1
|
Pax3 Hypomorphs Reveal Hidden Pax7 Functional Genetic Compensation in Utero. J Dev Biol 2022; 10:jdb10020019. [PMID: 35645295 PMCID: PMC9149870 DOI: 10.3390/jdb10020019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 01/14/2023] Open
Abstract
Pax3 and Pax7 transcription factors are paralogs within the Pax gene family that that are expressed in early embryos in partially overlapping expression domains and have distinct functions. Significantly, mammalian development is largely unaffected by Pax7 systemic deletion but systemic Pax3 deletion results in defects in neural tube closure, neural crest emigration, cardiac outflow tract septation, muscle hypoplasia and in utero lethality by E14. However, we previously demonstrated that Pax3 hypomorphs expressing only 20% functional Pax3 protein levels exhibit normal neural tube and heart development, but myogenesis is selectively impaired. To determine why only some Pax3-expressing cell lineages are affected and to further titrate Pax3 threshold levels required for neural tube and heart development, we generated hypomorphs containing both a hypomorphic and a null Pax3 allele. This resulted in mutants only expressing 10% functional Pax3 protein with exacerbated neural tube, neural crest and muscle defects, but still a normal heart. To examine why the cardiac neural crest appears resistant to very low Pax3 levels, we examined its paralog Pax7. Significantly, Pax7 expression is both ectopically expressed in Pax3-expressing dorsal neural tube cells and is also upregulated in the Pax3-expressing lineages. To test whether this compensatory Pax7 expression is functional, we deleted Pax7 both systemically and lineage-specifically in hypomorphs expressing only 10% Pax3. Removal of one Pax7 allele resulted in partial outflow tract defects, and complete loss of Pax7 resulted in full penetrance outflow tract defects and in utero lethality. Moreover, combinatorial loss of Pax3 and Pax7 resulted in severe craniofacial defects and a total block of neural crest cell emigration from the neural tube. Pax7Cre lineage mapping revealed ectopic labeling of Pax3-derived neural crest tissues and within the outflow tract of the heart, experimentally confirming the observation of ectopic activation of Pax7 in 10% Pax3 hypomorphs. Finally, genetic cell ablation of Pax7Cre-marked cells is sufficient to cause outflow tract defects in hypomorphs expressing only 10% Pax3, confirming that ectopic and induced Pax7 can play an overlapping functional genetic compensational role in both cardiac neural crest lineage and during craniofacial development, which is normally masked by the dominant role of Pax3.
Collapse
|
2
|
Liu G, Wu J, Qiao M, Zhou J, Wu H, Peng X, Mekchay S, Mei S. Transcription elements AREB6 and miR-34a affect apoptosis of PAMs by regulating the expression of SS2-related gene PPP1R11. Cell Cycle 2019; 18:1033-1044. [PMID: 31014175 DOI: 10.1080/15384101.2019.1610241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In our previous work, gene PPP1R11 (protein phosphatase 1 regulatory subunit 11) was significantly expressed in pigs after Streptococcus suis 2 (SS2) challenged. This study firstly confirmed that SS2 induced significant expression of PPP1R11 gene in porcine alveolar macrophage (PAM) cells, and apoptosis of PAM cells were observed. After that, the core promoter of porcine PPP1R11 was identified and its transcription factor AREB6 which significantly regulated PPP1R11. We also characterized that the PPP1R11 gene is a target of miR-34a. Further, we found that PPP1R11 helped to inhibit apoptosis of PAM cells under SS2 infecting, through transcription factor AREB6 was negatively correlated with apoptosis whereas miR-34a was positively correlated. Those findings provide a functional connection among the transcription factor AREB6, miR-34a, PPP1R11 gene and apoptosis of PAM cells in the pathogenesis of the SS2 infection.
