. Analyses of rRNA sequences revealed self-splicing group I and group II introns are present in ancestral regions of the SSU (small subunit) and LSU (large subunit), whereas spliceosomal and archaeal introns appeared in sections of the rRNA that evolved later. Most classes of introns increased in number for approximately 1 billion years. However, their frequencies are low in the most recently evolved regions added to the SSU and LSU rRNAs. Furthermore, many of the introns appear to have been in the same locations for billions of years, suggesting an ancient origin for these sequences. In this Perspectives paper, I reviewed and analyzed rRNA intron sequences, locations, structural characteristics, and splicing mechanisms; and suggest that rRNA gene loci may have served as evolutionary nurseries for intron formation and diversification.
Collapse
Affiliation(s)
- Scott O Rogers
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.
| |
Collapse
|
6
|
Clouet-d'Orval B, Batista M, Bouvier M, Quentin Y, Fichant G, Marchfelder A, Maier LK. Insights into RNA-processing pathways and associated RNA-degrading enzymes in Archaea. FEMS Microbiol Rev 2018; 42:579-613. [PMID: 29684129 DOI: 10.1093/femsre/fuy016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
RNA-processing pathways are at the centre of regulation of gene expression. All RNA transcripts undergo multiple maturation steps in addition to covalent chemical modifications to become functional in the cell. This includes destroying unnecessary or defective cellular RNAs. In Archaea, information on mechanisms by which RNA species reach their mature forms and associated RNA-modifying enzymes are still fragmentary. To date, most archaeal actors and pathways have been proposed in light of information gathered from Bacteria and Eukarya. In this context, this review provides a state of the art overview of archaeal endoribonucleases and exoribonucleases that cleave and trim RNA species and also of the key small archaeal proteins that bind RNAs. Furthermore, synthetic up-to-date views of processing and biogenesis pathways of archaeal transfer and ribosomal RNAs as well as of maturation of stable small non-coding RNAs such as CRISPR RNAs, small C/D and H/ACA box guide RNAs, and other emerging classes of small RNAs are described. Finally, prospective post-transcriptional mechanisms to control archaeal messenger RNA quality and quantity are discussed.
Collapse
Affiliation(s)
- Béatrice Clouet-d'Orval
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Manon Batista
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Marie Bouvier
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Yves Quentin
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Gwennaele Fichant
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | | | | |
Collapse
|
7
|
St John E, Liu Y, Podar M, Stott MB, Meneghin J, Chen Z, Lagutin K, Mitchell K, Reysenbach AL. A new symbiotic nanoarchaeote (Candidatus Nanoclepta minutus) and its host (Zestosphaera tikiterensis gen. nov., sp. nov.) from a New Zealand hot spring. Syst Appl Microbiol 2018; 42:94-106. [PMID: 30195930 DOI: 10.1016/j.syapm.2018.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 01/22/2023]
Abstract
Three thermophilic Nanoarchaeota-Crenarchaeota symbiotic systems have been described. We obtained another stable anaerobic enrichment culture at 80°C, pH 6.0 from a New Zealand hot spring. The nanoarchaeote (Ncl-1) and its host (NZ3T) were isolated in co-culture and their genomes assembled. The small (∼200nm) flagellated cocci were often attached to larger cocci. Based on 16S rRNA gene similarity (88.4%) and average amino acid identity (52%), Ncl-1 is closely related to Candidatus Nanopusillus acidilobi. Their genomes both encode for archaeal flagella and partial glycolysis and gluconeogenesis pathways, but lack ATP synthase genes. Like Nanoarchaeum equitans, Ncl-1 has a CRISPR-Cas system. Ncl-1 also relies on its crenarchaeotal host for most of its biosynthetic needs. The host NZ3T was isolated and grows on proteinaceous substrates but not on sugars, alcohols, or fatty acids. NZ3T requires thiosulfate and grows best at 82°C, pH 6.0. NZ3T is most closely related to the Desulfurococcaceae, Ignisphaera aggregans (∼92% 16S rRNA gene sequence similarity, 45% AAI). Based on phylogenetic, physiological and genomic data, Ncl-1 and NZ3T represent novel genera in the Nanoarchaeota and the Desulfurococcaceae, respectively, with the proposed names Candidatus Nanoclepta minutus and Zestosphaera tikiterensis gen. nov., sp. nov., type strain NZ3T (=DSMZ 107634T=OCM 1213T).
