1
|
Zou Y, Peng L, Weng S, Liang D, Fan Z, Wu Z, Tan X, Jiao S, You F. Characterization and expression of androgen receptors in olive flounder. Gene 2019; 683:184-194. [PMID: 30315925 DOI: 10.1016/j.gene.2018.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/03/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023]
Abstract
Androgens are critical hormones that regulate sex differentiation, sexual maturation, and spermatogenesis in vertebrates, which is mainly mediated by androgen receptors (ARs). Reports on transcript variants of ar (AR encoding gene) in human are almost always associated with cancers and androgen insensitivity syndrome. However, the knowledge of ar variants in teleosts is scarce. In this study, arβ and two transcript variants of arα (arα1 and arα2) in olive flounder (Paralichthys olivaceus) were cloned and analyzed. Their expression patterns were investigated in 16 adult female and male tissues by RT-PCR, respectively. arα1 was expressed in the majority of tissues excluding male liver, medulla oblongata and female cerebellum, with higher levels in male gonad, kidney, head kidney, intestine, stomach, spleen, heart and gill than in female. arα2 had similar expression patterns as arα1, with lower levels in general. arβ was also widely expressed in various tissues excluding male spleen, female spleen and gill, with higher levels in male gonad, kidney, head kidney, intestine and lower levels in hypothalamus than in female. Compared with arβ, much lower expression levels of arα1 and arα2 were detected in different brain areas. The real-time quantitative PCR (qPCR) results showed that the total arα expression level was relatively higher during olive flounder gonadal differentiation and before the onset of testis differentiation, whereas arβ was expressed significantly higher during male gonadal differentiation period than female gonadal differentiation period. The in vitro transient transfection assays showed that ARα1, ARα2 and ARβ could all suppress the activity of cyp19a (p450arom aromatase gene) promoter, and the inhibitory effect of ARα1 was dose dependent. Our results imply that arα1, arα2 and arβ are sex-related genes and they might play important roles in gonadal differentiation in flounder.
Collapse
Affiliation(s)
- Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
| | - Limin Peng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Shenda Weng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dongdong Liang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhaofei Fan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
| | - Xungang Tan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
| | - Shuang Jiao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China.
| |
Collapse
|
2
|
Leung MCK, Procter AC, Goldstone JV, Foox J, DeSalle R, Mattingly CJ, Siddall ME, Timme-Laragy AR. Applying evolutionary genetics to developmental toxicology and risk assessment. Reprod Toxicol 2017; 69:174-186. [PMID: 28267574 PMCID: PMC5829367 DOI: 10.1016/j.reprotox.2017.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 12/26/2022]
Abstract
Evolutionary thinking continues to challenge our views on health and disease. Yet, there is a communication gap between evolutionary biologists and toxicologists in recognizing the connections among developmental pathways, high-throughput screening, and birth defects in humans. To increase our capability in identifying potential developmental toxicants in humans, we propose to apply evolutionary genetics to improve the experimental design and data interpretation with various in vitro and whole-organism models. We review five molecular systems of stress response and update 18 consensual cell-cell signaling pathways that are the hallmark for early development, organogenesis, and differentiation; and revisit the principles of teratology in light of recent advances in high-throughput screening, big data techniques, and systems toxicology. Multiscale systems modeling plays an integral role in the evolutionary approach to cross-species extrapolation. Phylogenetic analysis and comparative bioinformatics are both valuable tools in identifying and validating the molecular initiating events that account for adverse developmental outcomes in humans. The discordance of susceptibility between test species and humans (ontogeny) reflects their differences in evolutionary history (phylogeny). This synthesis not only can lead to novel applications in developmental toxicity and risk assessment, but also can pave the way for applying an evo-devo perspective to the study of developmental origins of health and disease.
