1
|
Seiler J, Beye M. Honeybees' novel complementary sex-determining system: function and origin. Trends Genet 2024; 40:969-981. [PMID: 39232877 DOI: 10.1016/j.tig.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Complementary sex determination regulates female and male development in honeybees (Apis mellifera) via heterozygous versus homo-/hemizygous genotypes of the csd (complementary sex determiner) gene involving numerous naturally occurring alleles. This lineage-specific function offers a rare opportunity to understand an undescribed regulatory mechanism and the molecular evolutionary path leading to this mechanism. We reviewed recent advances in understanding how Csd recognizes different versus identical protein variants, how these variants regulate downstream pathways and sexual differentiation, and how this mechanism has evolved and been shaped by evolutionary forces. Finally, we highlighted the shared regulatory principles of sex determination despite the diversity of primary signals and demonstrated that lineage-specific mutations are very informative for characterizing newly evolved functions.
Collapse
Affiliation(s)
- Jana Seiler
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Martin Beye
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
2
|
De Iorio MG, Lazzari B, Colli L, Pagnacco G, Minozzi G. Variability and Number of Circulating Complementary Sex Determiner ( Csd) Alleles in a Breeding Population of Italian Honeybees under Controlled Mating. Genes (Basel) 2024; 15:652. [PMID: 38927588 PMCID: PMC11202483 DOI: 10.3390/genes15060652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
In Apis mellifera, csd is the primary gene involved in sex determination: haploid hemizygous eggs develop as drones, while females develop from eggs heterozygous for the csd gene. If diploid eggs are homozygous for the csd gene, diploid drones will develop, but will be eaten by worker bees before they are born. Therefore, high csd allelic diversity is a priority for colony survival and breeding. This study aims to investigate the variability of the hypervariable region (HVR) of the csd gene in bees sampled in an apiary under a selection scheme. To this end, an existing dataset of 100 whole-genome sequences was analyzed with a validated pipeline based on de novo assembly of sequences within the HVR region. In total, 102 allelic sequences were reconstructed and translated into amino acid sequences. Among these, 47 different alleles were identified, 44 of which had previously been observed, while 3 are novel alleles. The results show a high variability in the csd region in this breeding population of honeybees.
Collapse
Affiliation(s)
- Maria Grazia De Iorio
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900 Lodi, Italy;
| | - Barbara Lazzari
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche, 20133 Milano, Italy; (B.L.); (G.P.)
| | - Licia Colli
- Department of Animal, Nutrition and Food Sciences and Research Center on Biodiversity and Ancient DNA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Giulio Pagnacco
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche, 20133 Milano, Italy; (B.L.); (G.P.)
| | - Giulietta Minozzi
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900 Lodi, Italy;
| |
Collapse
|
3
|
Hagan T, Ding G, Buchmann G, Oldroyd BP, Gloag R. Serial founder effects slow range expansion in an invasive social insect. Nat Commun 2024; 15:3608. [PMID: 38684711 PMCID: PMC11058855 DOI: 10.1038/s41467-024-47894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Invasive populations often experience founder effects: a loss of genetic diversity relative to the source population, due to a small number of founders. Even where these founder effects do not impact colonization success, theory predicts they might affect the rate at which invasive populations expand. This is because secondary founder effects are generated at advancing population edges, further reducing local genetic diversity and elevating genetic load. We show that in an expanding invasive population of the Asian honey bee (Apis cerana), genetic diversity is indeed lowest at range edges, including at the complementary sex determiner, csd, a locus that is homozygous-lethal. Consistent with lower local csd diversity, range edge colonies had lower brood viability than colonies in the range centre. Further, simulations of a newly-founded and expanding honey bee population corroborate the spatial patterns in mean colony fitness observed in our empirical data and show that such genetic load at range edges will slow the rate of population expansion.
Collapse
Affiliation(s)
- Thomas Hagan
- Behaviour, Ecology and Evolution Lab, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Guiling Ding
- Behaviour, Ecology and Evolution Lab, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Gabriele Buchmann
- Behaviour, Ecology and Evolution Lab, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Benjamin P Oldroyd
- Behaviour, Ecology and Evolution Lab, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Rosalyn Gloag
- Behaviour, Ecology and Evolution Lab, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
4
|
Otte M, Netschitailo O, Weidtkamp-Peters S, Seidel CA, Beye M. Recognition of polymorphic Csd proteins determines sex in the honeybee. SCIENCE ADVANCES 2023; 9:eadg4239. [PMID: 37792946 PMCID: PMC10550236 DOI: 10.1126/sciadv.adg4239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/05/2023] [Indexed: 10/06/2023]
Abstract
Sex in honeybees, Apis mellifera, is genetically determined by heterozygous versus homo/hemizygous genotypes involving numerous alleles at the single complementary sex determination locus. The molecular mechanism of sex determination is however unknown because there are more than 4950 known possible allele combinations, but only two sexes in the species. We show how protein variants expressed from complementary sex determiner (csd) gene determine sex. In females, the amino acid differences between Csd variants at the potential-specifying domain (PSD) direct the selection of a conserved coiled-coil domain for binding and protein complexation. This recognition mechanism activates Csd proteins and, thus, the female pathway. In males, the absence of polymorphisms establishes other binding elements at PSD for binding and complexation of identical Csd proteins. This second recognition mechanism inactivates Csd proteins and commits male development via default pathway. Our results demonstrate that the recognition of different versus identical variants of a single protein is a mechanism to determine sex.
