1
|
Gouveia MH, Bergen AW, Borda V, Nunes K, Leal TP, Ogwang MD, Yeboah ED, Mensah JE, Kinyera T, Otim I, Nabalende H, Legason ID, Mpoloka SW, Mokone GG, Kerchan P, Bhatia K, Reynolds SJ, Birtwum RB, Adjei AA, Tettey Y, Tay E, Hoover R, Pfeiffer RM, Biggar RJ, Goedert JJ, Prokunina-Olsson L, Dean M, Yeager M, Lima-Costa MF, Hsing AW, Tishkoff SA, Chanock SJ, Tarazona-Santos E, Mbulaiteye SM. Genetic signatures of gene flow and malaria-driven natural selection in sub-Saharan populations of the "endemic Burkitt Lymphoma belt". PLoS Genet 2019; 15:e1008027. [PMID: 30849090 PMCID: PMC6426263 DOI: 10.1371/journal.pgen.1008027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 03/20/2019] [Accepted: 02/17/2019] [Indexed: 12/13/2022] Open
Abstract
Populations in sub-Saharan Africa have historically been exposed to intense selection from chronic infection with falciparum malaria. Interestingly, populations with the highest malaria intensity can be identified by the increased occurrence of endemic Burkitt Lymphoma (eBL), a pediatric cancer that affects populations with intense malaria exposure, in the so called "eBL belt" in sub-Saharan Africa. However, the effects of intense malaria exposure and sub-Saharan populations' genetic histories remain poorly explored. To determine if historical migrations and intense malaria exposure have shaped the genetic composition of the eBL belt populations, we genotyped ~4.3 million SNPs in 1,708 individuals from Ghana and Northern Uganda, located on opposite sides of eBL belt and with ≥ 7 months/year of intense malaria exposure and published evidence of high incidence of BL. Among 35 Ghanaian tribes, we showed a predominantly West-Central African ancestry and genomic footprints of gene flow from Gambian and East African populations. In Uganda, the North West population showed a predominantly Nilotic ancestry, and the North Central population was a mixture of Nilotic and Southern Bantu ancestry, while the Southwest Ugandan population showed a predominant Southern Bantu ancestry. Our results support the hypothesis of diverse ancestral origins of the Ugandan, Kenyan and Tanzanian Great Lakes African populations, reflecting a confluence of Nilotic, Cushitic and Bantu migrations in the last 3000 years. Natural selection analyses suggest, for the first time, a strong positive selection signal in the ATP2B4 gene (rs10900588) in Northern Ugandan populations. These findings provide important baseline genomic data to facilitate disease association studies, including of eBL, in eBL belt populations.
Collapse
Affiliation(s)
- Mateus H. Gouveia
- Instituto de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Center for Research on Genomics & Global Health, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Andrew W. Bergen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Victor Borda
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kelly Nunes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago P. Leal
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Statistics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Martin D. Ogwang
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | | | | | - Tobias Kinyera
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Isaac Otim
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | | | | | | | - Gaonyadiwe George Mokone
- Department of Biomedical Sciences, University of Botswana School of Medicine, Gaborone, Botswana
| | - Patrick Kerchan
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Kishor Bhatia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Steven J. Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | | | | | - Yao Tettey
- University of Ghana Medical School, Accra, Ghana
| | - Evelyn Tay
- University of Ghana Medical School, Accra, Ghana
| | - Robert Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Ruth M. Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Robert J. Biggar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - James J. Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Michael Dean
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, US Department of Health and Human Services, Frederick, Maryland, United States of America
| | - M. Fernanda Lima-Costa
- Instituto de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Ann W. Hsing
- Stanford Cancer Institute, Stanford University, Stanford, California, United States of America
| | - Sarah A. Tishkoff
