1
|
Ellsworth SA, Rautsaw RM, Ward MJ, Holding ML, Rokyta DR. Selection Across the Three-Dimensional Structure of Venom Proteins from North American Scolopendromorph Centipedes. J Mol Evol 2024:10.1007/s00239-024-10191-y. [PMID: 39026042 DOI: 10.1007/s00239-024-10191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Gene duplication followed by nucleotide differentiation is one of the simplest mechanisms to develop new functions for genes. However, the evolutionary processes underlying the divergence of multigene families remain controversial. We used multigene families found within the diversity of toxic proteins in centipede venom to test two hypotheses related to venom evolution: the two-speed mode of venom evolution and the rapid accumulation of variation in exposed residues (RAVER) model. The two-speed mode of venom evolution proposes that different types of selection impact ancient and younger venomous lineages with negative selection being the predominant form in ancient lineages and positive selection being the dominant form in younger lineages. The RAVER hypothesis proposes that, instead of different types of selection acting on different ages of venomous lineages, the different types of selection will selectively contribute to amino acid variation based on whether the residue is exposed to the solvent where it can potentially interact directly with toxin targets. This hypothesis parallels the longstanding understanding of protein evolution that suggests that residues found within the structural or active regions of the protein will be under negative or purifying selection, and residues that do not form part of these areas will be more prone to positive selection. To test these two hypotheses, we compared the venom of 26 centipedes from the order Scolopendromorpha from six currently recognized species from across North America using both transcriptomics and proteomics. We first estimated their phylogenetic relationships and uncovered paraphyly among the genus Scolopendra and evidence for cryptic diversity among currently recognized species. Using our phylogeny, we then characterized the diverse venom components from across the identified clades using a combination of transcriptomics and proteomics. We conducted selection-based analyses in the context of predicted three-dimensional properties of the venom proteins and found support for both hypotheses. Consistent with the two-speed hypothesis, we found a prevalence of negative selection across all proteins. Consistent with the RAVER hypothesis, we found evidence of positive selection on solvent-exposed residues, with structural and less-exposed residues showing stronger signal for negative selection. Through the use of phylogenetics, transcriptomics, proteomics, and selection-based analyses, we were able to describe the evolution of venom from an ancient venomous lineage and support principles of protein evolution that directly relate to multigene family evolution.
Collapse
Affiliation(s)
- Schyler A Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Rhett M Rautsaw
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Micaiah J Ward
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Matthew L Holding
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
2
|
Mitić BM, Jovanović VB, Todosijević MM, Eckhard M, Vasiljević LC, Tešević VV, Vujisić LV. Chemical defence of a centipede (Clinopodes flavidus). JOURNAL OF INSECT PHYSIOLOGY 2024; 155:104649. [PMID: 38754699 DOI: 10.1016/j.jinsphys.2024.104649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Chemical substances are of utmost importance for the biotic interactions between animals and their predators/parasites; many of these semiochemicals are emitted for defence purposes. One of the most deterrent and toxic biogenic substances we know of is hydrogen cyanide, which can be stored by certain insects, millipedes, centipedes and arachnids in the form of stable and less volatile molecules. The aim of this study was to analyse the biology and chemistry of such a defence mechanism in a geophilomorph centipede (Chilopoda). The cyanogenic secretion of Clinopodes flavidus is discharged from the ventral glands, whose glandular units are located in the space between the cuticle and the trunk muscles and do not extend deep into the segment. In addition to hydrogen cyanide, the ventral secretion contains 2-methylpentanoic acid, benzaldehyde, benzoyl cyanide, 2-methyl branched C-9 carboxylic acid (tentatively identified as 2-methyloctanoic acid), methyl 2-phenylacetate, benzoic acid and mandelonitrile as well as four major proteins with a molecular weight of 150, 66.2, 59 and 55 kDa. The correlation between the presence of ventral glands and guarding with the female's ventral side facing away from the eggs and young indicates a functional link between these two traits. We hope that the specificity of the chemical composition of the ventral secretion could serve as a criterion for chemotaxonomy and that the analysis of more species will help to clarify the phylogenetic relationships within the Geophilomorpha.
Collapse
Affiliation(s)
- Bojan M Mitić
- Institute of Zoology, University of Belgrade - Faculty of Biology, Studentski Trg 16, 11000 Belgrade, Serbia; Faculty of Technology Zvornik, University of East Sarajevo, Karakaj 34a, 75400 Zvornik, Republic of Srpska, Bosnia and Herzegovina.
| | - Vesna B Jovanović
- University of Belgrade - Faculty of Chemistry, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Marina M Todosijević
- University of Belgrade - Faculty of Chemistry, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Margret Eckhard
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Ljubica C Vasiljević
- Faculty of Technology Zvornik, University of East Sarajevo, Karakaj 34a, 75400 Zvornik, Republic of Srpska, Bosnia and Herzegovina
| | - Vele V Tešević
- University of Belgrade - Faculty of Chemistry, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Ljubodrag V Vujisić
- University of Belgrade - Faculty of Chemistry, Studentski Trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Bharti DK, Pawar PY, Edgecombe GD, Joshi J. Genetic diversity varies with species traits and latitude in predatory soil arthropods (Myriapoda: Chilopoda). GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2023; 32:1508-1521. [PMID: 38708411 PMCID: PMC7615927 DOI: 10.1111/geb.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/13/2023] [Indexed: 05/07/2024]
Abstract
Aim To investigate the drivers of intra-specific genetic diversity in centipedes, a group of ancient predatory soil arthropods. Location Asia, Australasia and Europe. Time Period Present. Major Taxa Studied Centipedes (Class: Chilopoda). Methods We assembled a database of 1245 mitochondrial cytochrome c oxidase subunit I sequences representing 128 centipede species from all five orders of Chilopoda. This sequence dataset was used to estimate genetic diversity for centipede species and compare its distribution with estimates from other arthropod groups. We studied the variation in centipede genetic diversity with species traits and biogeography using a beta regression framework, controlling for the effect of shared evolutionary history within a family. Results A wide variation in genetic diversity across centipede species (0-0.1713) falls towards the higher end of values among arthropods. Overall, 27.57% of the variation in mitochondrial COI genetic diversity in centipedes was explained by a combination of predictors related to life history and biogeography. Genetic diversity decreased with body size and latitudinal position of sampled localities, was greater in species showing maternal care and increased with geographic distance among conspecifics. Main Conclusions Centipedes fall towards the higher end of genetic diversity among arthropods, which may be related to their long evolutionary history and low dispersal ability. In centipedes, the negative association of body size with genetic diversity may be mediated by its influence on local abundance or the influence of ecological strategy on long-term population history. Species with maternal care had higher genetic diversity, which goes against expectations and needs further scrutiny. Hemispheric differences in genetic diversity can be due to historic climatic stability and lower seasonality in the southern hemisphere. Overall, we find that despite the differences in mean genetic diversity among animals, similar processes related to life-history strategy and biogeography are associated with the variation within them.
Collapse
Affiliation(s)
- D. K. Bharti
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Jahnavi Joshi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Benítez-Álvarez L, Leria L, Dols-Serrate D, Riutort M. Building Phylogenies from Transcriptomic Data. Methods Mol Biol 2023; 2680:1-27. [PMID: 37428368 DOI: 10.1007/978-1-0716-3275-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Transcriptomic data (obtained from RNA sequencing) has become a very powerful source of information to reconstruct the evolutionary relationships among organisms. Although phylogenetic inference using transcriptomes retains the same core steps as when working with few molecular markers (viz., nucleic acid extraction and sequencing, sequence treatment, and tree inference), all of them show significant differences. First, the needed quantity and quality of the extracted RNA has to be very high. Although this may not represent a challenge when working with certain organisms, it may well be a headache with others, especially for those with small body sizes. Second, the tremendous increase in the quantity of sequences obtained requires a high computational power for both treating the sequences and inferring the subsequent phylogenies. This means that transcriptomic data can no longer be analyzed using personal computers nor local programs with a graphical interface. This, in turn, implies the requirement of an increased set of bioinformatic skills from the researchers. Finally, the genomic peculiarities of each group of organisms, such as the level of heterozygosity or the percentage of base composition, also need to be considered when inferring phylogenies using transcriptomic data.