Collapse
Affiliation(s)
- Marianne Otte
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Oksana Netschitailo
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Claus A. M. Seidel
- Institut für Physikalische Chemie, Heinrich-Heine University, Düsseldorf, Germany
| | - Martin Beye
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
5
|
Cheng FP, Hu XF, Pan LX, Gong ZX, Qin KX, Li Z, Wang ZL. Transcriptome changes of Apis mellifera female embryos with fem gene knockout by CRISPR/Cas9. Int J Biol Macromol 2023; 229:260-267. [PMID: 36587640 DOI: 10.1016/j.ijbiomac.2022.12.229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022]
Abstract
The sex of honey bees is decided by a regulatory cascade comprising of csd, fem and Amdsx. In order to further identify other genes involved in sex determination and differentiation of honey bees in the early stages of embryo development, the CRISPR/Cas9 method was used to knock out fem gene in the embryonic stage of diploid western honey bees, and RNA-seq was used to analyze gene expression changes in the embryo after fem knockout. Finally, we found that the bees had undergone gender changes due to fem knockout. A total of 155 differentially expressed genes (DEGs) were obtained, with 48 up-regulated and 107 down-regulated DEGs in the mutant group compared to the control group. Of them, many genes are related to sex development or differentiation. In addition, 1502 differentially expressed alternative splicing events (DEASEs) related to 1011 genes, including the main honey bee sex-determining genes csd, tra2, fem, and Amdsx, were identified between the mutant group and control group, indicating that fem regulates alternative splicing of a large number of downstream genes. Our results provide valuable clues for further investigating the molecular mechanism of sex determination and differentiation in honey bees.
Collapse
Affiliation(s)
- Fu-Ping Cheng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
| | - Xiao-Fen Hu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
| | - Lu-Xia Pan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
| | - Zhi-Xian Gong
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
| | - Kai-Xin Qin
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
| | - Zhen Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
| | - Zi-Long Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China.
| |
Collapse
|
6
|
Mroczek R, Laszkiewicz A, Blazej P, Adamczyk-Weglarzy K, Niedbalska-Tarnowska J, Cebrat M. New insights into the criteria of functional heterozygosity of the Apis mellifera complementary sex determining gene–Discovery of a functional allele pair differing by a single amino acid. PLoS One 2022; 17:e0271922. [PMID: 35944027 PMCID: PMC9362917 DOI: 10.1371/journal.pone.0271922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
The complementary sex determiner (csd) gene is responsible for controlling the sex-determination molecular switch in western honey bees (Apis mellifera): bees that are heterozygous for csd develop into females, whereas bees that are hemizygous or homozygous develop into males. The homozygous diploid males are destroyed at an early stage of their development. It has been proposed that the minimal number of amino acid differences between two csd alleles needed to fully determine femaleness is five and it has also been shown that smaller differences may result in forming an evolutionary intermediate that is not fully capable of female determination, but has increased fitness compared to the homozygous genotype. In this study, we have implemented a terminal restriction length polymorphism-based method of identifying and distinguishing paternal alleles in a given bee colony and assigning them to a particular maternal allele in order to gather information on large number of functional csd pairs and also to identify, to some extent, genotypes that are underrepresented or absent in bee colonies. The main finding of this study is the identification of a fully functional genotype consisting of csd alleles that differed from each other by a one amino acid position. The individuals carrying this genotype expressed only female-specific transcripts of feminizer and double-sex genes. By comparing the sequences differences between the csd pair identified in our study with those described earlier, we conclude that functional heterozygosity of the csd gene is dependent not only on the number of the amino acid differences but also on the sequence context and position of the change. The discovery of a functional allele pair differing by a single amino acid also implies that the generation of a new csd specificity may also occur during a single mutation step with no need for evolutionary intermediates accumulating further mutations.
Collapse
Affiliation(s)
- Robert Mroczek
- Laboratory of Molecular and Cellular Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Wroclaw, Poland
| | - Agnieszka Laszkiewicz
- Laboratory of Molecular and Cellular Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Wroclaw, Poland
| | - Pawel Blazej
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, Wroclaw University, Wroclaw, Poland
| | - Kinga Adamczyk-Weglarzy
- Laboratory of Molecular and Cellular Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Wroclaw, Poland
| | - Joanna Niedbalska-Tarnowska
- Laboratory of Molecular and Cellular Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Wroclaw, Poland
| | - Malgorzata Cebrat
- Laboratory of Molecular and Cellular Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Wroclaw, Poland
- * E-mail:
| |
Collapse
|
7
|
Paolillo G, De Iorio MG, Filipe JFS, Riva F, Stella A, Gandini G, Pagnacco G, Lazzari B, Minozzi G. Analysis of Complementary Sex-Determiner (csd) Allele Diversity in Different Honeybee Subspecies from Italy Based on NGS Data. Genes (Basel) 2022; 13:genes13060991. [PMID: 35741752 PMCID: PMC9222915 DOI: 10.3390/genes13060991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/21/2022] [Accepted: 05/28/2022] [Indexed: 02/05/2023] Open
Abstract
Sexual regulation in Apis mellifera is controlled by the complementary sex-determiner (csd) gene: females (queens and workers) are heterozygous at this locus and males (drones) are hemizygous. When homozygous diploid drones develop, they are eaten by worker bees. High csd allelic diversity in honeybee populations is a priority for colony survival. The focus of this study is to investigate csd variability in the genomic sequence of the hypervariable region (HVR) of the csd gene in honeybee subspecies sampled in Italy. During the summer of 2017 and 2018, worker bees belonging to 125 colonies were sampled. The honeybees belonged to seven different A. mellifera subspecies: A. m. ligustica, A. m. sicula, A. m cecropia, A. m. carnica, A. m. mellifera, Buckfast and hybrid Carnica. Illumina genomic resequencing of all samples was performed and used for the characterization of global variability among colonies. In this work, a pipeline using existing resequencing data to explore the csd gene allelic variants present in the subspecies collection, based on de novo assembly of sequences falling within the HVR region, is described. On the whole, 138 allelic sequences were successfully reconstructed. Among these, 88 different alleles were identified, 68 of which match with csd alleles present in the NCBI GenBank database.