Collapse
Affiliation(s)
- Maxwell C K Leung
- Nicholas School of the Environment, Duke University, Durham, NC, United States.
| | - Andrew C Procter
- Institute for Advanced Analytics, North Carolina State University, Raleigh, NC, United States
| | - Jared V Goldstone
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Jonathan Foox
- Department of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States
| | - Robert DeSalle
- Department of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States
| | - Carolyn J Mattingly
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States
| | - Mark E Siddall
- Department of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
3
|
Schwarz TI, Katsiadaki I, Maskrey BH, Scott AP. Mussels (Mytilus spp.) display an ability for rapid and high capacity uptake of the vertebrate steroid, estradiol-17β from water. J Steroid Biochem Mol Biol 2017; 165:407-420. [PMID: 27568213 DOI: 10.1016/j.jsbmb.2016.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/11/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
Abstract
Six experiments were carried out to define the optimum conditions for investigating the dynamics of uptake and metabolism of tritiated E2 from water by adult blue mussels, Mytilus spp. Optimum uptake was achieved using 400mL aerated sea water animal-1 and an incubation period of no more than 24h. The pattern of disappearance conformed closest to an inverse hyperbolic curve with the percentage of radiolabel that could be measured in the water reaching an asymptote that was on average 50% of the original. This apparent inability of the animals to absorb all the radiolabel was investigated further. Solvent partition and chromatography revealed that, after 24h, c. 60% of the radiolabel still present in the water was composed of water soluble conjugates, c. 25% was composed of tritiated water and only 15% ran on and around the chromatographic position of E2. The major water soluble constituent was identified by chromatography and mass-spectrometry as 1,3,5(10)-estratriene-3,17β-diol 3-sulfate (estradiol 3-S). The clearance rate of radiolabel was 46.9±1.8mLanimal-1h-1. This was not significantly affected by the addition of as much as 25μgL-1 cold E2 to the water, demonstrating that mussels have a large capacity for E2 uptake. A new procedure involving solvent partition was developed for separating the free, esterified and sulfated forms of E2 present in the flesh of mussels. This involved extracting the soft tissue with organic solvents and then treating a portion of dried extract with a combination of heptane (dissolved fatty acid esters of E2) and 80% ethanol (dissolved free and sulfated E2). The latter fraction was further partitioned between water (sulfate) and diethyl ether (free steroid). This procedure was much cheaper and less time-consuming than chromatography. Approximately 80% of the radioactivity that was taken up by the animals was present in the form of ester. Moreover, E2 was the only steroid identified after saponification of these esters. Of the remaining radioactivity, c. 10% was in the form of unidentified free steroids and c. 10% was estradiol 3-S. In order to determine how rapidly mussels were able to depurate tritiated E2 and its metabolites, two experiments were carried out. Animals from the first experiment purged up to 63% of radioactivity in 20days under flow-through conditions; whereas animals from the second experiment released only 16% of radioactivity in 10days under semi-static conditions. The ratios of the different forms of E2 did not change substantially during the course of depuration.
Collapse
Affiliation(s)
- Tamar I Schwarz
- Centre for Environment, Fisheries and Aquaculture Science Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Benjamin H Maskrey
- Centre for Environment, Fisheries and Aquaculture Science Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Alexander P Scott
- Centre for Environment, Fisheries and Aquaculture Science Barrack Road, Weymouth, Dorset DT4 8UB, UK
| |
Collapse
|
4
|
Zhu F, Schlupp I, Tiedemann R. Sequence Evolution and Expression of the Androgen Receptor and Other Pathway-Related Genes in a Unisexual Fish, the Amazon Molly, Poecilia formosa, and Its Bisexual Ancestors. PLoS One 2016; 11:e0156209. [PMID: 27249369 PMCID: PMC4889153 DOI: 10.1371/journal.pone.0156209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/06/2016] [Indexed: 11/19/2022] Open
Abstract
The all-female Amazon molly (Poecilia formosa) originated from a single hybridization of two bisexual ancestors, Atlantic molly (Poecilia mexicana) and sailfin molly (Poecilia latipinna). As a gynogenetic species, the Amazon molly needs to copulate with a heterospecific male, but the genetic information of the sperm-donor does not contribute to the next generation, as the sperm only acts as the trigger for the diploid eggs' embryogenesis. Here, we study the sequence evolution and gene expression of the duplicated genes coding for androgen receptors (ars) and other pathway-related genes, i.e., the estrogen receptors (ers) and cytochrome P450, family19, subfamily A, aromatase genes (cyp19as), in the Amazon molly, in comparison to its bisexual ancestors. Mollies possess-as most other teleost fish-two copies of the ar, er, and cyp19a genes, i.e., arα/arβ, erα/erβ1, and cyp19a1 (also referred as cyp19a1a)/cyp19a2 (also referred to as cyp19a1b), respectively. Non-synonymous single nucleotide polymorphisms (SNPs) among the ancestral bisexual species were generally predicted not to alter protein function. Some derived substitutions in the P. mexicana and one in P. formosa are predicted to impact protein function. We also describe the gene expression pattern of the ars and pathway-related genes in various tissues (i.e., brain, gill, and ovary) and provide SNP markers for allele specific expression research. As a general tendency, the levels of gene expression were lowest in gill and highest in ovarian tissues, while expression levels in the brain were intermediate in most cases. Expression levels in P. formosa were conserved where expression did not differ between the two bisexual ancestors. In those cases where gene expression levels significantly differed between the bisexual species, P. formosa expression was always comparable to the higher expression level among the two ancestors. Interestingly, erβ1 was expressed neither in brain nor in gill in the analyzed three molly species, which implies a more important role of erα in the estradiol synthesis pathway in these tissues. Furthermore, our data suggest that interactions of steroid-signaling pathway genes differ across tissues, in particular the interactions of ars and cyp19as.