Collapse
Affiliation(s)
- Lisandra Benítez-Álvarez
- Departament de Genètica, Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Laia Leria
- Departament de Genètica, Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Daniel Dols-Serrate
- Departament de Genètica, Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Riutort
- Departament de Genètica, Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
5
|
Phylotranscriptomics interrogation uncovers a complex evolutionary history for the planarian genus Dugesia (Platyhelminthes, Tricladida) in the Western Mediterranean. Mol Phylogenet Evol 2023; 178:107649. [PMID: 36280167 DOI: 10.1016/j.ympev.2022.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022]
Abstract
The Mediterranean is one of the most biodiverse areas of the Paleartic region. Here, basing on large data sets of single copy orthologs obtained from transcriptomic data, we investigated the evolutionary history of the genus Dugesia in the Western Mediterranean area. The results corroborated that the complex paleogeological history of the region was an important driver of diversification for the genus, speciating as microplates and islands were forming. These processes led to the differentiation of three main biogeographic clades: Iberia-Apennines-Alps, Corsica-Sardinia, and Iberia-Africa. The internal relationships of these major clades were analysed with several representative samples per species. The use of large data sets regarding the number of loci and samples, as well as state-of-the-art phylogenomic inference methods allowed us to answer different unresolved questions about the evolution of particular groups, such as the diversification path of D. subtentaculata in the Iberian Peninsula and its colonization of Africa. Additionally, our results support the differentiation of D. benazzii in two lineages which could represent two species. Finally, we analysed here for the first time a comprehensive number of samples from several asexual Iberian populations whose assignment at the species level has been an enigma through the years. The phylogenies obtained with different inference methods showed a branching topology of asexual individuals at the base of sexual clades. We hypothesize that this unexpected topology is related to long-term asexuality. This work represents the first phylotranscriptomic analysis of Tricladida, laying the first stone of the genomic era in phylogenetic studies on this taxonomic group.
Collapse
|
6
|
Benavides LR, Edgecombe GD, Giribet G. Re-evaluating and dating myriapod diversification with phylotranscriptomics under a regime of dense taxon sampling. Mol Phylogenet Evol 2023; 178:107621. [PMID: 36116731 DOI: 10.1016/j.ympev.2022.107621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
Recent transcriptomic studies of myriapod phylogeny have been based on relatively small datasets with <40 myriapod terminals and variably supported or contradicted the traditional morphological groupings of Progoneata and Dignatha. Here we amassed a large dataset of 104 myriapod terminals, including multiple species for each of the four myriapod classes. Across the tree, most nodes are stable and well supported. Most analyses across a range of gene occupancy levels provide moderate to strong support for a deep split of Myriapoda into Symphyla + Pauropoda (=Edafopoda) and an uncontradicted grouping of Chilopoda + Diplopoda (=Pectinopoda nov.), as in other recent transcriptome-based analyses; no analysis recovers Progoneata or Dignatha as clades. As in all recent multi-locus and phylogenomic studies, chilopod interrelationships resolve with Craterostigmus excluded from Amalpighiata rather than uniting with other centipedes with maternal brood care in Phylactometria. Diplopod ordinal interrelationships are largely congruent with morphology-based classifications. Chilognathan clades that are not invariably advocated by morphologists include Glomerida + Glomeridesmida, such that the volvation-related characters of pill millipedes may be convergent, and Stemmiulida + Polydesmida more closely allied to Juliformia than to Callipodida + Chordeumatida. The latter relationship implies homoplasy in spinnerets and contradicts Nematophora. A time-tree with nodes calibrated by 25 myriapod and six outgroup fossil terminals recovers Cambrian-Ordovician divergences for the deepest splits in Myriapoda, Edafopoda and Pectinopoda, predating the terrestrial fossil record of myriapods as in other published chronograms, whereas age estimates within Chilopoda and Diplopoda overlap with or do not appreciably predate the calibration fossils. The grouping of Chilopoda and Diplopoda is recovered in all our analyses and is formalized as Pectinopoda nov., named for the shared presence of mandibular comb lamellae. New taxonomic proposals for Chilopoda based on uncontradicted clades are Tykhepoda nov. for the three blind families of Scolopendromorpha that share a "sieve-type" gizzard, and Taktikospina nov. for Scolopendromorpha to the exclusion of Mimopidae.
Collapse
Affiliation(s)
- Ligia R Benavides
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| | | | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
7
|
Ding J, Lan H, Xu W, Chen Y, Wu H, Jiang H, Wang J, Wu Y, Liu H. Two complete mitochondrial genomes in Scolopendra and a comparative analysis of tRNA rearrangements in centipedes. Mol Biol Rep 2022; 49:6173-6180. [PMID: 35411482 DOI: 10.1007/s11033-022-07409-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/21/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Centipedes are one of the oldest terrestrial arthropods belonging to the sub phylum Myriapoda. With the expansion of our understanding of the application of the two centipedes Scolopendra morsitans and Scolopendra hainanum, belonging to the order Scolopendromorpha, an exhaustive classification was required. Although consensus has been reached on the phylogeny of Chilopoda based on morphological traits, recent analyses based on molecular data exhibited differences in results. METHODS AND RESULTS The mitochondrial genome sequences of S. morsitans and S. hainanum were obtained by next-generation sequencing. S. morsitans contains 13 PCGs, two rRNAs, 11 tRNAs, and one CR. whereas S. hainanum contains 12 PCGs, of which ATP8 remains unpredicted, two rRNAs, 14 tRNAs, and one CR. An obvious tRNA rearrangement was found in the genus Scolopendra. S. morsitans exhibited a loss of trnW, trnC, trnI, trnK, trnD, trnA, trnN, trnQ, trnF, trnT, trnS, trnL, and trnV, and a repeat of trnR and trnL. S. hainanum exhibited a loss of trnQ, trnC, trnW, trnI, trnD, trnQ, trnP, and trnV. Phylogenetic analyses of centipedes based on 12 PCGs supported the sister relationship between the orders Geophilomorpha and Lithobiomorpha and a close relationship between Scolopendra dehaani and S. hainanum. CONCLUSIONS The new mitogenomes determined in this study provide new genomic resources for gene rearrangements and contribute to the understanding of the evolution of gene rearrangement in Chilopoda.