Collapse
Affiliation(s)
- Gianluigi Paolillo
- Dipartimento di Medicina Veterinaria (DIMEVET), University of Milan, 26900 Lodi, Italy; (G.P.); (M.G.D.I.); (J.F.S.F.); (F.R.); (G.G.)
| | - Maria Grazia De Iorio
- Dipartimento di Medicina Veterinaria (DIMEVET), University of Milan, 26900 Lodi, Italy; (G.P.); (M.G.D.I.); (J.F.S.F.); (F.R.); (G.G.)
| | - Joel F. Soares Filipe
- Dipartimento di Medicina Veterinaria (DIMEVET), University of Milan, 26900 Lodi, Italy; (G.P.); (M.G.D.I.); (J.F.S.F.); (F.R.); (G.G.)
| | - Federica Riva
- Dipartimento di Medicina Veterinaria (DIMEVET), University of Milan, 26900 Lodi, Italy; (G.P.); (M.G.D.I.); (J.F.S.F.); (F.R.); (G.G.)
| | | | - Gustavo Gandini
- Dipartimento di Medicina Veterinaria (DIMEVET), University of Milan, 26900 Lodi, Italy; (G.P.); (M.G.D.I.); (J.F.S.F.); (F.R.); (G.G.)
| | | | - Barbara Lazzari
- IBBA-CNR, 20133 Milano, Italy; (A.S.); (G.P.)
- Correspondence: (B.L.); (G.M.)
| | - Giulietta Minozzi
- Dipartimento di Medicina Veterinaria (DIMEVET), University of Milan, 26900 Lodi, Italy; (G.P.); (M.G.D.I.); (J.F.S.F.); (F.R.); (G.G.)
- Correspondence: (B.L.); (G.M.)
| |
Collapse
|
8
|
Application of Next Generation Semiconductor-Based Sequencing for the Identification of Apis mellifera Complementary Sex Determiner ( csd) Alleles from Honey DNA. INSECTS 2021; 12:insects12100868. [PMID: 34680637 PMCID: PMC8536997 DOI: 10.3390/insects12100868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary Honey contains traces of the DNA of the honey bees that produced it. This environmental DNA can therefore be used to investigate the genome of the honey bees. In this study, we used a next generation sequencing technology to analyze the variability of a key gene of Apis mellifera L., the complementary sex determiner (csd) gene, using honey environmental DNA as a source of honey bee DNA. This gene determines the sex of the bees. Two different alleles at this locus are needed to produce females whereas males have only one copy of this gene as they are haploid. In case two identical alleles are present in a diploid individual, the larvae are not vital and are discarded by the workers. Therefore, there is an advantage in maintaining a large csd diversity in honey bee populations. In light of the recent decline in honey bee populations, it is important to monitor the allele variability at this gene. The applied methodology provided a new strategy to disclose the genetic diversity at the csd gene at the population-wide level and identify most, if not all, csd alleles present in the colonies in a single analysis. Abstract The complementary sex determiner (csd) gene plays an essential role in the sex determination of Apis mellifera L. Females develop only if fertilized eggs have functional heterozygous genotypes at this gene whereas males, being haploids, are hemizygous. Two identical csd alleles produce non vital males. In light of the recent decline in honey bee populations, it is therefore important to monitor the allele variability at this gene. In this study, we tested the application of next generation semiconductor-based sequencing technology (Ion Torrent) coupled with environmental honey DNA as a source of honey bee genome information to retrieve massive sequencing data for the analysis of variability at the hypervariable region (HVR) of the csd gene. DNA was extracted from 12 honey samples collected from honeycombs directly retrieved from 12 different colonies. A specifically designed bioinformatic pipeline, applied to analyze a total of about 1.5 million reads, identified a total of 160 different csd alleles, 55% of which were novel. The average number of alleles per sample was compatible with the number of expected patrilines per colony, according to the mating behavior of the queens. Allele diversity at the csd could also provide information useful to reconstruct the history of the honey.