Collapse
Affiliation(s)
- Guisheng Liu
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Junjing Wu
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Mu Qiao
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Jiawei Zhou
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Huayu Wu
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Xianwen Peng
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Supamit Mekchay
- c Department of Animal and Aquatic Sciences, Faculty of Agriculture , Chiang Mai University , Chiang Mai , Thailand
| | - Shuqi Mei
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| |
Collapse
|
3
|
Scionti I, Hayashi S, Mouradian S, Girard E, Esteves de Lima J, Morel V, Simonet T, Wurmser M, Maire P, Ancelin K, Metzger E, Schüle R, Goillot E, Relaix F, Schaeffer L. LSD1 Controls Timely MyoD Expression via MyoD Core Enhancer Transcription. Cell Rep 2017; 18:1996-2006. [PMID: 28228264 DOI: 10.1016/j.celrep.2017.01.078] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 12/21/2016] [Accepted: 01/29/2017] [Indexed: 12/22/2022] Open
Abstract
MyoD is a master regulator of myogenesis. Chromatin modifications required to trigger MyoD expression are still poorly described. Here, we demonstrate that the histone demethylase LSD1/KDM1a is recruited on the MyoD core enhancer upon muscle differentiation. Depletion of Lsd1 in myoblasts precludes the removal of H3K9 methylation and the recruitment of RNA polymerase II on the core enhancer, thereby preventing transcription of the non-coding enhancer RNA required for MyoD expression (CEeRNA). Consistently, Lsd1 conditional inactivation in muscle progenitor cells during embryogenesis prevented transcription of the CEeRNA and delayed MyoD expression. Our results demonstrate that LSD1 is required for the timely expression of MyoD in limb buds and identify a new biological function for LSD1 by showing that it can activate RNA polymerase II-dependent transcription of enhancers.
Collapse
Affiliation(s)
- Isabella Scionti
- Institut NeuroMyoGene, CNRS UMR5310, INSERM U1217, Université Lyon1, 46 Allée d'Italie, 69007 Lyon, France; Laboratory of Molecular Biology of the Cell, CNRS UMR5239, Université Lyon 1, ENS Lyon, 46 Allée d'Italie, 69007 Lyon, France
| | - Shinichiro Hayashi
- Biology of the Neuromuscular System, INSERM IMRB-E10 U955, Université Paris-Est, 8 rue du Général Sarrail, 94010 Créteil Cedex, France; Department of Cellular and Molecular Medicine, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sandrine Mouradian
- Institut NeuroMyoGene, CNRS UMR5310, INSERM U1217, Université Lyon1, 46 Allée d'Italie, 69007 Lyon, France; Laboratory of Molecular Biology of the Cell, CNRS UMR5239, Université Lyon 1, ENS Lyon, 46 Allée d'Italie, 69007 Lyon, France
| | - Emmanuelle Girard
- Institut NeuroMyoGene, CNRS UMR5310, INSERM U1217, Université Lyon1, 46 Allée d'Italie, 69007 Lyon, France; Laboratory of Molecular Biology of the Cell, CNRS UMR5239, Université Lyon 1, ENS Lyon, 46 Allée d'Italie, 69007 Lyon, France; Hospices Civils de Lyon, Faculté de Medicine Lyon Est, 3 Quai des Célestins, 69002 Lyon, France
| | - Joana Esteves de Lima
- Biology of the Neuromuscular System, INSERM IMRB-E10 U955, Université Paris-Est, 8 rue du Général Sarrail, 94010 Créteil Cedex, France
| | - Véronique Morel
- Institut NeuroMyoGene, CNRS UMR5310, INSERM U1217, Université Lyon1, 46 Allée d'Italie, 69007 Lyon, France; Laboratory of Molecular Biology of the Cell, CNRS UMR5239, Université Lyon 1, ENS Lyon, 46 Allée d'Italie, 69007 Lyon, France
| | - Thomas Simonet
- Institut NeuroMyoGene, CNRS UMR5310, INSERM U1217, Université Lyon1, 46 Allée d'Italie, 69007 Lyon, France; Laboratory of Molecular Biology of the Cell, CNRS UMR5239, Université Lyon 1, ENS Lyon, 46 Allée d'Italie, 69007 Lyon, France