Collapse
Affiliation(s)
- Fangjun Zhu
- University of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Ingo Schlupp
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Ralph Tiedemann
- University of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- * E-mail:
| |
Collapse
|
5
|
The Cytochrome P450 superfamily complement (CYPome) in the annelid Capitella teleta. PLoS One 2014; 9:e107728. [PMID: 25390889 PMCID: PMC4229089 DOI: 10.1371/journal.pone.0107728] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/19/2014] [Indexed: 01/08/2023] Open
Abstract
The Cytochrome P450 super family (CYP) is responsible for a wide range of functions in metazoans, having roles in both exogenous and endogenous substrate metabolism. Annelids are known to metabolize polycyclic aromatic hydrocarbons (PAHs) and produce estrogen. CYPs are postulated to be key enzymes in these processes in annelids. In this study, the CYP complement (CYPome) of the annelid Capitella teleta has been robustly identified and annotated with the genome assembly available. Phylogenetic analyses were performed to understand the evolutionary relationships between CYPs in C. teleta and other species. Predictions of which CYPs are potentially involved in both PAH metabolism and steroidogensis were made based on phylogeny. Annotation of 84 full length and 12 partial CYP sequences predicted a total of 96 functional CYPs in C. teleta. A further 13 CYP fragments were found but these may be pseudogenes. The C. teleta CYPome contained 24 novel CYP families and seven novel CYP subfamilies within existing families. A phylogenetic analysis identified that the C. teleta sequences were found in 9 of the 11 metazoan CYP clans. Two CYPs, CYP3071A1 and CYP3072A1, did not cluster with any metazoan CYP clans. We found xenobiotic response elements (XREs) upstream of C. teleta CYPs related to vertebrate CYP1 (CYP3060A1, CYP3061A1) and from families with reported transcriptional upregulation in response to PAH exposure (CYP4, CYP331). C. teleta had a CYP51A1 with ∼65% identity to vertebrate CYP51A1 sequences and has been predicted to have lanosterol 14 α-demethylase activity. CYP376A1, CYP3068A1, CYP3069A1, and CYP3070A1 were the most appropriate candidates for steroidogenesis genes based on their phylogeny and warrant further analyses, though no specific aromatase (estrogen synthesis) candidates were found. Presence of XREs upstream of C. teleta CYPs may indicate a functional aryl hydrocarbon receptor in C. teleta and candidate CYPs for studies of PAH metabolism.