Collapse
|
9
|
Wang X, Lin Y, Liang L, Geng H, Zhang M, Nie H, Su S. Transcriptional Profiles of Diploid Mutant Apis mellifera Embryos after Knockout of csd by CRISPR/Cas9. INSECTS 2021; 12:insects12080704. [PMID: 34442270 PMCID: PMC8396534 DOI: 10.3390/insects12080704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary In honey bees, males are haploid while females are diploid, leading to a fundamental difference in genetic materials between the sexes. In order to better control the comparison of gene expression between males and females, diploid mutant males were generated by knocking out the sex-determining gene, complementary sex determiner (csd), in fertilized embryos. The diploid mutant drones had male external morphological features, as well as male gonads. RNA sequencing was performed on the diploid mutant embryos and one-day-old larvae. The transcriptome analysis showed that several female-biased genes, such as worker-enriched antennal (Wat), vitellogenin (Vg), and some venom-related genes, were down-regulated in the diploid mutant males. In contrast, some male-biased genes, like takeout and apolipophorin-III-like protein (A4), were up-regulated. Moreover, the co-expression gene networks suggested that csd might interact very closely with fruitless (fru), feminizer (fem) might have connections with hexamerin 70c (hex70c), and transformer-2 (tra2) might play roles with troponin T (TpnT). Foundational information about the differences in the gene expression caused by sex differentiation was provided in this study. It is believed that this study will pave the ground for further research on the different mechanisms between males and females in honey bees. Abstract In honey bees, complementary sex determiner (csd) is the primary signal of sex determination. Its allelic composition is heterozygous in females, and hemizygous or homozygous in males. To explore the transcriptome differences after sex differentiation between males and females, with genetic differences excluded, csd in fertilized embryos was knocked out by CRISPR/Cas9. The diploid mutant males at 24 h, 48 h, 72 h, and 96 h after egg laying (AEL) and the mock-treated females derived from the same fertilized queen were investigated through RNA-seq. Mutations were detected in the target sequence in diploid mutants. The diploid mutant drones had typical male morphological characteristics and gonads. Transcriptome analysis showed that several female-biased genes, such as worker-enriched antennal (Wat), vitellogenin (Vg), and some venom-related genes, were down-regulated in the diploid mutant males. In contrast, some male-biased genes, such as takeout and apolipophorin-III-like protein (A4), had higher expressions in the diploid mutant males. Weighted gene co-expression network analysis (WGCNA) indicated that there might be interactions between csd and fruitless (fru), feminizer (fem) and hexamerin 70c (hex70c), transformer-2 (tra2) and troponin T (TpnT). The information provided by this study will benefit further research on the sex dimorphism and development of honey bees and other insects in Hymenoptera.
Collapse
Affiliation(s)
- Xiuxiu Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (L.L.); (H.G.); (M.Z.)
| | - Yan Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (L.L.); (H.G.); (M.Z.)
| | - Liqiang Liang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (L.L.); (H.G.); (M.Z.)
| | - Haiyang Geng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (L.L.); (H.G.); (M.Z.)
| | - Meng Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (L.L.); (H.G.); (M.Z.)
- Apicultural Research Institute of Jiangxi Province, Nanchang 330052, China
| | - Hongyi Nie
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (L.L.); (H.G.); (M.Z.)
- Correspondence: (H.N.); (S.S.); Tel.: +86-157-0590-2721 (H.N.); +86-181-0503-9938 (S.S.)
| | - Songkun Su
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (L.L.); (H.G.); (M.Z.)
- Correspondence: (H.N.); (S.S.); Tel.: +86-157-0590-2721 (H.N.); +86-181-0503-9938 (S.S.)
| |
Collapse
|
10
|
Hagan T, Gloag R. Founder effects on sex determination systems in invasive social insects. CURRENT OPINION IN INSECT SCIENCE 2021; 46:31-38. [PMID: 33610774 DOI: 10.1016/j.cois.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Invasive populations are often established from a small number of individuals, and thus have low genetic diversity relative to native-range populations. Social ants, bees and wasps (social Hymenoptera) should be vulnerable to such founder effects on genetic diversity because sex in these species is determined genetically via Complementary Sex Determination (CSD). Under CSD, individuals homozygous at one or more critical sex loci are inviable or develop as infertile diploid males. Low diversity at sex loci leads to increased homozygosity and diploid male production, increasing the chance of colony death. In this review, we identify behavioral, social and reproductive traits that preserve allele richness at sex loci, allow colonies to cope with diploid male production, and eventually restore sex allele diversity in invasive populations of social Hymenoptera that experience founding bottlenecks.
Collapse
Affiliation(s)
- Thomas Hagan
- Behaviour, Ecology and Evolution Lab, School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Rosalyn Gloag
- Behaviour, Ecology and Evolution Lab, School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
11
|
Global allele polymorphism indicates a high rate of allele genesis at a locus under balancing selection. Heredity (Edinb) 2020; 126:163-177. [PMID: 32855546 DOI: 10.1038/s41437-020-00358-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 11/08/2022] Open
Abstract
When selection favours rare alleles over common ones (balancing selection in the form of negative frequency-dependent selection), a locus may maintain a large number of alleles, each at similar frequency. To better understand how allelic richness is generated and maintained at such loci, we assessed 201 sequences of the complementary sex determiner (csd) of the Asian honeybee (Apis cerana), sampled from across its range. Honeybees are haplodiploid; hemizygotes at csd develop as males and heterozygotes as females, while homozygosity is lethal. Thus, csd is under strong negative frequency-dependent selection because rare alleles are less likely to end up in the lethal homozygous form. We find that in A. cerana, as in other Apis, just a few amino acid differences between csd alleles in the hypervariable region are sufficient to trigger female development. We then show that while allelic lineages are spread across geographical regions, allelic differentiation is high between populations, with most csd alleles (86.3%) detected in only one sample location. Furthermore, nucleotide diversity in the hypervariable region indicates an excess of recently arisen alleles, possibly associated with population expansion across Asia since the last glacial maximum. Only the newly invasive populations of the Austral-Pacific share most of their csd alleles. In all, the geographic patterns of csd diversity in A. cerana indicate that high mutation rates and balancing selection act together to produce high rates of allele genesis and turnover at the honeybee sex locus, which in turn leads to its exceptionally high local and global polymorphism.