Collapse
Affiliation(s)
- Jiayu Ding
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu Province, People's Republic of China
| | - Hong Lan
- Department of Agriculture, Zhejiang Open University, Hangzhou, 310030, China
| | - Wei Xu
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu Province, People's Republic of China
| | - Yining Chen
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu Province, People's Republic of China
| | - Han Wu
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu Province, People's Republic of China
| | - Haoming Jiang
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu Province, People's Republic of China
| | - Jiachen Wang
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu Province, People's Republic of China
| | - Yongbo Wu
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu Province, People's Republic of China
| | - Hongyi Liu
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu Province, People's Republic of China.
| |
Collapse
|
8
|
Wang J, Bai Y, Zhao H, Mu R, Dong Y. Reinvestigating the phylogeny of Myriapoda with more extensive taxon sampling and novel genetic perspective. PeerJ 2022; 9:e12691. [PMID: 35036164 PMCID: PMC8710254 DOI: 10.7717/peerj.12691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/05/2021] [Indexed: 11/20/2022] Open
Abstract
Background There have been extensive debates on the interrelationships among the four major classes of Myriapoda-Chilopoda, Symphyla, Diplopoda, and Pauropoda. The core controversy is the position of Pauropoda; that is, whether it should be grouped with Symphyla or Diplopoda as a sister group. Two recent phylogenomic studies separately investigated transcriptomic data from 14 and 29 Myriapoda species covering all four groups along with outgroups, and proposed two different topologies of phylogenetic relationships. Methods Building on these studies, we extended the taxon sampling by investigating 39 myriapods and integrating the previously available data with three new transcriptomic datasets generated in this study. Our analyses present the phylogenetic relationships among the four major classes of Myriapoda with a more abundant taxon sampling and provide a new perspective to investigate the above-mentioned question, where visual genes' identification were conducted. We compared the appearance pattern of genes, grouping them according to their classes and the visual pathways involved. Positive selection was detected for all identified visual genes between every pair of 39 myriapods, and 14 genes showed positive selection among 27 pairs. Results From the results of phylogenomic analyses, we propose that Symphyla is a sister group of Pauropoda. This stance has also received strong support from tree inference and topology tests.
Collapse
Affiliation(s)
- Jiajia Wang
- College of Biology and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Yu Bai
- College of Biology and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Haifeng Zhao
- Key Laboratory of Space Utilization, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, China
| | - Ruinan Mu
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Dong
- College of Biology and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| |
Collapse
|
9
|
Benavides LR, Jiang C, Giribet G. Mimopidae is the sister group to all other scolopendromorph centipedes (Chilopoda, Scolopendromorpha): a phylotranscriptomic approach. ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00502-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Szucsich NU, Bartel D, Blanke A, Böhm A, Donath A, Fukui M, Grove S, Liu S, Macek O, Machida R, Misof B, Nakagaki Y, Podsiadlowski L, Sekiya K, Tomizuka S, Von Reumont BM, Waterhouse RM, Walzl M, Meng G, Zhou X, Pass G, Meusemann K. Four myriapod relatives - but who are sisters? No end to debates on relationships among the four major myriapod subgroups. BMC Evol Biol 2020; 20:144. [PMID: 33148176 PMCID: PMC7640414 DOI: 10.1186/s12862-020-01699-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/30/2020] [Indexed: 11/20/2022] Open
Abstract
Background Phylogenetic relationships among the myriapod subgroups Chilopoda, Diplopoda, Symphyla and Pauropoda are still not robustly resolved. The first phylogenomic study covering all subgroups resolved phylogenetic relationships congruently to morphological evidence but is in conflict with most previously published phylogenetic trees based on diverse molecular data. Outgroup choice and long-branch attraction effects were stated as possible explanations for these incongruencies. In this study, we addressed these issues by extending the myriapod and outgroup taxon sampling using transcriptome data. Results We generated new transcriptome data of 42 panarthropod species, including all four myriapod subgroups and additional outgroup taxa. Our taxon sampling was complemented by published transcriptome and genome data resulting in a supermatrix covering 59 species. We compiled two data sets, the first with a full coverage of genes per species (292 single-copy protein-coding genes), the second with a less stringent coverage (988 genes). We inferred phylogenetic relationships among myriapods using different data types, tree inference, and quartet computation approaches. Our results unambiguously support monophyletic Mandibulata and Myriapoda. Our analyses clearly showed that there is strong signal for a single unrooted topology, but a sensitivity of the position of the internal root on the choice of outgroups. However, we observe strong evidence for a clade Pauropoda+Symphyla, as well as for a clade Chilopoda+Diplopoda. Conclusions Our best quartet topology is incongruent with current morphological phylogenies which were supported in another phylogenomic study. AU tests and quartet mapping reject the quartet topology congruent to trees inferred with morphological characters. Moreover, quartet mapping shows that confounding signal present in the data set is sufficient to explain the weak signal for the quartet topology derived from morphological characters. Although outgroup choice affects results, our study could narrow possible trees to derivatives of a single quartet topology. For highly disputed relationships, we propose to apply a series of tests (AU and quartet mapping), since results of such tests allow to narrow down possible relationships and to rule out confounding signal.
Collapse
Affiliation(s)
- Nikolaus U Szucsich
- Department of Evolutionary Biology, University of Vienna, A-1090, Vienna, Austria. .,Central Research Laboratories, Natural History Museum of Vienna, A-1010, Vienna, Austria.
| | - Daniela Bartel
- Department of Evolutionary Biology, University of Vienna, A-1090, Vienna, Austria
| | - Alexander Blanke
- Institute for Zoology, Biocenter, University of Cologne, D-50674, Cologne, Germany.,Institute of Evolutionary Biology and Animal Ecology, University of Bonn, D-53121, Bonn, Germany
| | - Alexander Böhm
- Department of Evolutionary Biology, University of Vienna, A-1090, Vienna, Austria
| | - Alexander Donath
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, D-53113, Bonn, Germany
| | - Makiko Fukui
- Department of Biology, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Simon Grove
- Invertebrate Zoology, Collections and Research Facility, Tasmanian Museum and Art Gallery, Rosny, Tasmania, 7018, Australia
| | - Shanlin Liu
- Department of Entomology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Oliver Macek
- Department of Evolutionary Biology, University of Vienna, A-1090, Vienna, Austria.,Central Research Laboratories, Natural History Museum of Vienna, A-1010, Vienna, Austria
| | - Ryuichiro Machida
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Sugadaira, Ueda, Nagano, 386-2204, Japan
| | - Bernhard Misof
- Zoological Research Museum Alexander Koenig, D-53113, Bonn, Germany
| | - Yasutaka Nakagaki
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Sugadaira, Ueda, Nagano, 386-2204, Japan
| | - Lars Podsiadlowski
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, D-53113, Bonn, Germany
| | - Kaoru Sekiya
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Sugadaira, Ueda, Nagano, 386-2204, Japan
| | | | - Björn M Von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt, Germany.,Animal Venomics, Institute for Insect Biotechnology, University of Giessen, Heinrich Buff Ring 26-32, D-35394, Giessen, Germany
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Manfred Walzl
- Department of Evolutionary Biology, University of Vienna, A-1090, Vienna, Austria
| | - Guanliang Meng
- Centre of Taxonomy and Evolutionary Research, Zoological Research Museum Alexander Koenig, D-53113, Bonn, Germany
| | - Xin Zhou
- Department of Entomology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Günther Pass
- Department of Evolutionary Biology, University of Vienna, A-1090, Vienna, Austria
| | - Karen Meusemann
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, D-53113, Bonn, Germany. .,Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, D-79104, Freiburg, Germany. .,Australian National Insect Collection, National Research Collections Australia, CSIRO, ACT, Canberra, 2601, Australia.
| |
Collapse
|
11
|
Treibergs KA, Giribet G. Differential Gene Expression Between Polymorphic Zooids of the Marine Bryozoan Bugulina stolonifera. G3 (BETHESDA, MD.) 2020; 10:3843-3857. [PMID: 32859685 PMCID: PMC7534450 DOI: 10.1534/g3.120.401348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/18/2020] [Indexed: 01/31/2023]
Abstract
Bryozoans are a diverse phylum of marine and freshwater colonial invertebrates containing approximately 6,300 described living species. Bryozoans grow by budding new physiologically connected colony members (zooids) from a founding individual that forms from a metamorphosed larva. In some species these zooids come in different shapes and sizes and are specialized to serve different tasks within the colony. A complex interaction of genotype, environment, and developmental pathway shapes zooid fate, however, the specific mechanisms underlying the establishment of this division of labor remain unknown. Here, the first characterization of differential gene expression between polymorphic zooids of a bryozoan colony is presented. The development of different zooid types of lab-cultured Bugulina stolonifera colonies including feeding autozooids, avicularia (derived non-feeding zooids that are homologous to feeding autozooids but shaped like a bird's beak), and rhizoids (a branching network of non-feeding anchoring zooids) was explored using RNA sequencing, de novo transcriptome assembly, and differential gene expression analyses. High throughput sequencing of cDNA libraries yielded an average of 14.9 ± 1.3 (SE) million high-quality paired-end reads per sample. Data for the first de novo transcriptome assemblies of B. stolonifera and the first characterization of genes involved in the formation and maintenance of zooid types within a bryozoan colony are presented. In a comparison between autozooid and avicularium tissues, 1,097 significant differentially expressed genes were uncovered. This work provides a much-needed foundation for understanding the mechanisms involved in the development of polymorphic zooids and the establishment of division of labor in bryozoans.