Collapse
Affiliation(s)
- Emily St John
- Biology Department, Portland State University, Portland, OR 97201, USA
| | - Yitai Liu
- Biology Department, Portland State University, Portland, OR 97201, USA
| | - Mircea Podar
- Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Matthew B Stott
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Jennifer Meneghin
- Biology Department, Portland State University, Portland, OR 97201, USA
| | - Zhiqiang Chen
- Center for Electron Microscopy and Nanofabrication, Portland State University, Portland, OR 97201, USA
| | | | | | | |
Collapse
|
8
|
Tamaki S, Tomita M, Suzuki H, Kanai A. Systematic Analysis of the Binding Surfaces between tRNAs and Their Respective Aminoacyl tRNA Synthetase Based on Structural and Evolutionary Data. Front Genet 2018; 8:227. [PMID: 29358943 PMCID: PMC5766645 DOI: 10.3389/fgene.2017.00227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/15/2017] [Indexed: 12/23/2022] Open
Abstract
To determine the mechanism underlying the flow of genetic information, it is important to understand the relationship between a tRNA and its binding enzyme, a member of the aminoacyl-tRNA synthetase (aaRS) family. We have developed a novel method to project the interacting regions of tRNA-aaRS complexes, obtained from their three-dimensional structures, onto two-dimensional space. The interacting surface between each tRNA and its aaRS was successfully identified by determining these interactions with an atomic distance threshold of 3.3 Å. We analyzed their interactions, using 60 mainly bacterial and eukaryotic tRNA-aaRS complexes, and showed that the tRNA sequence regions that interacted most strongly with each aaRS are the anticodon loop and the CCA terminal region, followed by the D-stem. A sequence conservation analysis of the canonical tRNAs was conducted in 83 bacterial, 182 archaeal, and 150 eukaryotic species. Our results show that the three tRNA regions that interact with the aaRS and two additional loop regions (D-loop and TΨC-loop) known to be important for formation of the tRNA L-shaped structure are broadly conserved. We also found sequence conservations near the tRNA discriminator in the Bacteria and Archaea, and an enormous number of noncanonical tRNAs in the Eukaryotes. This is the first global view of tRNA evolution based on its structure and an unprecedented number of sequence data.
Collapse
Affiliation(s)
- Satoshi Tamaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Haruo Suzuki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| |
Collapse
|
9
|
Hamashima K, Tomita M, Kanai A. Expansion of Noncanonical V-Arm-Containing tRNAs in Eukaryotes. Mol Biol Evol 2015; 33:530-40. [DOI: 10.1093/molbev/msv253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
10
|
Plagens A, Daume M, Wiegel J, Randau L. Circularization restores signal recognition particle RNA functionality in Thermoproteus. eLife 2015; 4. [PMID: 26499493 PMCID: PMC4731332 DOI: 10.7554/elife.11623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/23/2015] [Indexed: 11/15/2022] Open
Abstract
Signal recognition particles (SRPs) are universal ribonucleoprotein complexes found in all three domains of life that direct the cellular traffic and secretion of proteins. These complexes consist of SRP proteins and a single, highly structured SRP RNA. Canonical SRP RNA genes have not been identified for some Thermoproteus species even though they contain SRP19 and SRP54 proteins. Here, we show that genome rearrangement events in Thermoproteus tenax created a permuted SRP RNA gene. The 5'- and 3'-termini of this SRP RNA are located close to a functionally important loop present in all known SRP RNAs. RNA-Seq analyses revealed that these termini are ligated together to generate circular SRP RNA molecules that can bind to SRP19 and SRP54. The circularization site is processed by the tRNA splicing endonuclease. This moonlighting activity of the tRNA splicing machinery permits the permutation of the SRP RNA and creates highly stable and functional circular RNA molecules. DOI:http://dx.doi.org/10.7554/eLife.11623.001 Cells make many proteins that are eventually released outside the cell or inserted into the cell’s membrane. As these proteins are still being made, they are captured by a “signal recognition particle” (or SRP); this molecular machine then guides the newly forming protein to the cell’s membrane. SRPs are found in all living organisms on Earth and contain several different proteins and a short RNA