Collapse
|
12
|
An Alternative, High Throughput Method to Identify Csd Alleles of the Honey Bee. INSECTS 2020; 11:insects11080483. [PMID: 32751511 PMCID: PMC7469139 DOI: 10.3390/insects11080483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/05/2022]
Abstract
Applying instrumental insemination in closely related honey bee colonies often leads to frequent lethality of offspring causing colony collapse. This is due to the peculiarities of honey bee reproductive biology, where the complementary sex determination (csd) gene drives sex determination within a haplodiploid system. Diploid drones containing homozygous genotypes are lethal. Tracking of csd alleles using molecular markers prevents this unwanted event in closed breeding programs. Our approach described here is based on high throughput sequencing (HTS) that provides more data than traditional molecular techniques and is capable of analysing sources containing multiple alleles, including diploid individuals as the bee queen. The approach combines HTS technique and clipping wings as a minimally invasive method to detect the complementary sex determiner (csd) alleles directly from honey bee queens. Furthermore, it might also be suitable for screening alleles of honey harvested from hives of a closed breeding facility. Data on alleles of the csd gene from different honey bee subspecies are provided. It might contribute to future databases that could potentially be used to track the origin of honey. With the help of tracking csd alleles, more focused crossings will be possible, which could in turn accelerate honey bee breeding programmes targeting increase tolerance against varroosis as well.
Collapse
|
13
|
Gupta MK, Vadde R. Genetic Basis of Adaptation and Maladaptation via Balancing Selection. ZOOLOGY 2019; 136:125693. [PMID: 31513936 DOI: 10.1016/j.zool.2019.125693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
|
14
|
Kaskinova MD, Gataullin AR, Saltykova ES, Gaifullina LR, Poskryakov AV, Nikolenko AG. Polymorphism of the Hypervariable Region of the csd Gene in the Apis mellifera L. Population in Southern Urals. RUSS J GENET+ 2019. [DOI: 10.1134/s102279541902008x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Evidence for Stabilizing Selection Driving Mutational Turnover of Short Motifs in the Eukaryotic Complementary Sex Determiner (Csd) Protein. G3-GENES GENOMES GENETICS 2018; 8:3803-3812. [PMID: 30287489 PMCID: PMC6288827 DOI: 10.1534/g3.118.200527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Short linear motifs (SLiMs) can play pivotal functional roles in proteins, such as targeting proteins to specific subcellular localizations, modulating the efficiency of translation and tagging proteins for degradation. Until recently we had little knowledge about SLiM evolution. Only a few amino acids in these motifs are functionally important, making them likely to evolve ex nihilo and suggesting that they can play key roles in protein evolution. Several reports now suggest that these motifs can appear and disappear while their function in the protein is preserved, a process sometimes referred to as “turnover”. However, there has been a lack of specific experiments to determine whether independently evolved motifs do indeed have the same function, which would conclusively determine whether the process of turnover actually occurs. In this study, we experimentally detected evidence for such a mutational turnover process for nuclear localization signals (NLS) during the post-duplication divergence of the Complementary sex determiner (Csd) and Feminizer (Fem) proteins in the honeybee (Apis mellifera) lineage. Experiments on the nuclear transport activity of protein segments and those of the most recent common ancestor (MRCA) sequences revealed that three new NLS motifs evolved in the Csd protein during the post-duplication divergence while other NLS motifs were lost that existed before duplication. A screen for essential and newly evolved amino acids revealed that new motifs in the Csd protein evolved by one or two missense mutations coding for lysine. Amino acids that were predating the duplication were also essential in the acquisition of the C1 motif suggesting that the ex nihilo origin was constrained by preexisting amino acids in the physical proximity. Our data support a model in which stabilizing selection maintains the constancy of nuclear transport function but allowed mutational turnover of the encoding NLS motifs.
Collapse
|
16
|
Zareba J, Blazej P, Laszkiewicz A, Sniezewski L, Majkowski M, Janik S, Cebrat M. Uneven distribution of complementary sex determiner (csd) alleles in Apis mellifera population. Sci Rep 2017; 7:2317. [PMID: 28539589 PMCID: PMC5443781 DOI: 10.1038/s41598-017-02629-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/04/2017] [Indexed: 11/23/2022] Open
Abstract
The complementary sex determiner (csd) gene determines the sex of the western honey bee (Apis mellifera L.). Bees that are heterozygous at the csd locus develop into females; whereas hemizygous bees develop into males. The co-occurrence of two identical csd alleles in a single diploid genome leads to the genetic death of the bee. Thus, the maintenance of csd diversity in the population is favoured. The number and distribution of csd alleles is particularly interesting in light of the recent decline in the honey bee population. In this study, we analysed the distribution of csd alleles in two Polish populations separated by about 100 km. We analysed the maternal alleles of 193 colonies and found 121 different alleles. We also analysed the distribution and frequency of the alleles, and found that they are distributed unevenly. We show that the methods that have been used so far to estimate the total worldwide number of csd alleles have significantly underestimated their diversity. We also show that the uneven distribution of csd alleles is caused by a large number of infrequent alleles, which most likely results from the fact that these alleles are generated very frequently.