Collapse
Affiliation(s)
- Kira A Treibergs
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
12
|
Yang S, Wang Y, Wang L, Kamau P, Zhang H, Luo A, Lu X, Lai R. Target switch of centipede toxins for antagonistic switch. SCIENCE ADVANCES 2020; 6:eabb5734. [PMID: 32821839 PMCID: PMC7413724 DOI: 10.1126/sciadv.abb5734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/26/2020] [Indexed: 05/02/2023]
Abstract
Animal venoms are powerful, highly evolved chemical weapons for defense and predation. While venoms are used mainly to lethally antagonize heterospecifics (individuals of a different species), nonlethal envenomation of conspecifics (individuals of the same species) is occasionally observed. Both the venom and target specifications underlying these two forms of envenomation are still poorly understood. Here, we show a target-switching mechanism in centipede (Scolopendra subspinipes) venom. On the basis of this mechanism, a major toxin component [Ssm Spooky Toxin (SsTx)] in centipede venom inhibits the Shal channel in conspecifics but not in heterospecifics to cause short-term, recoverable, and nonlethal envenomation. This same toxin causes fatal heterospecific envenomation, for example, by switching its target to the Shaker channels in heterospecifics without inhibiting the Shaker channel of conspecific S. subspinipes individuals. These findings suggest that venom components exhibit intricate coevolution with their targets in both heterospecifics and conspecifics, which enables a single toxin to develop graded intraspecific and interspecific antagonistic interactions.
Collapse
Affiliation(s)
- Shilong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yunfei Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Lu Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Peter Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Hao Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anna Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiancui Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- Institute for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Corresponding author.
| |
Collapse
|
13
|
Stojanović DZ, Vujić VD, Lučić LR, Tomić VT, Makarov SE, Mitić BM. Life after the mother's hug: Late post-embryonic development of Cryptops parisi (Chilopoda: Scolopendromorpha: Cryptopidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 57:100948. [PMID: 32416473 DOI: 10.1016/j.asd.2020.100948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Here we describe in detail the late post-embryonic development of the common European scolopendromorph centipede Cryptops parisi. Canonical variate analyses of two groups of external morphological characters, viz., cephalic capsule characters (head length, length of the anterior and posterior paramedian cephalic sutures) and coxopleuron surface characters (number of pores in the coxal pore-field, number of setae on the posterior coxopleuron edge, their number on the coxal pore-field, and their number posterior to the coxal pore-field) were conducted on a large sample of specimens collected from two localities in Serbia. Ten free-living stages are recognized: three pre-adult stages (adolescens I, II, and III) and seven adult stages (one maturus junior stage, four maturus, and two maturus senior stages). The fourth late post-embryonic stage is the first mature stage in both sexes. Sexual dimorphism in the aforementioned characters was not observed. Morphological variation of coxopleuron characters was more informative for the discrimination of developmental stages in Cryptops than the morphological variation of cephalic capsule characters.
Collapse
Affiliation(s)
- Dalibor Z Stojanović
- University of Belgrade - Faculty of Biology, Institute of Zoology, Studentski Trg 16, 11000 Belgrade, Serbia.
| | - Vukica D Vujić
- University of Belgrade - Faculty of Biology, Institute of Zoology, Studentski Trg 16, 11000 Belgrade, Serbia.
| | - Luka R Lučić
- University of Belgrade - Faculty of Biology, Institute of Zoology, Studentski Trg 16, 11000 Belgrade, Serbia.
| | - Vladimir T Tomić
- University of Belgrade - Faculty of Biology, Institute of Zoology, Studentski Trg 16, 11000 Belgrade, Serbia.
| | - Slobodan E Makarov
- University of Belgrade - Faculty of Biology, Institute of Zoology, Studentski Trg 16, 11000 Belgrade, Serbia.
| | - Bojan M Mitić
- University of Belgrade - Faculty of Biology, Institute of Zoology, Studentski Trg 16, 11000 Belgrade, Serbia.
| |
Collapse
|
14
|
Hu C, Wang S, Huang B, Liu H, Xu L, Zhigang Hu, Liu Y. The complete mitochondrial genome sequence of Scolopendra mutilans L. Koch, 1878 (Scolopendromorpha, Scolopendridae), with a comparative analysis of other centipede genomes. Zookeys 2020; 925:73-88. [PMID: 32390741 PMCID: PMC7197263 DOI: 10.3897/zookeys.925.47820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Scolopendramutilans L. Koch, 1878 is an important Chinese animal with thousands of years of medicinal history. However, the genomic information of this species is limited, which hinders its further application. Here, the complete mitochondrial genome (mitogenome) of S.mutilans was sequenced and assembled by next-generation sequencing. The genome is 15,011 bp in length, consisting of 13 protein-coding genes (PCGs), 14 tRNA genes, and two rRNA genes. Most PCGs start with the ATN initiation codon, and all PCGs have the conventional stop codons TAA and TAG. The S.mutilans mitogenome revealed nine simple sequence repeats (SSRs), and an obviously lower GC content compared with other seven centipede mitogenomes previously sequenced. After analysis of homologous regions between the eight centipede mitogenomes, the S.mutilans mitogenome further showed clear genomic rearrangements. The phylogenetic analysis of eight centipedes using 13 conserved PCG genes was finally performed. The phylogenetic reconstructions showed Scutigeromorpha as a separate group, and Scolopendromorpha in a sister-group relationship with Lithobiomorpha and Geophilomorpha. Collectively, the S.mutilans mitogenome provided new genomic resources, which will improve its medicinal research and applications in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhigang Hu
- College of Pharmacy.,Hubei University of Chinese Medicine, No. 1 Huangjiahu West Road, Hongshan District, Wuhan, China
| | | |
Collapse
|
15
|
Jenner RA, von Reumont BM, Campbell LI, Undheim EAB. Parallel Evolution of Complex Centipede Venoms Revealed by Comparative Proteotranscriptomic Analyses. Mol Biol Evol 2019; 36:2748-2763. [PMID: 31396628 PMCID: PMC6878950 DOI: 10.1093/molbev/msz181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Centipedes are among the most ancient groups of venomous predatory arthropods. Extant species belong to five orders, but our understanding of the composition and evolution of centipede venoms is based almost exclusively on one order, Scolopendromorpha. To gain a broader and less biased understanding we performed a comparative proteotranscriptomic analysis of centipede venoms from all five orders, including the first venom profiles for the orders Lithobiomorpha, Craterostigmomorpha, and Geophilomorpha. Our results reveal an astonishing structural diversity of venom components, with 93 phylogenetically distinct protein and peptide families. Proteomically-annotated gene trees of these putative toxin families show that centipede venom composition is highly dynamic across macroevolutionary timescales, with numerous gene duplications as well as functional recruitments and losses of toxin gene families. Strikingly, not a single family is found in the venoms of representatives of all five orders, with 67 families being unique for single orders. Ancestral state reconstructions reveal that centipede venom originated as a simple cocktail comprising just four toxin families, with very little compositional evolution happening during the approximately 50 My before the living orders had diverged. Venom complexity then increased in parallel within the orders, with scolopendromorphs evolving particularly complex venoms. Our results show that even venoms composed of toxins evolving under the strong constraint of negative selection can have striking evolutionary plasticity on the compositional level. We show that the functional recruitments and losses of toxin families that shape centipede venom arsenals are not concentrated early in their evolutionary history, but happen frequently throughout.