molecule. However, a few species belonging to the archaeal domain of life did not seem to contain an identifiable gene for the RNA component of the SRP. Now Plagens et al. have sought to solve the mystery of the “missing” component of this essential protein-targeting machine. This involved searching through the RNAs that are produced by an archaeon called Thermoproteus tenax, a single-celled microbe which grows in the absence of oxygen and at temperatures of up to 95°C. Plagens et al. discovered that the “missing” SRP RNA gene had not yet been identified because rearrangements in this archaeon’s genome had swapped the left and right portions of the SRP RNA gene. Further experiments revealed that the correct sequence order is restored in mature SRP RNA molecules by the two ends of the molecule being linked to form a circle. These RNA circles are made by the cellular machinery that normally removes the unneeded sections from other RNA molecules (called transfer RNAs). Circular RNA is much more stable at high temperatures and does not degrade easily, and Plagens et al. suggest that this particular arrangement is therefore especially advantageous for this species. Future work will now aim to work out which selective pressures favor the evolution of such fragmented RNAs. DOI:http://dx.doi.org/10.7554/eLife.11623.002
Collapse
Affiliation(s)
- André Plagens
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Michael Daume
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Julia Wiegel
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lennart Randau
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,LOEWE Center for Synthetic Microbiology, Synmikro, Marburg, Germany
| |
Collapse
|
11
|
Disrupted tRNA Genes and tRNA Fragments: A Perspective on tRNA Gene Evolution. Life (Basel) 2015; 5:321-31. [PMID: 25629271 PMCID: PMC4390854 DOI: 10.3390/life5010321] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/14/2015] [Accepted: 01/21/2015] [Indexed: 01/17/2023] Open
Abstract
Transfer RNAs (tRNAs) are small non-coding RNAs with lengths of approximately 70-100 nt. They are directly involved in protein synthesis by carrying amino acids to the ribosome. In this sense, tRNAs are key molecules that connect the RNA world and the protein world. Thus, study of the evolution of tRNA molecules may reveal the processes that led to the establishment of the central dogma: genetic information flows from DNA to RNA to protein. Thanks to the development of DNA sequencers in this century, we have determined a huge number of nucleotide sequences from complete genomes as well as from transcriptomes in many species. Recent analyses of these large data sets have shown that particular tRNA genes, especially in Archaea, are disrupted in unique ways: some tRNA genes contain multiple introns and some are split genes. Even tRNA molecules themselves are fragmented post-transcriptionally in many species. These fragmented small RNAs are known as tRNA-derived fragments (tRFs). In this review, I summarize the progress of research into the disrupted tRNA genes and the tRFs, and propose a possible model for the molecular evolution of tRNAs based on the concept of the combination of fragmented tRNA halves.
Collapse
|
12
|
Yoshihisa T. Handling tRNA introns, archaeal way and eukaryotic way. Front Genet 2014; 5:213. [PMID: 25071838 PMCID: PMC4090602 DOI: 10.3389/fgene.2014.00213] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/20/2014] [Indexed: 11/25/2022] Open
Abstract
Introns are found in various tRNA genes in all the three kingdoms of life. Especially, archaeal and eukaryotic genomes are good sources of tRNA introns that are removed by proteinaceous splicing machinery. Most intron-containing tRNA genes both in archaea and eukaryotes possess an intron at a so-called canonical position, one nucleotide 3′ to their anticodon, while recent bioinformatics have revealed unusual types of tRNA introns and their derivatives especially in archaeal genomes. Gain and loss of tRNA introns during various stages of evolution are obvious both in archaea and eukaryotes from analyses of comparative genomics. The splicing of tRNA molecules has been studied extensively from biochemical and cell biological points of view, and such analyses of eukaryotic systems provided interesting findings in the past years. Here, I summarize recent progresses in the analyses of tRNA introns and the splicing process, and try to clarify new and old questions to be solved in the next stages.