Collapse
Affiliation(s)
- Joanna Zareba
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Pawel Blazej
- Department of Genomics, Faculty of Biotechnology, Wroclaw University, F. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Agnieszka Laszkiewicz
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Lukasz Sniezewski
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Michal Majkowski
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Sylwia Janik
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Malgorzata Cebrat
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland.
| |
Collapse
|
17
|
Weis JJ, Ode PJ, Heimpel GE. Balancing selection maintains sex determining alleles in multiple‐locus complementary sex determination. Evolution 2017; 71:1246-1257. [DOI: 10.1111/evo.13204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/07/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Jerome J. Weis
- Department of Entomology University of Minnesota St. Paul Minnesota 55108
| | - Paul J. Ode
- Department of Bioagricultural Sciences and Pest Management Colorado State University Fort Collins Colorado 80523
| | - George E. Heimpel
- Department of Entomology University of Minnesota St. Paul Minnesota 55108
| |
Collapse
|
18
|
Molecular characterisation, genetic variability and detection of a functional polymorphism influencing the promoter activity of OXT gene in goat and sheep. J DAIRY RES 2017; 84:165-169. [PMID: 28290268 DOI: 10.1017/s0022029917000097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The purpose of the study described in this Research Communication was to report the full characterisation of the goat and sheep oxytocin-neurophysin I gene (OXT), their promoters and amino acid sequences. Using the genomic DNA as template, we sequenced and compared the whole OXT gene (3 exons), plus 958/960 nucleotides at the 5' flanking region and 478/477 nucleotides at the 3' flanking region, in 46 sheep and 24 goats belonging to different breeds/genetic types reared in Italy, Greece and Germany. The comparison of the obtained sequences showed a high degree of genetic variability at these loci. In particular, we focused on the SNP g.438T > C as possible example of trans-specific polymorphism. This SNP alters a putative binding site of the transcription factor Oct-1. The set-up of a luciferase assay confirmed that the C variant of this SNP negatively affects the promoter activity of the sheep OXT gene. The results of this study suggest that the SNP g.438T > C might be useful to promote association studies with traits/physiological processes controlled by this hormone.
Collapse
|
19
|
Soro A, Quezada-Euan JJG, Theodorou P, Moritz RFA, Paxton RJ. The population genetics of two orchid bees suggests high dispersal, low diploid male production and only an effect of island isolation in lowering genetic diversity. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0912-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
An invasive social insect overcomes genetic load at the sex locus. Nat Ecol Evol 2016; 1:11. [PMID: 28812560 DOI: 10.1038/s41559-016-0011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/09/2016] [Indexed: 11/08/2022]
Abstract
Some invasive hymenopteran social insects found new populations with very few reproductive individuals. This is despite the high cost of founder effects for such insects, which generally require heterozygosity at a single locus-the complementary sex determiner, csd-to develop as females. Individuals that are homozygous at csd develop as either infertile or subfertile diploid males or not at all. Furthermore, diploid males replace the female workers that are essential for colony function. Here we document how the Asian honey bee (Apis cerana) overcame the diploid male problem during its invasion of Australia. Natural selection prevented the loss of rare csd alleles due to genetic drift and corrected the skew in allele frequencies caused by founder effects to restore high average heterozygosity. Thus, balancing selection can alleviate the genetic load at csd imposed by severe bottlenecks, and so facilitate invasiveness.
Collapse
|
21
|
Biewer M, Lechner S, Hasselmann M. Similar but not the same: insights into the evolutionary history of paralogous sex-determining genes of the dwarf honey bee Apis florea. Heredity (Edinb) 2015; 116:12-22. [PMID: 26153222 DOI: 10.1038/hdy.2015.60] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 05/01/2015] [Accepted: 05/06/2015] [Indexed: 01/07/2023] Open
Abstract
Studying the fate of duplicated genes provides informative insight into the evolutionary plasticity of biological pathways to which they belong. In the paralogous sex-determining genes complementary sex determiner (csd) and feminizer (fem) of honey bee species (genus Apis), only heterozygous csd initiates female development. Here, the full-length coding sequences of the genes csd and fem of the phylogenetically basal dwarf honey bee Apis florea are characterized. Compared with other Apis species, remarkable evolutionary changes in the formation and localization of a protein-interacting (coiled-coil) motif and in the amino acids coding for the csd characteristic hypervariable region (HVR) are observed. Furthermore, functionally different csd alleles were isolated as genomic fragments from a random population sample. In the predicted potential specifying domain (PSD), a high ratio of πN/πS=1.6 indicated positive selection, whereas signs of balancing selection, commonly found in other Apis species, are missing. Low nucleotide diversity on synonymous and genome-wide, non-coding sites as well as site frequency analyses indicated a strong impact of genetic drift in A. florea, likely linked to its biology. Along the evolutionary trajectory of ~30 million years of csd evolution, episodic diversifying selection seems to have acted differently among distinct Apis branches. Consistently low amino-acid differences within the PSD among pairs of functional heterozygous csd alleles indicate that the HVR is the most important region for determining allele specificity. We propose that in the early history of the lineage-specific fem duplication giving rise to csd in Apis, A. florea csd stands as a remarkable example for the plasticity of initial sex-determining signals.