Collapse
Affiliation(s)
- Ronald A Jenner
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Bjoern M von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- Institute for Insect Biotechnology, Justus-Liebig University Giessen, Giessen, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Animal Venomics, Giessen, Germany
| | - Lahcen I Campbell
- The European Molecular Biology Laboratory, The European Bioinformatics Institute, Hinxton, United Kingdom
| | - Eivind A B Undheim
- Centre for Advanced Imaging, University of Queensland, St Lucia, Australia
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
- Centre for Ecology and Evolutionary Synthesis, Department of Bioscience, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Chipman AD, Edgecombe GD. Developing an integrated understanding of the evolution of arthropod segmentation using fossils and evo-devo. Proc Biol Sci 2019; 286:20191881. [PMID: 31575373 DOI: 10.1098/rspb.2019.1881] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Segmentation is fundamental to the arthropod body plan. Understanding the evolutionary steps by which arthropods became segmented is being transformed by the integration of data from evolutionary developmental biology (evo-devo), Cambrian fossils that allow the stepwise acquisition of segmental characters to be traced in the arthropod stem-group, and the incorporation of fossils into an increasingly well-supported phylogenetic framework for extant arthropods based on genomic-scale datasets. Both evo-devo and palaeontology make novel predictions about the evolution of segmentation that serve as testable hypotheses for the other, complementary data source. Fossils underpin such hypotheses as arthropodization originating in a frontal appendage and then being co-opted into other segments, and segmentation of the endodermal midgut in the arthropod stem-group. Insights from development, such as tagmatization being associated with different modes of segment generation in different body regions, and a distinct patterning of the anterior head segments, are complemented by palaeontological evidence for the pattern of tagmatization during ontogeny of exceptionally preserved fossils. Fossil and developmental data together provide evidence for a short head in stem-group arthropods and the mechanism of its formation and retention. Future breakthroughs are expected from identification of molecular signatures of developmental innovations within a phylogenetic framework, and from a focus on later developmental stages to identify the differentiation of repeated units of different systems within segmental precursors.
Collapse
Affiliation(s)
- Ariel D Chipman
- Department of Ecology, Evolution and Behavior, The Silberman Institute of Life Sciences, Edmond J. Safra Campus - Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
17
|
Mao X, Tsagkogeorga G, Thong VD, Rossiter SJ. Resolving evolutionary relationships among six closely related taxa of the horseshoe bats (Rhinolophus) with targeted resequencing data. Mol Phylogenet Evol 2019; 139:106551. [DOI: 10.1016/j.ympev.2019.106551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/11/2019] [Accepted: 07/01/2019] [Indexed: 01/04/2023]
|
18
|
Altenhoff AM, Levy J, Zarowiecki M, Tomiczek B, Warwick Vesztrocy A, Dalquen DA, Müller S, Telford MJ, Glover NM, Dylus D, Dessimoz C. OMA standalone: orthology inference among public and custom genomes and transcriptomes. Genome Res 2019; 29:1152-1163. [PMID: 31235654 PMCID: PMC6633268 DOI: 10.1101/gr.243212.118] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/24/2019] [Indexed: 11/24/2022]
Abstract
Genomes and transcriptomes are now typically sequenced by individual laboratories but analyzing them often remains challenging. One essential step in many analyses lies in identifying orthologs—corresponding genes across multiple species—but this is far from trivial. The Orthologous MAtrix (OMA) database is a leading resource for identifying orthologs among publicly available, complete genomes. Here, we describe the OMA pipeline available as a standalone program for Linux and Mac. When run on a cluster, it has native support for the LSF, SGE, PBS Pro, and Slurm job schedulers and can scale up to thousands of parallel processes. Another key feature of OMA standalone is that users can combine their own data with existing public data by exporting genomes and precomputed alignments from the OMA database, which currently contains over 2100 complete genomes. We compare OMA standalone to other methods in the context of phylogenetic tree inference, by inferring a phylogeny of Lophotrochozoa, a challenging clade within the protostomes. We also discuss other potential applications of OMA standalone, including identifying gene families having undergone duplications/losses in specific clades, and identifying potential drug targets in nonmodel organisms. OMA standalone is available under the permissive open source Mozilla Public License Version 2.0.
Collapse
Affiliation(s)
- Adrian M Altenhoff
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Jeremy Levy
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London WC1E 6BT, United Kingdom.,Centre for Life's Origins and Evolution, Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, United Kingdom
| | - Magdalena Zarowiecki
- Genomics England, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Bartłomiej Tomiczek
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, United Kingdom.,Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Alex Warwick Vesztrocy
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Centre for Life's Origins and Evolution, Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, United Kingdom
| | - Daniel A Dalquen
- Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Steven Müller
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, United Kingdom
| | - Maximilian J Telford
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, United Kingdom
| | - Natasha M Glover
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - David Dylus
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Christophe Dessimoz
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Centre for Life's Origins and Evolution, Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, United Kingdom.,Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.,Department of Computer Science, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
19
|
Laumer CE. Inferring Ancient Relationships with Genomic Data: A Commentary on Current Practices. Integr Comp Biol 2019; 58:623-639. [PMID: 29982611 DOI: 10.1093/icb/icy075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Contemporary phylogeneticists enjoy an embarrassment of riches, not only in the volumes of data now available, but also in the diversity of bioinformatic tools for handling these data. Here, I discuss a subset of these tools I consider well-suited to the task of inferring ancient relationships with coding sequence data in particular, encompassing data generation, orthology assignment, alignment and gene tree inference, supermatrix construction, and analysis under the best-fitting models applicable to large-scale datasets. Throughout, I compare and critique methods, considering both their theoretical principles and the details of their implementation, and offering practical tips on usage where appropriate. I also entertain different motivations for analyzing what are almost always originally DNA sequence data as codons, amino acids, and higher-order recodings. Although presented in a linear order, I see value in using the diversity of tools available to us to assess the sensitivity of clades of biological interest to different gene and taxon sets and analytical modes, which can be an indication of the presence of systematic error, of which a few forms remain poorly controlled by even the best available inference methods.