Collapse
Affiliation(s)
- Tohru Yoshihisa
- Graduate School of Life Science, University of Hyogo Ako-gun, Hyogo, Japan
| |
Collapse
|
13
|
Fujishima K, Kanai A. tRNA gene diversity in the three domains of life. Front Genet 2014; 5:142. [PMID: 24904642 PMCID: PMC4033280 DOI: 10.3389/fgene.2014.00142] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/28/2014] [Indexed: 11/29/2022] Open
Abstract
Transfer RNA (tRNA) is widely known for its key role in decoding mRNA into protein. Despite their necessity and relatively short nucleotide sequences, a large diversity of gene structures and RNA secondary structures of pre-tRNAs and mature tRNAs have recently been discovered in the three domains of life. Growing evidences of disrupted tRNA genes in the genomes of Archaea reveals unique gene structures such as, intron-containing tRNA, split tRNA, and permuted tRNA. Coding sequence for these tRNAs are either separated with introns, fragmented, or permuted at the genome level. Although evolutionary scenario behind the tRNA gene disruption is still unclear, diversity of tRNA structure seems to be co-evolved with their processing enzyme, so-called RNA splicing endonuclease. Metazoan mitochondrial tRNAs (mtRNAs) are known for their unique lack of either one or two arms from the typical tRNA cloverleaf structure, while still maintaining functionality. Recently identified nematode-specific V-arm containing tRNAs (nev-tRNAs) possess long variable arms that are specific to eukaryotic class II tRNASer and tRNALeu but also decode class I tRNA codons. Moreover, many tRNA-like sequences have been found in the genomes of different organisms and viruses. Thus, this review is aimed to cover the latest knowledge on tRNA gene diversity and further recapitulate the evolutionary and biological aspects that caused such uniqueness.
Collapse
Affiliation(s)
- Kosuke Fujishima
- NASA Ames Research Center Moffett Field, CA, USA ; Institute for Advanced Biosciences, Keio University Tsuruoka, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University Tsuruoka, Japan
| |
Collapse
|
14
|
Soma A. Circularly permuted tRNA genes: their expression and implications for their physiological relevance and development. Front Genet 2014; 5:63. [PMID: 24744771 PMCID: PMC3978253 DOI: 10.3389/fgene.2014.00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/12/2014] [Indexed: 12/02/2022] Open
Abstract
A number of genome analyses and searches using programs that focus on the RNA-specific bulge-helix-bulge (BHB) motif have uncovered a wide variety of disrupted tRNA genes. The results of these analyses have shown that genetic information encoding functional RNAs is described in the genome cryptically and is retrieved using various strategies. One such strategy is represented by circularly permuted tRNA genes, in which the sequences encoding the 5′-half and 3′-half of the specific tRNA are separated and inverted on the genome. Biochemical analyses have defined a processing pathway in which the termini of tRNA precursors (pre-tRNAs) are ligated to form a characteristic circular RNA intermediate, which is then cleaved at the acceptor-stem to generate the typical cloverleaf structure with functional termini. The sequences adjacent to the processing site located between the 3′-half and the 5′-half of pre-tRNAs potentially form a BHB motif, which is the dominant recognition site for the tRNA-intron splicing endonuclease, suggesting that circularization of pre-tRNAs depends on the splicing machinery. Some permuted tRNAs contain a BHB-mediated intron in their 5′- or 3′-half, meaning that removal of an intron, as well as swapping of the 5′- and 3′-halves, are required during maturation of their pre-tRNAs. To date, 34 permuted tRNA genes have been identified from six species of unicellular algae and one archaeon. Although their physiological significance and mechanism of development remain unclear, the splicing system of BHB motifs seems to have played a key role in the formation of permuted tRNA genes. In this review, current knowledge of circularly permuted tRNA genes is presented and some unanswered questions regarding these species are discussed.
Collapse
Affiliation(s)
- Akiko Soma
- Graduate School of Horticulture, Chiba University Matsudo, Japan
| |
Collapse
|
15
|
Seligmann H. Putative anticodons in mitochondrial tRNA sidearm loops: Pocketknife tRNAs? J Theor Biol 2013; 340:155-63. [PMID: 24012463 DOI: 10.1016/j.jtbi.2013.08.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/15/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
The hypothesis that tRNA sidearm loops bear anticodons assumes crossovers between anticodon and sidearms, or translation by expressed aminoacylated tRNA halves forming single stem-loops. Only the latter might require ribosomal adaptations. Drosophila mitochondrial codon usages coevolve with sidearm numbers bearing matching putative anticodons (comparing different codon families in one genome, macroevolution) and when comparing different genomes for single codon families (microevolution). Coevolution between Drosophila and yeast mitochondrial antisense tRNAs and codon usages partly confounds microevolutionary patterns for putative sidearm anticodons. Some tRNA sidearm loops have more than seven nucleotides, putative expanded anticodons potentially matching quadruplet codons (tetracodons, codons expanded by a fourth silent position, forming tetragenes (predicted by alignment analyses of Drosophila mitochondrial genomes)). Tetracodon numbers coevolve with expanded tRNA sidearm loops. Sidearm coevolution with amino acid usages and tetragenes occurs for putative anticodons in 5' and 3' sidearms loops (D and TΨC loops, respectively), are stronger for the D-loop. Results slightly favour isolated stem-loops upon crossover hypotheses. An alternative hypothesis, that patterns observed for sidearm 'anticodons' do not imply translational activity, but recognition signals for tRNA synthetases that aminoacylate tRNAs, is incompatible with tetracodon/tetra-anticodon coevolution. Hence analyses strengthen translational hypotheses for tRNA sidearm anticodons, tetragenes, and antisense tRNAs.