Collapse
Affiliation(s)
- M Biewer
- Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - S Lechner
- CeGaT GmbH - Center for Genomics and Transcriptomics, Tübingen, Germany
| | - M Hasselmann
- Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
22
|
Fijarczyk A, Babik W. Detecting balancing selection in genomes: limits and prospects. Mol Ecol 2015; 24:3529-45. [DOI: 10.1111/mec.13226] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/27/2015] [Accepted: 04/30/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Anna Fijarczyk
- Institute of Environmental Sciences; Jagiellonian University; Gronostajowa 7 30-387 Kraków Poland
| | - Wiesław Babik
- Institute of Environmental Sciences; Jagiellonian University; Gronostajowa 7 30-387 Kraków Poland
| |
Collapse
|
23
|
Kapheim KM, Pan H, Li C, Salzberg SL, Puiu D, Magoc T, Robertson HM, Hudson ME, Venkat A, Fischman BJ, Hernandez A, Yandell M, Ence D, Holt C, Yocum GD, Kemp WP, Bosch J, Waterhouse RM, Zdobnov EM, Stolle E, Kraus FB, Helbing S, Moritz RFA, Glastad KM, Hunt BG, Goodisman MAD, Hauser F, Grimmelikhuijzen CJP, Pinheiro DG, Nunes FMF, Soares MPM, Tanaka ÉD, Simões ZLP, Hartfelder K, Evans JD, Barribeau SM, Johnson RM, Massey JH, Southey BR, Hasselmann M, Hamacher D, Biewer M, Kent CF, Zayed A, Blatti C, Sinha S, Johnston JS, Hanrahan SJ, Kocher SD, Wang J, Robinson GE, Zhang G. Social evolution. Genomic signatures of evolutionary transitions from solitary to group living. Science 2015; 348:1139-43. [PMID: 25977371 PMCID: PMC5471836 DOI: 10.1126/science.aaa4788] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/06/2015] [Indexed: 12/14/2022]
Abstract
The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks.
Collapse
Affiliation(s)
- Karen M Kapheim
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Biology, Utah State University, Logan, UT 84322, USA.
| | - Hailin Pan
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, China
| | - Cai Li
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, 1350, Denmark
| | - Steven L Salzberg
- Departments of Biomedical Engineering, Computer Science, and Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA. Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniela Puiu
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tanja Magoc
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hugh M Robertson
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Matthew E Hudson
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aarti Venkat
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Brielle J Fischman
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Program in Ecology and Evolutionary Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Biology, Hobart and William Smith Colleges, Geneva, NY 14456, USA
| | - Alvaro Hernandez
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mark Yandell
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA. USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA
| | - Daniel Ence
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Carson Holt
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA. USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA
| | - George D Yocum
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) Red River Valley Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND 58102, USA
| | - William P Kemp
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) Red River Valley Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND 58102, USA
| | - Jordi Bosch
- Center for Ecological Research and Forestry Applications (CREAF), Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
| | - Eckart Stolle
- Institute of Biology, Department Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 4, D-06099 Halle (Saale), Germany. Queen Mary University of London, School of Biological and Chemical Sciences Organismal Biology Research Group, London E1 4NS, UK
| | - F Bernhard Kraus
- Institute of Biology, Department Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 4, D-06099 Halle (Saale), Germany. Department of Laboratory Medicine, University Hospital Halle, Ernst Grube Strasse 40, D-06120 Halle (Saale), Germany
| | - Sophie Helbing
- Institute of Biology, Department Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 4, D-06099 Halle (Saale), Germany
| | - Robin F A Moritz
- Institute of Biology, Department Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 4, D-06099 Halle (Saale), Germany. German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Karl M Glastad
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Brendan G Hunt
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA
| | | | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cornelis J P Grimmelikhuijzen
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Guariz Pinheiro
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil. Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), 14884-900 Jaboticabal, SP, Brazil
| | - Francis Morais Franco Nunes
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Michelle Prioli Miranda Soares
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Érica Donato Tanaka
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Zilá Luz Paulino Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Jay D Evans
- USDA-ARS Bee Research Lab, Beltsville, MD 20705 USA
| | - Seth M Barribeau
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Reed M Johnson
- Department of Entomology, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH 44691, USA
| | - Jonathan H Massey
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Martin Hasselmann
- Department of Population Genomics, Institute of Animal Husbandry and Animal Breeding, University of Hohenheim, Germany
| | - Daniel Hamacher
- Department of Population Genomics, Institute of Animal Husbandry and Animal Breeding, University of Hohenheim, Germany
| | - Matthias Biewer
- Department of Population Genomics, Institute of Animal Husbandry and Animal Breeding, University of Hohenheim, Germany
| | - Clement F Kent
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada. Janelia Farm Research Campus, Howard Hughes Medical Institue, Ashburn, VA 20147, USA
| | - Amro Zayed
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Charles Blatti
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Saurabh Sinha
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Shawn J Hanrahan
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Sarah D Kocher
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Jun Wang
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, China. Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark. Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China. Department of Medicine, University of Hong Kong, Hong Kong.