Collapse
Affiliation(s)
- Christopher E Laumer
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, EBML-EBI South Building, Hinxton CB10 1SD, UK
| |
Collapse
|
20
|
Bravo GA, Antonelli A, Bacon CD, Bartoszek K, Blom MPK, Huynh S, Jones G, Knowles LL, Lamichhaney S, Marcussen T, Morlon H, Nakhleh LK, Oxelman B, Pfeil B, Schliep A, Wahlberg N, Werneck FP, Wiedenhoeft J, Willows-Munro S, Edwards SV. Embracing heterogeneity: coalescing the Tree of Life and the future of phylogenomics. PeerJ 2019; 7:e6399. [PMID: 30783571 PMCID: PMC6378093 DOI: 10.7717/peerj.6399] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 01/07/2019] [Indexed: 12/23/2022] Open
Abstract
Building the Tree of Life (ToL) is a major challenge of modern biology, requiring advances in cyberinfrastructure, data collection, theory, and more. Here, we argue that phylogenomics stands to benefit by embracing the many heterogeneous genomic signals emerging from the first decade of large-scale phylogenetic analysis spawned by high-throughput sequencing (HTS). Such signals include those most commonly encountered in phylogenomic datasets, such as incomplete lineage sorting, but also those reticulate processes emerging with greater frequency, such as recombination and introgression. Here we focus specifically on how phylogenetic methods can accommodate the heterogeneity incurred by such population genetic processes; we do not discuss phylogenetic methods that ignore such processes, such as concatenation or supermatrix approaches or supertrees. We suggest that methods of data acquisition and the types of markers used in phylogenomics will remain restricted until a posteriori methods of marker choice are made possible with routine whole-genome sequencing of taxa of interest. We discuss limitations and potential extensions of a model supporting innovation in phylogenomics today, the multispecies coalescent model (MSC). Macroevolutionary models that use phylogenies, such as character mapping, often ignore the heterogeneity on which building phylogenies increasingly rely and suggest that assimilating such heterogeneity is an important goal moving forward. Finally, we argue that an integrative cyberinfrastructure linking all steps of the process of building the ToL, from specimen acquisition in the field to publication and tracking of phylogenomic data, as well as a culture that values contributors at each step, are essential for progress.
Collapse
Affiliation(s)
- Gustavo A. Bravo
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Alexandre Antonelli
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Gothenburg Botanical Garden, Göteborg, Sweden
| | - Christine D. Bacon
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Krzysztof Bartoszek
- Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Mozes P. K. Blom
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Stella Huynh
- Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Graham Jones
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - L. Lacey Knowles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sangeet Lamichhaney
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Thomas Marcussen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Hélène Morlon
- Institut de Biologie, Ecole Normale Supérieure de Paris, Paris, France
| | - Luay K. Nakhleh
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Bengt Oxelman
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Bernard Pfeil
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Alexander Schliep
- Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
| | | | - Fernanda P. Werneck
- Coordenação de Biodiversidade, Programa de Coleções Científicas Biológicas, Instituto Nacional de Pesquisa da Amazônia, Manaus, AM, Brazil
| | - John Wiedenhoeft
- Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
- Department of Computer Science, Rutgers University, Piscataway, NJ, USA
| | - Sandi Willows-Munro
- School of Life Sciences, University of Kwazulu-Natal, Pietermaritzburg, South Africa
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Gothenburg Centre for Advanced Studies in Science and Technology, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
21
|
Álvarez-Campos P, Kenny NJ, Verdes A, Fernández R, Novo M, Giribet G, Riesgo A. Delegating Sex: Differential Gene Expression in Stolonizing Syllids Uncovers the Hormonal Control of Reproduction. Genome Biol Evol 2019; 11:295-318. [PMID: 30535381 PMCID: PMC6350857 DOI: 10.1093/gbe/evy265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2018] [Indexed: 12/31/2022] Open
Abstract
Stolonization in syllid annelids is a unique mode of reproduction among animals. During the breeding season, a structure resembling the adult but containing only gametes, called stolon, is formed generally at the posterior end of the animal. When stolons mature, they detach from the adult and gametes are released into the water column. The process is synchronized within each species, and it has been reported to be under environmental and endogenous control, probably via endocrine regulation. To further understand reproduction in syllids and to elucidate the molecular toolkit underlying stolonization, we generated Illumina RNA-seq data from different tissues of reproductive and nonreproductive individuals of Syllis magdalena and characterized gene expression during the stolonization process. Several genes involved in gametogenesis (ovochymase, vitellogenin, testis-specific serine/threonine-kinase), immune response (complement receptor 2), neuronal development (tyrosine-protein kinase Src42A), cell proliferation (alpha-1D adrenergic receptor), and steroid metabolism (hydroxysteroid dehydrogenase 2) were found differentially expressed in the different tissues and conditions analyzed. In addition, our findings suggest that several neurohormones, such as methyl farnesoate, dopamine, and serotonin, might trigger stolon formation, the correct maturation of gametes and the detachment of stolons when gametogenesis ends. The process seems to be under circadian control, as indicated by the expression patterns of r-opsins. Overall, our results shed light into the genes that orchestrate the onset of gamete formation and improve our understanding of how some hormones, previously reported to be involved in reproduction and metamorphosis processes in other invertebrates, seem to also regulate reproduction via stolonization.
Collapse
Affiliation(s)
- Patricia Álvarez-Campos
- Facultad de Ciencias, Departamento de Biología (Zoología), Universidad Autónoma de Madrid, Spain
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
- Department of Biological & Medical Sciences, Oxford Brookes University, Headington Campus, Gipsy Lane, Oxford, United Kingdom
| | - Nathan J Kenny
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
| | - Aida Verdes
- Facultad de Ciencias, Departamento de Biología (Zoología), Universidad Autónoma de Madrid, Spain
- Department of Biology, The Graduate Center, City University of New York
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York
| | - Rosa Fernández
- Bioinformatics & Genomics Unit, Center for Genomic Regulation, Barcelona, Spain
| | - Marta Novo
- Facultad de Biología, Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Spain
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Ana Riesgo
- Department of Biology, The Graduate Center, City University of New York
| |
Collapse
|
22
|
Ward MJ, Rokyta DR. Venom-gland transcriptomics and venom proteomics of the giant Florida blue centipede, Scolopendra viridis. Toxicon 2018; 152:121-136. [PMID: 30086358 DOI: 10.1016/j.toxicon.2018.07.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Abstract
The limited number of centipede venom characterizations have revealed a rich diversity of toxins, and recent work has suggested centipede toxins may be more rapidly diversifying than previously considered. Additionally, many identified challenges in venomics research, including assembly and annotation methods, toxin quantification, and the ability to provide biological or technical replicates, have yet to be addressed in centipede venom characterizations. We performed high-throughput, quantifiable transcriptomic and proteomic methods on two individual Scolopendra viridis centipedes from North Florida. We identified 39 toxins that were proteomically confirmed, and 481 nontoxins that were expressed in the venom gland of S. viridis. The most abundant toxins expressed in the venom of S. viridis belonged to calcium and potassium ion-channel toxins, venom allergens, metalloproteases, and β-pore forming toxins. We compared our results to the previously characterized S. viridis from Morelos, Mexico, and found only five proteomically confirmed toxins in common to both localities, suggesting either extreme toxin divergence within S. viridis, or that these populations may represent entirely different species. By using multiple assembly and annotation methods, we generated a comprehensive and quantitative reference transcriptome and proteome of a Scolopendromorpha centipede species, while overcoming some of the challenges present in venomics research.