Collapse
Affiliation(s)
- Hervé Seligmann
- National Natural History Museum Collections, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel; Department of Life Sciences, Ben Gurion University, 84105 Beer Sheva, Israel.
| |
Collapse
|
16
|
Seligmann H. Pocketknife tRNA hypothesis: Anticodons in mammal mitochondrial tRNA side-arm loops translate proteins? Biosystems 2013; 113:165-76. [DOI: 10.1016/j.biosystems.2013.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 12/11/2022]
|
17
|
Hirata A, Fujishima K, Yamagami R, Kawamura T, Banfield JF, Kanai A, Hori H. X-ray structure of the fourth type of archaeal tRNA splicing endonuclease: insights into the evolution of a novel three-unit composition and a unique loop involved in broad substrate specificity. Nucleic Acids Res 2012; 40:10554-66. [PMID: 22941657 PMCID: PMC3488258 DOI: 10.1093/nar/gks826] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cleavage of introns from precursor transfer RNAs (tRNAs) by tRNA splicing endonuclease (EndA) is essential for tRNA maturation in Archaea and Eukarya. In the past, archaeal EndAs were classified into three types (α′2, α4 and α2β2) according to subunit composition. Recently, we have identified a fourth type of archaeal EndA from an uncultivated archaeon Candidatus Micrarchaeum acidiphilum, referred to as ARMAN-2, which is deeply branched within Euryarchaea. The ARMAN-2 EndA forms an ε2 homodimer and has broad substrate specificity like the α2β2 type EndAs found in Crenarchaea and Nanoarchaea. However, the precise architecture of ARMAN-2 EndA was unknown. Here, we report the crystal structure of the ε2 homodimer of ARMAN-2 EndA. The structure reveals that the ε protomer is separated into three novel units (αN, α and βC) fused by two distinct linkers, although the overall structure of ARMAN-2 EndA is similar to those of the other three types of archaeal EndAs. Structural comparison and mutational analyses reveal that an ARMAN-2 type-specific loop (ASL) is involved in the broad substrate specificity and that K161 in the ASL functions as the RNA recognition site. These findings suggest that the broad substrate specificities of ε2 and α2β2 EndAs were separately acquired through different evolutionary processes.
Collapse
Affiliation(s)
- Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Popow J, Schleiffer A, Martinez J. Diversity and roles of (t)RNA ligases. Cell Mol Life Sci 2012; 69:2657-70. [PMID: 22426497 PMCID: PMC3400036 DOI: 10.1007/s00018-012-0944-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/01/2012] [Accepted: 02/13/2012] [Indexed: 12/29/2022]
Abstract
The discovery of discontiguous tRNA genes triggered studies dissecting the process of tRNA splicing. As a result, we have gained detailed mechanistic knowledge on enzymatic removal of tRNA introns catalyzed by endonuclease and ligase proteins. In addition to the elucidation of tRNA processing, these studies facilitated the discovery of additional functions of RNA ligases such as RNA repair and non-conventional mRNA splicing events. Recently, the identification of a new type of RNA ligases in bacteria, archaea, and humans closed a long-standing gap in the field of tRNA processing. This review summarizes past and recent findings in the field of tRNA splicing with a focus on RNA ligation as it preferentially occurs in archaea and humans. In addition to providing an integrated view of the types and phyletic distribution of RNA ligase proteins known to date, this survey also aims at highlighting known and potential accessory biological functions of RNA ligases.