| | - Maud Wurmser
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, 22 rue Mechain, 75014 Paris, France
| | - Pascal Maire
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, 22 rue Mechain, 75014 Paris, France
| | - Katia Ancelin
- Institut NeuroMyoGene, CNRS UMR5310, INSERM U1217, Université Lyon1, 46 Allée d'Italie, 69007 Lyon, France
| | - Eric Metzger
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany; Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, 79106 Freiburg, Germany; BIOSS Centre of Biological Signalling Studies, Albert Ludwigs University Freiburg, 79106 Freiburg, Germany
| | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany; Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, 79106 Freiburg, Germany; BIOSS Centre of Biological Signalling Studies, Albert Ludwigs University Freiburg, 79106 Freiburg, Germany
| | - Evelyne Goillot
- Institut NeuroMyoGene, CNRS UMR5310, INSERM U1217, Université Lyon1, 46 Allée d'Italie, 69007 Lyon, France; Laboratory of Molecular Biology of the Cell, CNRS UMR5239, Université Lyon 1, ENS Lyon, 46 Allée d'Italie, 69007 Lyon, France.
| | - Frederic Relaix
- Biology of the Neuromuscular System, INSERM IMRB-E10 U955, Université Paris-Est, 8 rue du Général Sarrail, 94010 Créteil Cedex, France
| | - Laurent Schaeffer
- Institut NeuroMyoGene, CNRS UMR5310, INSERM U1217, Université Lyon1, 46 Allée d'Italie, 69007 Lyon, France; Laboratory of Molecular Biology of the Cell, CNRS UMR5239, Université Lyon 1, ENS Lyon, 46 Allée d'Italie, 69007 Lyon, France; Hospices Civils de Lyon, Faculté de Medicine Lyon Est, 3 Quai des Célestins, 69002 Lyon, France.
| |
Collapse
|
5
|
Myofibril breakdown during atrophy is a delayed response requiring the transcription factor PAX4 and desmin depolymerization. Proc Natl Acad Sci U S A 2017; 114:E1375-E1384. [PMID: 28096335 DOI: 10.1073/pnas.1612988114] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A hallmark of muscle atrophy is the excessive degradation of myofibrillar proteins primarily by the ubiquitin proteasome system. In mice, during the rapid muscle atrophy induced by fasting, the desmin cytoskeleton and the attached Z-band-bound thin filaments are degraded after ubiquitination by the ubiquitin ligase tripartite motif-containing protein 32 (Trim32). To study the order of events leading to myofibril destruction, we investigated the slower atrophy induced by denervation (disuse). We show that myofibril breakdown is a two-phase process involving the initial disassembly of desmin filaments by Trim32, which leads to the later myofibril breakdown by enzymes, whose expression is increased by the paired box 4 (PAX4) transcription factor. After denervation of mouse tibialis anterior muscles, phosphorylation and Trim32-dependent ubiquitination of desmin filaments increased rapidly and stimulated their gradual depolymerization (unlike their rapid degradation during fasting). Trim32 down-regulation attenuated the loss of desmin and myofibrillar proteins and reduced atrophy. Although myofibrils and desmin filaments were intact at 7 d after denervation, inducing the dissociation of desmin filaments caused an accumulation of ubiquitinated proteins and rapid destruction of myofibrils. The myofibril breakdown normally observed at 14 d after denervation required not only dissociation of desmin filaments, but also gene induction by PAX4. Down-regulation of PAX4 or its target gene encoding the p97/VCP ATPase reduced myofibril disassembly and degradation on denervation or fasting. Thus, during atrophy, the initial loss of desmin is critical for the subsequent myofibril destruction, and over time, myofibrillar proteins become more susceptible to PAX4-induced enzymes that promote proteolysis.