Collapse
|
6
|
Giusti A, Lagadic L, Barsi A, Thomé JP, Joaquim-Justo C, Ducrot V. Investigating apical adverse effects of four endocrine active substances in the freshwater gastropod Lymnaea stagnalis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 493:147-55. [PMID: 24950493 DOI: 10.1016/j.scitotenv.2014.05.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/09/2014] [Accepted: 05/28/2014] [Indexed: 05/14/2023]
Abstract
The hermaphroditic gastropod Lymnaea stagnalis is proposed as a candidate species for the development of OECD guidelines for testing of the reprotoxicity of chemicals, including endocrine active substances (EASs). Up to now, only a few putative EASs have been tested for their reproductive toxicity in this species. In this study, we investigate the effects of four EASs with different affinities to the vertebrate estrogen and androgen receptors (chlordecone as an estrogen; cyproterone acetate, fenitrothion and vinclozolin as anti-androgens) on the reproduction of L. stagnalis in a 21-day semi-static test. Testosterone and 17α-ethinylestradiol (EE2) were used as the reference compounds. The tested EASs had no significant effect on growth and survival at the tested concentration ranges (ng to μg/L). Classical reproduction endpoints (i.e., oviposition and fecundity) were not responsive to the tested chemicals, except for chlordecone and 17α-ethinylestradiol, which hampered reproduction from 19.6 μg/L and 17.6 μg/L, respectively. The frequency of polyembryonic eggs, used as an additional endpoint, demonstrated the effects of all compounds except EE2. The molecular pathways, which are involved in such reproduction impairments, remain unknown. Our results suggest that egg quality is a more sensitive endpoint as compared to other reproductive endpoints commonly assessed in mollusk toxicity tests.
Collapse
Affiliation(s)
- Arnaud Giusti
- Laboratory of Animal Ecology and Ecotoxicology, Centre of Analytical Research and Technology (CART), Liege University, 15 Allée du 6 août, 4000 Liège, Belgium; INRA, UMR0985 Ecologie et Santé des Ecosystèmes, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, 65 rue de Saint-Brieuc, CS 84215, F-35042 Rennes Cedex, France.
| | - Laurent Lagadic
- INRA, UMR0985 Ecologie et Santé des Ecosystèmes, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, 65 rue de Saint-Brieuc, CS 84215, F-35042 Rennes Cedex, France.
| | - Alpar Barsi
- INRA, UMR0985 Ecologie et Santé des Ecosystèmes, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, 65 rue de Saint-Brieuc, CS 84215, F-35042 Rennes Cedex, France.
| | - Jean-Pierre Thomé
- Laboratory of Animal Ecology and Ecotoxicology, Centre of Analytical Research and Technology (CART), Liege University, 15 Allée du 6 août, 4000 Liège, Belgium.
| | - Célia Joaquim-Justo
- Laboratory of Animal Ecology and Ecotoxicology, Centre of Analytical Research and Technology (CART), Liege University, 15 Allée du 6 août, 4000 Liège, Belgium.
| | - Virginie Ducrot
- INRA, UMR0985 Ecologie et Santé des Ecosystèmes, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, 65 rue de Saint-Brieuc, CS 84215, F-35042 Rennes Cedex, France.
| |
Collapse
|
7
|
Zhang Y, Zhang S, Lu H, Zhang L, Zhang W. Genes encoding aromatases in teleosts: evolution and expression regulation. Gen Comp Endocrinol 2014; 205:151-8. [PMID: 24859258 DOI: 10.1016/j.ygcen.2014.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/29/2014] [Accepted: 05/07/2014] [Indexed: 11/17/2022]
Abstract
Cytochrome P450 aromatases, encoded by cyp19a1 genes, catalyzes the conversion of androgens to estrogens and plays important roles in the reproduction of vertebrates. Vertebrate cyp19a1 genes showed high synteny in chromosomal locations and conservation in sequences during evolution. However, amphioxus cyp19a1 does not show synteny to vertebrate cyp19a1. Teleost fish possess two copies of the cyp19a1 gene, which were postulated to result from a fish-specific genome duplication. The duplicated copies of fish cyp19a1 genes evolved into the brain and ovarian forms of cytochrome P450 aromatase genes, cyp19a1a and cyp19a1b, respectively, with different regulatory mechanisms of expression, through subfunctionalization under long-term selective pressure. In addition to the estradiol (E2) auto-regulatory loop, there may be other mechanisms responsible for the high expression of aromatase in the teleost brain. The study of the two cyp19a1 copies in teleost fish will shed light on the general evolution, function, and regulation of vertebrate cyp19a1.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shen Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Huijie Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Lihong Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Weimin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