Collapse
Affiliation(s)
- Johannes Popow
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohrgasse 3, 1030 Vienna, Austria
| | | | | |
Collapse
|
19
|
Sugahara J, Fujishima K, Nunoura T, Takaki Y, Takami H, Takai K, Tomita M, Kanai A. Genomic heterogeneity in a natural archaeal population suggests a model of tRNA gene disruption. PLoS One 2012; 7:e32504. [PMID: 22403667 PMCID: PMC3293823 DOI: 10.1371/journal.pone.0032504] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/31/2012] [Indexed: 11/27/2022] Open
Abstract
Understanding the mechanistic basis of the disruption of tRNA genes, as manifested in the intron-containing and split tRNAs found in Archaea, will provide considerable insight into the evolution of the tRNA molecule. However, the evolutionary processes underlying these disruptions have not yet been identified. Previously, a composite genome of the deep-branching archaeon Caldiarchaeum subterraneum was reconstructed from a community genomic library prepared from a C. subterraneum–dominated microbial mat. Here, exploration of tRNA genes from the library reveals that there are at least three types of heterogeneity at the tRNAThr(GGU) gene locus in the Caldiarchaeum population. All three involve intronic gain and splitting of the tRNA gene. Of two fosmid clones found that encode tRNAThr(GGU), one (tRNAThr-I) contains a single intron, whereas another (tRNAThr-II) contains two introns. Notably, in the clone possessing tRNAThr-II, a 5′ fragment of the tRNAThr-I (tRNAThr-F) gene was observed 1.8-kb upstream of tRNAThr-II. The composite genome contains both tRNAThr-II and tRNAThr-F, although the loci are >500 kb apart. Given that the 1.8-kb sequence flanked by tRNAThr-F and tRNAThr-II is predicted to encode a DNA recombinase and occurs in six regions of the composite genome, it may be a transposable element. Furthermore, its dinucleotide composition is most similar to that of the pNOB8-type plasmid, which is known to integrate into archaeal tRNA genes. Based on these results, we propose that the gain of the tRNA intron and the scattering of the tRNA fragment occurred within a short time frame via the integration and recombination of a mobile genetic element.
Collapse
Affiliation(s)
- Junichi Sugahara
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Kosuke Fujishima
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Takuro Nunoura
- Subsurface Geobiology & Advanced Research Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine–Earth Science & Technology, Yokosuka, Japan
| | - Yoshihiro Takaki
- Microbial Genome Research Group, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine–Earth Science & Technology, Yokosuka, Japan
| | - Hideto Takami
- Microbial Genome Research Group, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine–Earth Science & Technology, Yokosuka, Japan
| | - Ken Takai
- Subsurface Geobiology & Advanced Research Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine–Earth Science & Technology, Yokosuka, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
- * E-mail:
| |
Collapse
|
20
|
Croll D, McDonald BA. Intron gains and losses in the evolution of Fusarium and Cryptococcus fungi. Genome Biol Evol 2012; 4:1148-61. [PMID: 23054310 PMCID: PMC3514964 DOI: 10.1093/gbe/evs091] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2012] [Indexed: 12/15/2022] Open
Abstract
The presence of spliceosomal introns in eukaryotic genes poses a major puzzle for the study of genome evolution. Intron densities vary enormously among distant lineages. However, the mechanisms driving intron gains are poorly understood and very few intron gains and losses have been documented over short evolutionary time spans. Fungi emerged recently as excellent models to study intron evolution and "reverse splicing" was found to be a major driver of recent intron gains in a clade of ascomycete fungi. We screened a total of 38 genomes from two fungal clades important in medicine and agriculture to identify intron gains and losses both within and between species. We detected 86 and 198 variable intron positions in the Cryptococcus and Fusarium clades, respectively. Some genes underwent extensive changes in their exon-intron structure, with up to six variable intron positions per gene. We identified a very recently gained intron in a group of tomato-infecting strains belonging to the F. oxysporum species complex. In the human pathogen C. gattii, we found recent intron losses in subtypes of the species. The two studied fungal clades provided evidence for extensive changes in their exon-intron structure within and among closely related species. We show that both intronization of previously coding DNA and insertion of exogenous DNA are the major drivers of intron gains.
Collapse
Affiliation(s)
- Daniel Croll
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Switzerland.