- Department of Genetics and Biology, University of Pennsylvania, Philadelphia, United States of America
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Eduardo Tarazona-Santos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sam M. Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| |
Collapse
|
3
|
Ferreira Z, Hurle B, Andrés AM, Kretzschmar WW, Mullikin JC, Cherukuri PF, Cruz P, Gonder MK, Stone AC, Tishkoff S, Swanson WJ, Green ED, Clark AG, Seixas S. Sequence diversity of Pan troglodytes subspecies and the impact of WFDC6 selective constraints in reproductive immunity. Genome Biol Evol 2013; 5:2512-23. [PMID: 24356879 PMCID: PMC3879984 DOI: 10.1093/gbe/evt198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recent efforts have attempted to describe the population structure of common chimpanzee, focusing on four subspecies: Pan troglodytes verus, P. t. ellioti, P. t. troglodytes, and P. t. schweinfurthii. However, few studies have pursued the effects of natural selection in shaping their response to pathogens and reproduction. Whey acidic protein (WAP) four-disulfide core domain (WFDC) genes and neighboring semenogelin (SEMG) genes encode proteins with combined roles in immunity and fertility. They display a strikingly high rate of amino acid replacement (dN/dS), indicative of adaptive pressures during primate evolution. In human populations, three signals of selection at the WFDC locus were described, possibly influencing the proteolytic profile and antimicrobial activities of the male reproductive tract. To evaluate the patterns of genomic variation and selection at the WFDC locus in chimpanzees, we sequenced 17 WFDC genes and 47 autosomal pseudogenes in 68 chimpanzees (15 P. t. troglodytes, 22 P. t. verus, and 31 P. t. ellioti). We found a clear differentiation of P. t. verus and estimated the divergence of P. t. troglodytes and P. t. ellioti subspecies in 0.173 Myr; further, at the WFDC locus we identified a signature of strong selective constraints common to the three subspecies in WFDC6—a recent paralog of the epididymal protease inhibitor EPPIN. Overall, chimpanzees and humans do not display similar footprints of selection across the WFDC locus, possibly due to different selective pressures between the two species related to immune response and reproductive biology.
Collapse
Affiliation(s)
- Zélia Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ferreira Z, Seixas S, Andrés AM, Kretzschmar WW, Mullikin JC, Cherukuri PF, Cruz P, Swanson WJ, Clark AG, Green ED, Hurle B. Reproduction and immunity-driven natural selection in the human WFDC locus. Mol Biol Evol 2013; 30:938-50. [PMID: 23292442 DOI: 10.1093/molbev/mss329] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The whey acidic protein (WAP) four-disulfide core domain (WFDC) locus located on human chromosome 20q13 spans 19 genes with WAP and/or Kunitz domains. These genes participate in antimicrobial, immune, and tissue homoeostasis activities. Neighboring SEMG genes encode seminal proteins Semenogelin 1 and 2 (SEMG1 and SEMG2). WFDC and SEMG genes have a strikingly high rate of amino acid replacement (dN/dS), indicative of responses to adaptive pressures during vertebrate evolution. To better understand the selection pressures acting on WFDC genes in human populations, we resequenced 18 genes and 54 noncoding segments in 71 European (CEU), African (YRI), and Asian (CHB + JPT) individuals. Overall, we identified 484 single-nucleotide polymorphisms (SNPs), including 65 coding variants (of which 49 are nonsynonymous differences). Using classic neutrality tests, we confirmed the signature of short-term balancing selection on WFDC8 in Europeans and a signature of positive selection spanning genes PI3, SEMG1, SEMG2, and SLPI. Associated with the latter signal, we identified an unusually homogeneous-derived 100-kb haplotype with a frequency of 88% in Asian populations. A putative candidate variant targeted by selection is Thr56Ser in SEMG1, which may alter the proteolytic profile of SEMG1 and antimicrobial activities of semen. All the well-characterized genes residing in the WDFC locus encode proteins that appear to have a role in immunity and/or fertility, two processes that are often associated with adaptive evolution. This study provides further evidence that the WFDC and SEMG loci have been under strong adaptive pressure within the short timescale of modern humans.