| | - Gene E Robinson
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Center for Advanced Study Professor in Entomology and Neuroscience, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
24
|
de Boer JG, Groenen MAM, Pannebakker BA, Beukeboom LW, Kraus RHS. Population-level consequences of complementary sex determination in a solitary parasitoid. BMC Evol Biol 2015; 15:98. [PMID: 26025754 PMCID: PMC4461988 DOI: 10.1186/s12862-015-0340-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/26/2015] [Indexed: 11/16/2022] Open
Abstract
Background Sex determination mechanisms are known to be evolutionarily labile but the factors driving transitions in sex determination mechanisms are poorly understood. All insects of the Hymenoptera are haplodiploid, with males normally developing from unfertilized haploid eggs. Under complementary sex determination (CSD), diploid males can be produced from fertilized eggs that are homozygous at the sex locus. Diploid males have near-zero fitness and thus represent a genetic load, which is especially severe under inbreeding. Here, we study mating structure and sex determination in the parasitoid Cotesia vestalis to investigate what may have driven the evolution of two complementary sex determination loci in this species. Results We genotyped Cotesia vestalis females collected from eight fields in four townships in Western Taiwan. 98 SNP markers were developed by aligning Illumina sequence reads of pooled DNA of eight different females against a de novo assembled genome of C. vestalis. This proved to be an efficient method for this non-model species and provides a resource for future use in related species. We found significant genetic differentiation within the sampled population but variation could not be attributed to sampling locations by AMOVA. Non-random mating was detected, with 8.1% of matings between siblings. Diploid males, detected by flow cytometry, were produced at a rate of 1.4% among diploids. Conclusions We think that the low rate of diploid male production is best explained by a CSD system with two independent sex loci, supporting laboratory findings on the same species. Fitness costs of diploid males in C. vestalis are high because diploid males can mate with females and produce infertile triploid offspring. This severe fitness cost of diploid males combined with non-random mating may have resulted in evolution from single locus CSD to CSD with two independent loci. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0340-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jetske G de Boer
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands. .,Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Martien A M Groenen
- Animal Breeding and Genomics Centre, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Bart A Pannebakker
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Leo W Beukeboom
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands.
| | - Robert H S Kraus
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany. .,Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Am Obstberg 1, 78315, Radolfzell, Germany.
| |
Collapse
|
25
|
Trans-Species Polymorphism in Immune Genes: General Pattern or MHC-Restricted Phenomenon? J Immunol Res 2015; 2015:838035. [PMID: 26090501 PMCID: PMC4458282 DOI: 10.1155/2015/838035] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/04/2015] [Indexed: 11/24/2022] Open
Abstract
Immunity exhibits extraordinarily high levels of variation. Evolution of the immune system in response to host-pathogen interactions in particular ecological contexts appears to be frequently associated with diversifying selection increasing the genetic variability. Many studies have documented that immunologically relevant polymorphism observed today may be tens of millions years old and may predate the emergence of present species. This pattern can be explained by the concept of trans-species polymorphism (TSP) predicting the maintenance and sharing of favourable functionally important alleles of immune-related genes between species due to ongoing balancing selection. Despite the generality of this concept explaining the long-lasting adaptive variation inherited from ancestors, current research in TSP has vastly focused only on major histocompatibility complex (MHC). In this review we summarise the evidence available on TSP in human and animal immune genes to reveal that TSP is not a MHC-specific evolutionary pattern. Further research should clearly pay more attention to the investigation of TSP in innate immune genes and especially pattern recognition receptors which are promising candidates for this type of evolution. More effort should also be made to distinguish TSP from convergent evolution and adaptive introgression. Identification of balanced TSP variants may represent an accurate approach in evolutionary medicine to recognise disease-resistance alleles.
Collapse
|
26
|
Biewer M, Schlesinger F, Hasselmann M. The evolutionary dynamics of major regulators for sexual development among Hymenoptera species. Front Genet 2015; 6:124. [PMID: 25914717 PMCID: PMC4392698 DOI: 10.3389/fgene.2015.00124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/16/2015] [Indexed: 11/28/2022] Open
Abstract
All hymenopteran species, such as bees, wasps and ants, are characterized by the common principle of haplodiploid sex determination in which haploid males arise from unfertilized eggs and females from fertilized eggs. The underlying molecular mechanism has been studied in detail in the western honey bee Apis mellifera, in which the gene complementary sex determiner (csd) acts as primary signal of the sex determining pathway, initiating female development by csd-heterozygotes. Csd arose from gene duplication of the feminizer (fem) gene, a transformer (tra) ortholog, and mediates in conjunction with transformer2 (tra2) sex-specific splicing of fem. Comparative molecular analyses identified fem/tra and its downstream target doublesex (dsx) as conserved unit within the sex determining pathway of holometabolous insects. In this study, we aim to examine evolutionary differences among these key regulators. Our main hypothesis is that sex determining key regulators in Hymenoptera species show signs of coevolution within single phylogenetic lineages. We take advantage of several newly sequenced genomes of bee species to test this hypothesis using bioinformatic approaches. We found evidences that duplications of fem are restricted to certain bee lineages and notable amino acid differences of tra2 between Apis and non-Apis species propose structural changes in Tra2 protein affecting co-regulatory function on target genes. These findings may help to gain deeper insights into the ancestral mode of hymenopteran sex determination and support the common view of the remarkable evolutionary flexibility in this regulatory pathway.
Collapse
Affiliation(s)
- Matthias Biewer
- Population Genetics of Social Insects, Institute of Genetics, University of Cologne Cologne, Germany ; Livestock Population Genomics Group, Institute of Animal Science, University of Hohenheim Stuttgart, Germany
| | - Francisca Schlesinger
- Population Genetics of Social Insects, Institute of Genetics, University of Cologne Cologne, Germany ; Institute of Bee Research Hohen Neuendorf, Germany
| | - Martin Hasselmann
- Population Genetics of Social Insects, Institute of Genetics, University of Cologne Cologne, Germany ; Livestock Population Genomics Group, Institute of Animal Science, University of Hohenheim Stuttgart, Germany
| |
Collapse
|