| | | |
Collapse
|
21
|
Chan PP, Holmes AD, Smith AM, Tran D, Lowe TM. The UCSC Archaeal Genome Browser: 2012 update. Nucleic Acids Res 2011; 40:D646-52. [PMID: 22080555 PMCID: PMC3245099 DOI: 10.1093/nar/gkr990] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The UCSC Archaeal Genome Browser (http://archaea.ucsc.edu) offers a graphical web-based resource for exploration and discovery within archaeal and other selected microbial genomes. By bringing together existing gene annotations, gene expression data, multiple-genome alignments, pre-computed sequence comparisons and other specialized analysis tracks, the genome browser is a powerful aggregator of varied genomic information. The genome browser environment maintains the current look-and-feel of the vertebrate UCSC Genome Browser, but also integrates archaeal and bacterial-specific tracks with a few graphic display enhancements. The browser currently contains 115 archaeal genomes, plus 31 genomes of viruses known to infect archaea. Some of the recently developed or enhanced tracks visualize data from published high-throughput RNA-sequencing studies, the NCBI Conserved Domain Database, sequences from pre-genome sequencing studies, predicted gene boundaries from three different protein gene prediction algorithms, tRNAscan-SE gene predictions with RNA secondary structures and CRISPR locus predictions. We have also developed a companion resource, the Archaeal COG Browser, to provide better search and display of arCOG gene function classifications, including their phylogenetic distribution among available archaeal genomes.
Collapse
Affiliation(s)
- Patricia P Chan
- Department of Biomolecular Engineering, University of California, Santa Cruz, 1156 High Street, SOE-2, Santa Cruz, CA 95064, USA
| | | | | | | | | |
Collapse
|
22
|
Fujishima K, Sugahara J, Miller CS, Baker BJ, Di Giulio M, Takesue K, Sato A, Tomita M, Banfield JF, Kanai A. A novel three-unit tRNA splicing endonuclease found in ultrasmall Archaea possesses broad substrate specificity. Nucleic Acids Res 2011; 39:9695-704. [PMID: 21880595 PMCID: PMC3239211 DOI: 10.1093/nar/gkr692] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
tRNA splicing endonucleases, essential enzymes found in Archaea and Eukaryotes, are involved in the processing of pre-tRNA molecules. In Archaea, three types of splicing endonuclease [homotetrameric: α4, homodimeric: α2, and heterotetrameric: (αβ)2] have been identified, each representing different substrate specificity during the tRNA intron cleavage. Here, we discovered a fourth type of archaeal tRNA splicing endonuclease (ε2) in the genome of the acidophilic archaeon Candidatus Micrarchaeum acidiphilum, referred to as ARMAN-2 and its closely related species, ARMAN-1. The enzyme consists of two duplicated catalytic units and one structural unit encoded on a single gene, representing a novel three-unit architecture. Homodimeric formation was confirmed by cross-linking assay, and site-directed mutagenesis determined that the conserved L10-pocket interaction between catalytic and structural unit is necessary for the assembly. A tRNA splicing assay reveal that ε2 endonuclease cleaves both canonical and non-canonical bulge–helix–bulge motifs, similar to that of (αβ)2 endonuclease. Unlike other ARMAN and Euryarchaeota, tRNAs found in ARMAN-2 are highly disrupted by introns at various positions, which again resemble the properties of archaeal species with (αβ)2 endonuclease. Thus, the discovery of ε2 endonuclease in an archaeon deeply branched within Euryarchaeota represents a new example of the coevolution of tRNA and their processing enzymes.
Collapse
Affiliation(s)
- Kosuke Fujishima
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chan PP, Cozen AE, Lowe TM. Discovery of permuted and recently split transfer RNAs in Archaea. Genome Biol 2011; 12:R38. [PMID: 21489296 PMCID: PMC3218864 DOI: 10.1186/gb-2011-12-4-r38] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/30/2011] [Accepted: 04/13/2011] [Indexed: 01/19/2023] Open
Abstract
Background As in eukaryotes, precursor transfer RNAs in Archaea often contain introns that are removed in tRNA maturation. Two unrelated archaeal species display unique pre-tRNA processing complexity in the form of split tRNA genes, in which two to three segments of tRNAs are transcribed from different loci, then trans-spliced to form a mature tRNA. Another rare type of pre-tRNA, found only in eukaryotic algae, is permuted, where the 3' half is encoded upstream of the 5' half, and must be processed to be functional. Results Using an improved version of the gene-finding program tRNAscan-SE, comparative analyses and experimental verifications, we have now identified four novel trans-spliced tRNA genes, each in a different species of the Desulfurococcales branch of the Archaea: tRNAAsp(GUC) in Aeropyrum pernix and Thermosphaera aggregans, and tRNALys(CUU) in Staphylothermus hellenicus and Staphylothermus marinus. Each of these includes features surprisingly similar to previously studied split tRNAs, yet comparative genomic context analysis and phylogenetic distribution suggest several independent, relatively recent splitting events. Additionally, we identified the first examples of permuted tRNA genes in Archaea: tRNAiMet(CAU) and tRNATyr(GUA) in Thermofilum pendens, which appear to be permuted in the same arrangement seen previously in red alga. Conclusions Our findings illustrate that split tRNAs are sporadically spread across a major branch of the Archaea, and that permuted tRNAs are a new shared characteristic between archaeal and eukaryotic species. The split tRNA discoveries also provide new clues to their evolutionary history, supporting hypotheses for recent acquisition via viral or other mobile elements.