Collapse
Affiliation(s)
- Micaiah J Ward
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
23
|
Kallal RJ, Fernández R, Giribet G, Hormiga G. A phylotranscriptomic backbone of the orb-weaving spider family Araneidae (Arachnida, Araneae) supported by multiple methodological approaches. Mol Phylogenet Evol 2018; 126:129-140. [PMID: 29635025 DOI: 10.1016/j.ympev.2018.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/05/2018] [Accepted: 04/06/2018] [Indexed: 01/01/2023]
Abstract
The orb-weaving spider family Araneidae is extremely diverse (>3100 spp.) and its members can be charismatic terrestrial arthropods, many of them recognizable by their iconic orbicular snare web, such as the common garden spiders. Despite considerable effort to better understand their backbone relationships based on multiple sources of data (morphological, behavioral and molecular), pervasive low support remains in recent studies. In addition, no overarching phylogeny of araneids is available to date, hampering further comparative work. In this study, we analyze the transcriptomes of 33 taxa, including 19 araneids - 12 of them new to this study - representing most of the core family lineages, to examine the relationships within the family using genomic-scale datasets resulting from various methodological treatments, namely ortholog selection and gene occupancy as a measure of matrix completion. Six matrices were constructed to assess these effects by varying orthology inference method and gene occupancy threshold. Orthology methods used are the benchmarking tool BUSCO and the tree-based method UPhO; three gene occupancy thresholds (45%, 65%, 85%) were used to assess the effect of missing data. Gene tree and species tree-based methods (including multi-species coalescent and concatenation approaches, as well as maximum likelihood and Bayesian inference) were used totalling 17 analytical treatments. The monophyly of Araneidae and the placement of core araneid lineages were supported, together with some previously unsound backbone divergences; these include high support for Zygiellinae as the earliest diverging subfamily (followed by Nephilinae), the placement of Gasteracanthinae as sister group to Cyclosa and close relatives, and close relationships between the Araneus + Neoscona clade and Cyrtophorinae + Argiopinae clade. Incongruences were relegated to short branches in the clade comprising Cyclosa and its close relatives. We found congruence between most of the completed analyses, with minimal topological effects from occupancy/missing data and orthology assessment. The resulting number of genes by certain combinations of orthology and occupancy thresholds being analyzed had the greatest effect on the resulting trees, with anomalous outcomes recovered from analysis of lower numbers of genes.
Collapse
Affiliation(s)
- Robert J Kallal
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC 20052, USA.
| | - Rosa Fernández
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA; Bioinformatics and Genomics Unit, Center for Genomic Regulation, Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC 20052, USA
| |
Collapse
|
24
|
Dai W, Zou M, Yang L, Du K, Chen W, Shen Y, Mayden RL, He S. Phylogenomic Perspective on the Relationships and Evolutionary History of the Major Otocephalan Lineages. Sci Rep 2018; 8:205. [PMID: 29317769 PMCID: PMC5760653 DOI: 10.1038/s41598-017-18432-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022] Open
Abstract
The phylogeny of otocephalan fishes is the subject of broad controversy based on morphological and molecular evidence. The primary unresolved issue pertaining to this lineage relates to the origin of Characiphysi, especially the paraphyly of Characiformes. The considerable uncertainty associated with this lineage has precluded a greater understanding of the origin and evolution of the clade. Herein, a phylogenomic approach was applied to resolve this debate. By analyzing 10 sets of transcriptomic data generated in this study and 12 sets of high-throughput data available in public databases, we obtained 1,110 single-copy orthologous genes (935,265 sites for analysis) from 22 actinopterygians, including 14 otocephalan fishes from six orders: Clupeiformes, Gonorynchiformes, Cypriniformes, Siluriformes, Characiformes, and Gymnotiformes. Based on a selection of 125 nuclear genes screened from single-gene maximum likelihood (ML) analyses and sequence bias testing, well-established relationships among Otocephala were reconstructed. We suggested that Gymnotiformes are more closely related to Characiformes than to Siluriformes and Characiformes are possibly paraphyletic. We also estimated that Otocephala originated in the Early-Late Jurassic, which postdates most previous estimations, and hypothesized scenarios of the early historical biogeographies of major otocephalan lineages.
Collapse
Affiliation(s)
- Wei Dai
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Ming Zou
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Beijing, 430070, People's Republic of China
| | - Liandong Yang
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Kang Du
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Weitao Chen
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Yanjun Shen
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Richard L Mayden
- Department of Biology, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Shunping He
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China.
| |
Collapse
|
25
|
Fernández R, Edgecombe GD, Giribet G. Phylogenomics illuminates the backbone of the Myriapoda Tree of Life and reconciles morphological and molecular phylogenies. Sci Rep 2018; 8:83. [PMID: 29311682 PMCID: PMC5758774 DOI: 10.1038/s41598-017-18562-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/14/2017] [Indexed: 11/30/2022] Open
Abstract
The interrelationships of the four classes of Myriapoda have been an unresolved question in arthropod phylogenetics and an example of conflict between morphology and molecules. Morphology and development provide compelling support for Diplopoda (millipedes) and Pauropoda being closest relatives, and moderate support for Symphyla being more closely related to the diplopod-pauropod group than any of them are to Chilopoda (centipedes). In contrast, several molecular datasets have contradicted the Diplopoda-Pauropoda grouping (named Dignatha), often recovering a Symphyla-Pauropoda group (named Edafopoda). Here we present the first transcriptomic data including a pauropod and both families of symphylans, allowing myriapod interrelationships to be inferred from phylogenomic data from representatives of all main lineages. Phylogenomic analyses consistently recovered Dignatha with strong support. Taxon removal experiments identified outgroup choice as a critical factor affecting myriapod interrelationships. Diversification of millipedes in the Ordovician and centipedes in the Silurian closely approximates fossil evidence whereas the deeper nodes of the myriapod tree date to various depths in the Cambrian-Early Ordovician, roughly coinciding with recent estimates of terrestrialisation in other arthropod lineages, including hexapods and arachnids.
Collapse
Affiliation(s)
- Rosa Fernández
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., 02138, Cambridge, MA, USA.
- Bioinformatics & Genomics, Centre for Genomic Regulation, Carrer del Dr. Aiguader 88, 08003, Barcelona, Spain.
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Gonzalo Giribet
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., 02138, Cambridge, MA, USA
| |
Collapse
|
26
|
Giribet G, Buckman-Young RS, Costa CS, Baker CM, Benavides LR, Branstetter MG, Daniels SR, Pinto-da-Rocha R. The ‘Peripatos' in Eurogondwana? — Lack of evidence that southeast Asian onychophorans walked through Europe. INVERTEBR SYST 2018. [DOI: 10.1071/is18007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Onychophorans, or velvet worms, are cryptic but extremely charismatic terrestrial invertebrates that have often been the subject of interesting biogeographic debate. Despite great interest, a well resolved and complete phylogeny of the group and a reliable chronogram have been elusive due to their broad geographic distribution, paucity of samples, and challenging molecular composition. Here we present a molecular phylogenetic analysis of Onychophora that includes previously unsampled and undersampled lineages and we analyse the expanded dataset using a series of nested taxon sets designed to increase the amount of information available for particular subclades. These include a dataset with outgroups, one restricted to the ingroup taxa, and three others for Peripatopsidae, Peripatidae and Neopatida (= the Neotropical Peripatidae). To explore competing biogeographic scenarios we generate a new time tree for Onychophora using the few available reliable fossils as calibration points. Comparing our results to those of Cyphophthalmi, we reconsider the hypothesis that velvet worms reached Southeast Asia via Eurogondwana, and conclude that a more likely scenario is that they reached Southeast Asia by rafting on the Sibumasu terrane. Our phylogenetic results support the reciprocal monophyly of both families as well as an early division between East and West Gondwana, also in both families, each beginning to diversify between the Permian and the Jurassic. Peripatopsidae clearly supports paraphyly of South Africa with respect to southern South America (Chile) and a sister group relationship of the Southeast Asian/New Guinean Paraperipatus to the Australian/New Zealand taxa. The latter includes a clade that divides between Western Australia and Eastern Australia and two sister clades of trans-Tasman species (one oviparous and one viviparous). This pattern clearly shows that oviparity is secondarily derived in velvet worms. Peripatidae finds a sister group relationship between the Southeast Asian Eoperipatus and the West Gondwanan clade, which divides into the African Mesoperipatus and Neopatida. The latter shows a well supported split between the Pacific Oroperipatus (although it is unclear whether they form one or two clades) and a sister clade that includes the members of the genera Peripatus, Epiperipatus, Macroperipatus and representatives of the monotypic genera Cerradopatus, Plicatoperipatus and Principapillatus. However, Peripatus, Epiperipatus and Macroperipatus are not monophyletic, and all the species from the monotypic genera are related to geographically close species. The same goes for the type species of Macroperipatus (from Trinidad, and sister group to other Trinidad and Tobago species of Epiperipatus) and Epiperipatus (from French Guiana, and related to other Guyana shield species of Epiperipatus and Peripatus). Geographic structure within Neopatida is largely obscured by an unresolved backbone, but many well supported instances of generic non-monophyly challenge the current taxonomic framework, which has often relied on anatomical characters that are untested phylogenetically.