8
|
Evidence for the coevolution of axon guidance molecule Netrin and its receptor Frazzled. Gene 2014; 544:25-31. [DOI: 10.1016/j.gene.2014.04.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 11/24/2022]
|
9
|
Chambers JE, Greim H, Kendall RJ, Segner H, Sharpe RM, Van Der Kraak G. Human and ecological risk assessment of a crop protection chemical: a case study with the azole fungicide epoxiconazole. Crit Rev Toxicol 2013; 44:176-210. [DOI: 10.3109/10408444.2013.855163] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Giusti A, Joaquim-Justo C. Esterification of vertebrate like steroids in molluscs: a target of endocrine disruptors? Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:187-98. [PMID: 24004916 DOI: 10.1016/j.cbpc.2013.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 12/24/2022]
Abstract
Alterations of the reproductive organs of gastropod molluscs exposed to pollutants have been reported in natural populations for more than 40 years. In some cases, these impacts have been linked to exposure to endocrine-disrupting chemicals (EDCs), which are known to induce adverse impacts on vertebrates, mainly by direct binding to steroid receptors or by altering hormone synthesis. Investigations on the mechanisms of action of endocrine disruptors in molluscs show that EDCs induce modifications of endogenous titres of androgens (e.g., testosterone, androstenedione) and oestrogens (e.g., 17ß-oestradiol). Alterations of the activity of enzymes related to steroid metabolism (i.e., cytochrome P-450 aromatase, acyltransferases) are also often observed. In bivalves and gastropods, fatty acid esterification of steroids might constitute the major regulation of androgen and oestrogen homeostasis. The present review indicates that metabolism of steroid hormones to fatty acid esters might be a target of synthetic EDCs. Alterations of this process would impact the concentrations of free, potentially bioactive, form of steroids.
Collapse
Affiliation(s)
- Arnaud Giusti
- Laboratory of Animal Ecology and Ecotoxicology, Centre of Analytical Research and Technology (CART), Liège University, 15 Allée du 6 août, 4000 Liège, Belgium.
| | | |
Collapse
|
11
|
Scott AP. Do mollusks use vertebrate sex steroids as reproductive hormones? Part I: Critical appraisal of the evidence for the presence, biosynthesis and uptake of steroids. Steroids 2012; 77:1450-68. [PMID: 22960651 DOI: 10.1016/j.steroids.2012.08.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/16/2012] [Accepted: 08/21/2012] [Indexed: 01/27/2023]
Abstract
The consensus view is that vertebrate-type steroids are present in mollusks and perform hormonal roles which are similar to those that they play in vertebrates. Although vertebrate steroids can be measured in molluscan tissues, a key question is 'Are they formed endogenously or they are picked up from their environment?'. The present review concludes that there is no convincing evidence for biosynthesis of vertebrate steroids by mollusks. Furthermore, the 'mollusk' genome does not contain the genes for key enzymes that are necessary to transform cholesterol in progressive steps into vertebrate-type steroids; nor does the mollusk genome contain genes for functioning classical nuclear steroid receptors. On the other hand, there is very strong evidence that mollusks are able to absorb vertebrate steroids from the environment; and are able to store some of them (by conjugating them to fatty acids) for weeks to months. It is notable that the three steroids that have been proposed as functional hormones in mollusks (i.e. progesterone, testosterone and 17β-estradiol) are the same as those of humans. Since humans (and indeed all vertebrates) continuously excrete steroids not just via urine and feces, but via their body surface (and, in fish, via the gills), it is impossible to rule out contamination as the sole reason for the presence of vertebrate steroids in mollusks (even in animals kept under supposedly 'clean laboratory conditions'). Essentially, the presence of vertebrate steroids in mollusks cannot be taken as reliable evidence of either endogenous biosynthesis or of an endocrine role.