Collapse
|
6
|
Van Otterloo E, Cornell RA, Medeiros DM, Garnett AT. Gene regulatory evolution and the origin of macroevolutionary novelties: insights from the neural crest. Genesis 2013; 51:457-70. [PMID: 23712931 DOI: 10.1002/dvg.22403] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/10/2013] [Accepted: 05/14/2013] [Indexed: 11/07/2022]
Abstract
The appearance of novel anatomic structures during evolution is driven by changes to the networks of transcription factors, signaling pathways, and downstream effector genes controlling development. The nature of the changes to these developmental gene regulatory networks (GRNs) is poorly understood. A striking test case is the evolution of the GRN controlling development of the neural crest (NC). NC cells emerge from the neural plate border (NPB) and contribute to multiple adult structures. While all chordates have a NPB, only in vertebrates do NPB cells express all the genes constituting the neural crest GRN (NC-GRN). Interestingly, invertebrate chordates express orthologs of NC-GRN components in other tissues, revealing that during vertebrate evolution new regulatory connections emerged between transcription factors primitively expressed in the NPB and genes primitively expressed in other tissues. Such interactions could have evolved by two mechanisms. First, transcription factors primitively expressed in the NPB may have evolved new DNA and/or cofactor binding properties (protein neofunctionalization). Alternately, cis-regulatory elements driving NPB expression may have evolved near genes primitively expressed in other tissues (cis-regulatory neofunctionalization). Here we discuss how gene duplication can, in principle, promote either form of neofunctionalization. We review recent published examples of interspecies gene-swap, or regulatory-element-swap, experiments that test both models. Such experiments have yielded little evidence to support the importance of protein neofunctionalization in the emergence of the NC-GRN, but do support the importance of novel cis-regulatory elements in this process. The NC-GRN is an excellent model for the study of gene regulatory and macroevolutionary innovation.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | | | | | | |
Collapse
|
7
|
Thuault S, Hayashi S, Lagirand-Cantaloube J, Plutoni C, Comunale F, Delattre O, Relaix F, Gauthier-Rouvière C. P-cadherin is a direct PAX3-FOXO1A target involved in alveolar rhabdomyosarcoma aggressiveness. Oncogene 2012; 32:1876-87. [PMID: 22710718 DOI: 10.1038/onc.2012.217] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alveolar rhabdomyosarcoma (ARMS) is an aggressive childhood cancer of striated muscle characterized by the presence of the PAX3-FOXO1A or PAX7-FOXO1A chimeric oncogenic transcription factor. Identification of their targets is essential for understanding ARMS pathogenesis. To this aim, we analyzed transcriptomic data from rhabdomyosarcoma samples and found that P-cadherin expression is correlated with PAX3/7-FOXO1A presence. We then show that expression of a PAX3 dominant negative variant inhibits P-cadherin expression in ARMS cells. Using mouse models carrying modified Pax3 alleles, we demonstrate that P-cadherin is expressed in the dermomyotome and lies genetically downstream from the myogenic factor Pax3. Moreover, in vitro gel shift analysis and chromatin immunoprecipitation indicate that the P-cadherin gene is a direct transcriptional target for PAX3/7-FOXO1A. Finally, P-cadherin expression in normal myoblasts inhibits myogenesis and induces myoblast transformation, migration and invasion. Conversely, P-cadherin downregulation by small hairpin RNA decreases the transformation, migration and invasive potential of ARMS cells. P-cadherin also favors cadherin switching, which is a hallmark of metastatic progression, by controlling N- and M-cadherin expression and/or localization. Our findings demonstrate that P-cadherin is a direct PAX3-FOXO1A transcriptional target involved in ARMS aggressiveness. Therefore, P-cadherin emerges as a new and attractive target for therapeutic intervention in ARMS.
Collapse
Affiliation(s)
- S Thuault
- Universités Montpellier 2 et 1, CRBM, CNRS, UMR 5237, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|