Collapse
Affiliation(s)
- Zélia Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Seixas S, Ivanova N, Ferreira Z, Rocha J, Victor BL. Loss and gain of function in SERPINB11: an example of a gene under selection on standing variation, with implications for host-pathogen interactions. PLoS One 2012; 7:e32518. [PMID: 22393410 PMCID: PMC3290568 DOI: 10.1371/journal.pone.0032518] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 02/01/2012] [Indexed: 12/26/2022] Open
Abstract
Serine protease inhibitors (SERPINs) are crucial in the regulation of diverse biological processes including inflammation and immune response. SERPINB11, located in the 18q21 gene cluster, is a polymorphic gene/pseudogene coding for a non-inhibitory SERPIN. In a genome-wide scan for recent selection, SERPINB11 was identified as a potential candidate gene for adaptive evolution in Yoruba. The present study sought a better understanding of the evolutionary history of SERPINB11, with special focus on evaluating its selective signature. Through the resequencing of coding and noncoding regions of SERPINB11 in 20 Yorubans and analyzing primate orthologous sequences, we identified a full-length SERPINB11 variant encoding a non-inhibitory SERPIN as the putative candidate of selection – probably driven to higher frequencies by an adaptive response using preexisting variation. In addition, we detected contrasting evolutionary features of SERPINB11 in primates: While primate phylogeny as a whole is under purifying selection, the human lineage shows evidence of positive selection in a few codons, all associated with the active SERPINB11. Comparative modeling studies suggest that positively selected codons reduce SERPINB11's ability to undergo the conformational changes typical of inhibitory SERPINs – suggesting that it is evolving towards a new non-inhibitory function in humans. Significant correlations between SERPINB11 variants and the environmental variables, pastoralism and pathogen richness, have led us to propose a selective advantage through host-pathogen interactions, possibly linked to an adaptive response combating the emergence of infectious diseases in recent human evolution. This work represents the first description of a resurrected gene in humans, and may well exemplify selection on standing variation triggered by drastic ecological shifts.
Collapse
Affiliation(s)
- Susana Seixas
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | | | | | | | | |
Collapse
|
6
|
Bandiera E, Romani C, Specchia C, Zanotti L, Galli C, Ruggeri G, Tognon G, Bignotti E, Tassi RA, Odicino F, Caimi L, Sartori E, Santin AD, Pecorelli S, Ravaggi A. Serum human epididymis protein 4 and risk for ovarian malignancy algorithm as new diagnostic and prognostic tools for epithelial ovarian cancer management. Cancer Epidemiol Biomarkers Prev 2011; 20:2496-506. [PMID: 22028406 DOI: 10.1158/1055-9965.epi-11-0635] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The aim of this work was to analyze the diagnostic and prognostic value of serum human epididymis protein 4 (HE4) and Risk for Ovarian Malignancy Algorithm (ROMA) in epithelial ovarian cancer (EOC). METHODS Preoperative serum samples of 419 women (140 healthy controls, 131 ovarian benign cysts, 34 endometriosis, and 114 EOC) were tested for CA125 and HE4 using fully automated methods (Abbott ARCHITECT) and validated cutoff values. RESULTS For the discrimination of benign masses from EOC, in premenopausal women, the sensitivity and specificity were 92.3% and 59.4% for CA125, 84.6% and 94.2% for HE4, and 84.6% and 81.2% for ROMA, whereas in postmenopausal women, the sensitivity and specificity were 94.3% and 82.3% for CA125, 78.2% and 99.0% for HE4, and 93.1% and 84.4% for ROMA. In patients with EOC, elevated CA125, HE4, and ROMA levels were associated with advanced Federation of Gynaecologists and Obstetricians (FIGO) stage, suboptimally debulking, ascites, positive cytology, lymph node involvement, and advanced age (all P ≤ 0.05). Elevated HE4 and ROMA (both P ≤ 0.01), but not CA125 (P = 0.0579), were associated with undifferentiated tumors. In multivariable analysis, elevated HE4 and ROMA (all P ≤ 0.05) were independent prognostic factors for shorter overall, disease-free, and progression-free survival. CONCLUSIONS AND IMPACT This study underlines the high specificity of HE4 in discriminating endometriosis and ovarian benign cysts from EOC and the high sensitivity of CA125 in detecting EOC. We showed HE4 and ROMA as independent prognostic factors. Multicenter studies are needed to draw firm conclusions about the applicability of HE4 and ROMA in clinical practice.
Collapse
Affiliation(s)
- Elisabetta Bandiera
- Angelo Nocivelli, Institute of Molecular Medicine, Division of Gynecologic Oncology, University of Brescia, Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|