Collapse
Affiliation(s)
- Patricia P Chan
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | | | | |
Collapse
|
24
|
Rodin AS, Szathmáry E, Rodin SN. On origin of genetic code and tRNA before translation. Biol Direct 2011; 6:14. [PMID: 21342520 PMCID: PMC3050877 DOI: 10.1186/1745-6150-6-14] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 02/22/2011] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Synthesis of proteins is based on the genetic code - a nearly universal assignment of codons to amino acids (aas). A major challenge to the understanding of the origins of this assignment is the archetypal "key-lock vs. frozen accident" dilemma. Here we re-examine this dilemma in light of 1) the fundamental veto on "foresight evolution", 2) modular structures of tRNAs and aminoacyl-tRNA synthetases, and 3) the updated library of aa-binding sites in RNA aptamers successfully selected in vitro for eight amino acids. RESULTS The aa-binding sites of arginine, isoleucine and tyrosine contain both their cognate triplets, anticodons and codons. We have noticed that these cases might be associated with palindrome-dinucleotides. For example, one-base shift to the left brings arginine codons CGN, with CG at 1-2 positions, to the respective anticodons NCG, with CG at 2-3 positions. Formally, the concomitant presence of codons and anticodons is also expected in the reverse situation, with codons containing palindrome-dinucleotides at their 2-3 positions, and anticodons exhibiting them at 1-2 positions. A closer analysis reveals that, surprisingly, RNA binding sites for Arg, Ile and Tyr "prefer" (exactly as in the actual genetic code) the anticodon(2-3)/codon(1-2) tetramers to their anticodon(1-2)/codon(2-3) counterparts, despite the seemingly perfect symmetry of the latter. However, since in vitro selection of aa-specific RNA aptamers apparently had nothing to do with translation, this striking preference provides a new strong support to the notion of the genetic code emerging before translation, in response to catalytic (and possibly other) needs of ancient RNA life. Consistently with the pre-translation origin of the code, we propose here a new model of tRNA origin by the gradual, Fibonacci process-like, elongation of a tRNA molecule from a primordial coding triplet and 5'DCCA3' quadruplet (D is a base-determinator) to the eventual 76 base-long cloverleaf-shaped molecule. CONCLUSION Taken together, our findings necessarily imply that primordial tRNAs, tRNA aminoacylating ribozymes, and (later) the translation machinery in general have been co-evolving to ''fit'' the (likely already defined) genetic code, rather than the opposite way around. Coding triplets in this primal pre-translational code were likely similar to the anticodons, with second and third nucleotides being more important than the less specific first one. Later, when the code was expanding in co-evolution with the translation apparatus, the importance of 2-3 nucleotides of coding triplets "transferred" to the 1-2 nucleotides of their complements, thus distinguishing anticodons from codons. This evolutionary primacy of anticodons in genetic coding makes the hypothesis of primal stereo-chemical affinity between amino acids and cognate triplets, the hypothesis of coding coenzyme handles for amino acids, the hypothesis of tRNA-like genomic 3' tags suggesting that tRNAs originated in replication, and the hypothesis of ancient ribozymes-mediated operational code of tRNA aminoacylation not mutually contradicting but rather co-existing in harmony.
Collapse
Affiliation(s)
- Andrei S Rodin
- Human Genetics Center, School of Public Health, University of Texas, Houston, TX 77225, USA
- Collegium Budapest (Institute for Advanced Study), Szentháromság u. 2, H-1014 Budapest, Hungary
| | - Eörs Szathmáry
- Collegium Budapest (Institute for Advanced Study), Szentháromság u. 2, H-1014 Budapest, Hungary
- Parmenides Center for the Study of Thinking, Kirchplatz 1, D-82049 Munich/Pullach, Germany
- Institute of Biology, Eötvös University, 1c Pázmány Péter sétány, H-1117 Budapest, Hungary
| | - Sergei N Rodin
- Collegium Budapest (Institute for Advanced Study), Szentháromság u. 2, H-1014 Budapest, Hungary
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|