Collapse
Affiliation(s)
- Alexander P Scott
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| |
Collapse
|
12
|
Gotoh O. Evolution of Cytochrome P450 Genes from the Viewpoint of Genome Informatics. Biol Pharm Bull 2012; 35:812-7. [DOI: 10.1248/bpb.35.812] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Osamu Gotoh
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
13
|
Callard GV, Tarrant AM, Novillo A, Yacci P, Ciaccia L, Vajda S, Chuang GY, Kozakov D, Greytak SR, Sawyer S, Hoover C, Cotter KA. Evolutionary origins of the estrogen signaling system: insights from amphioxus. J Steroid Biochem Mol Biol 2011; 127:176-88. [PMID: 21514383 PMCID: PMC3179578 DOI: 10.1016/j.jsbmb.2011.03.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 02/07/2011] [Accepted: 03/25/2011] [Indexed: 11/23/2022]
Abstract
Classically, the estrogen signaling system has two core components: cytochrome P450 aromatase (CYP19), the enzyme complex that catalyzes the rate limiting step in estrogen biosynthesis; and estrogen receptors (ERs), ligand activated transcription factors that interact with the regulatory region of target genes to mediate the biological effects of estrogen. While the importance of estrogens for regulation of reproduction, development and physiology has been well-documented in gnathostome vertebrates, the evolutionary origins of estrogen as a hormone are still unclear. As invertebrates within the phylum Chordata, cephalochordates (e.g., the amphioxus of the genus Branchiostoma) are among the closest invertebrate relatives of the vertebrates and can provide critical insight into the evolution of vertebrate-specific molecules and pathways. To address this question, this paper briefly reviews relevant earlier studies that help to illuminate the history of the aromatase and ER genes, with a particular emphasis on insights from amphioxus and other invertebrates. We then present new analyses of amphioxus aromatase and ER sequence and function, including an in silico model of the amphioxus aromatase protein, and CYP19 gene analysis. CYP19 shares a conserved gene structure with vertebrates (9 coding exons) and moderate sequence conservation (40% amino acid identity with human CYP19). Modeling of the amphioxus aromatase substrate binding site and simulated docking of androstenedione in comparison to the human aromatase shows that the substrate binding site is conserved and predicts that androstenedione could be a substrate for amphioxus CYP19. The amphioxus ER is structurally similar to vertebrate ERs, but differs in sequence and key residues of the ligand binding domain. Consistent with results from other laboratories, amphioxus ER did not bind radiolabeled estradiol, nor did it modulate gene expression on an estrogen-responsive element (ERE) in the presence of estradiol, 4-hydroxytamoxifen, diethylstilbestrol, bisphenol A or genistein. Interestingly, it has been shown that a related gene, the amphioxus "steroid receptor" (SR), can be activated by estrogens and that amphioxus ER can repress this activation. CYP19, ER and SR are all primarily expressed in gonadal tissue, suggesting an ancient paracrine/autocrine signaling role, but it is not yet known how their expression is regulated and, if estrogen is actually synthesized in amphioxus, whether it has a role in mediating any biological effects. Functional studies are clearly needed to link emerging bioinformatics and in vitro molecular biology results with organismal physiology to develop an understanding of the evolution of estrogen signaling. This article is part of a Special Issue entitled 'Marine organisms'.
Collapse
Affiliation(s)
- G V Callard
- Department of Biology, Boston University, 5 Cummington St, Boston, MA 02215, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fernandes D, Loi B, Porte C. Biosynthesis and metabolism of steroids in molluscs. J Steroid Biochem Mol Biol 2011; 127:189-95. [PMID: 21184826 DOI: 10.1016/j.jsbmb.2010.12.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 11/22/2010] [Accepted: 12/15/2010] [Indexed: 01/13/2023]
Abstract
Molluscs are the second most diverse animal group, they are ecologically important and they are considered excellent indicators of ecosystem health. Some species have been widely used in pollution biomonitoring programs; however, their endocrinology is still poorly known. Despite some studies reporting the presence of (vertebrate-type) steroids in molluscs, information regarding enzymatic pathways involved in steroid synthesis and further catabolism of those steroids is still fragmentary. Regarding steroidogenesis, a number of excellent studies were performed in the 70s using different radio-labelled steroid precursors and detecting the formation of different metabolites. But, since then a long gap of research exist until the late 90s when the 'endocrine disruption' issue raised the need of a better knowledge of mollusc (and invertebrate) endocrinology in order to assess alterations caused by pollutants. Here we summarize past and recent studies dealing with steroid biosynthesis and metabolism in different mollusc species. Most of these studies suggest the involvement of steroids in mollusc reproduction. However, the knowledge is still fragmentary and many questions remain to be answered.
Collapse
Affiliation(s)
- Denise Fernandes
- Environmental Chemistry Department, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | | | | |
Collapse
|