Collapse
|
27
|
Dornburg A, Townsend JP, Wang Z. Maximizing Power in Phylogenetics and Phylogenomics: A Perspective Illuminated by Fungal Big Data. ADVANCES IN GENETICS 2017; 100:1-47. [PMID: 29153398 DOI: 10.1016/bs.adgen.2017.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since its original inception over 150 years ago by Darwin, we have made tremendous progress toward the reconstruction of the Tree of Life. In particular, the transition from analyzing datasets comprised of small numbers of loci to those comprised of hundreds of loci, if not entire genomes, has aided in resolving some of the most vexing of evolutionary problems while giving us a new perspective on biodiversity. Correspondingly, phylogenetic trees have taken a central role in fields that span ecology, conservation, and medicine. However, the rise of big data has also presented phylogenomicists with a new set of challenges to experimental design, quantitative analyses, and computation. The sequencing of a number of very first genomes presented significant challenges to phylogenetic inference, leading fungal phylogenomicists to begin addressing pitfalls and postulating solutions to the issues that arise from genome-scale analyses relevant to any lineage across the Tree of Life. Here we highlight insights from fungal phylogenomics for topics including systematics and species delimitation, ecological and phenotypic diversification, and biogeography while providing an overview of progress made on the reconstruction of the fungal Tree of Life. Finally, we provide a review of considerations to phylogenomic experimental design for robust tree inference. We hope that this special issue of Advances in Genetics not only excites the continued progress of fungal evolutionary biology but also motivates the interdisciplinary development of new theory and methods designed to maximize the power of genomic scale data in phylogenetic analyses.
Collapse
Affiliation(s)
- Alex Dornburg
- North Carolina Museum of Natural Sciences, Raleigh, NC, United States
| | | | - Zheng Wang
- Yale University, New Haven, CT, United States.
| |
Collapse
|
28
|
Giribet G, Edgecombe GD. Current Understanding of Ecdysozoa and its Internal Phylogenetic Relationships. Integr Comp Biol 2017; 57:455-466. [DOI: 10.1093/icb/icx072] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Mao X, Tsagkogeorga G, Bailey SE, Rossiter SJ. Genomics of introgression in the Chinese horseshoe bat (Rhinolophus sinicus) revealed by transcriptome sequencing. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiuguang Mao
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Georgia Tsagkogeorga
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Sebastian E. Bailey
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Stephen J. Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
30
|
Insects, arachnids and centipedes venom: A powerful weapon against bacteria. A literature review. Toxicon 2017; 130:91-103. [PMID: 28242227 DOI: 10.1016/j.toxicon.2017.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
Abstract
Currently, new antimicrobial molecules extracted or obtained by natural sources, could be a valide alternative to traditional antibiotics. Most of these molecules are represented by antimicrobial peptides (AMPs), which are essential compounds of insect, arachnids and centipedes venom. AMPs, due to their strong effectiveness, low resistance rates and peculiar mode of action, seem to have all the suitable features to be a powerful weapon against several bacteria, especially considering the increasing antibiotic-resistance phenomena. The present literature review focuses on the antibacterial activity of bee, wasp, ant, scorpion, spider and scolopendra crude venom and of their main biological active compounds. After a brief overview of each animal and venom use in folkloristic medicine, this review reports, in a comprehensive table, the results obtained by the most relevant and recent researches carried out on the antibacterial activity of different venom and their AMPs. For each considered study, the table summarizes data concerning minimal inhibitory concentration values, minimal bactericidal concentration values, the methods employed, scientific name and common names and provenience of animal species from which the crude venom and its respective compounds were obtained.
Collapse
|
31
|
Fernández R, Sharma PP, Tourinho AL, Giribet G. The Opiliones tree of life: shedding light on harvestmen relationships through transcriptomics. Proc Biol Sci 2017; 284:20162340. [PMID: 28228511 PMCID: PMC5326524 DOI: 10.1098/rspb.2016.2340] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/27/2017] [Indexed: 12/12/2022] Open
Abstract
Opiliones are iconic arachnids with a Palaeozoic origin and a diversity that reflects ancient biogeographic patterns dating back at least to the times of Pangea. Owing to interest in harvestman diversity, evolution and biogeography, their relationships have been thoroughly studied using morphology and PCR-based Sanger approaches to infer their systematic relationships. More recently, two studies utilized transcriptomics-based phylogenomics to explore their basal relationships and diversification, but sampling was limiting for understanding deep evolutionary patterns, as they lacked good taxon representation at the family level. Here, we analysed a set of the 14 existing transcriptomes with 40 additional ones generated for this study, representing approximately 80% of the extant familial diversity in Opiliones. Our phylogenetic analyses, including a set of data matrices with different gene occupancy and evolutionary rates, and using a multitude of methods correcting for a diversity of factors affecting phylogenomic data matrices, provide a robust and stable Opiliones tree of life, where most families and higher taxa are precisely placed. Our dating analyses using alternative calibration points, methods and analytical parameters provide well-resolved old divergences, consistent with ancient regionalization in Pangea in some groups, and Pangean vicariance in others. The integration of state-of-the-art molecular techniques and analyses, together with the broadest taxonomic sampling to date presented in a phylogenomic study of harvestmen, provide new insights into harvestmen interrelationships, as well as an overview of the general biogeographic patterns of this ancient arthropod group.
Collapse
Affiliation(s)
- Rosa Fernández
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Prashant P Sharma
- Department of Zoology, University of Wisconsin-Madison, 352 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Ana Lúcia Tourinho
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade (CBIO), Avenida André Araújo, 2936, Aleixo, CEP 69011-970, Manaus, Amazonas, Brazil
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
32
|
Bonato L, Bortolin F, Drago L, Orlando M, Dányi L. Evolution ofStrigamiacentipedes (Chilopoda): a first molecular assessment of phylogeny and divergence times. ZOOL SCR 2017. [DOI: 10.1111/zsc.12234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lucio Bonato
- Department of Biology; University of Padova; via Bassi 58B Padova I-35131 Italy
| | - Francesca Bortolin
- Department of Biology; University of Padova; via Bassi 58B Padova I-35131 Italy
| | - Leandro Drago
- Department of Biology; University of Padova; via Bassi 58B Padova I-35131 Italy
| | - Marco Orlando
- Department of Biology; University of Padova; via Bassi 58B Padova I-35131 Italy
| | - László Dányi
- Department of Zoology; Hungarian Natural History Museum; Baross u. 13 Budapest H-1088 Hungary
| |
Collapse
|
33
|
Abstract
INTRODUCTION Centipedes are one of the oldest and most successful lineages of venomous terrestrial predators. Despite their use for centuries in traditional medicine, centipede venoms remain poorly studied. However, recent work indicates that centipede venoms are highly complex chemical arsenals that are rich in disulfide-constrained peptides that have novel pharmacology and three-dimensional structure. Areas covered: This review summarizes what is currently known about centipede venom proteins, with a focus on disulfide-rich peptides that have novel or unexpected pharmacology that might be useful from a therapeutic perspective. The authors also highlight the remarkable diversity of constrained three-dimensional peptide scaffolds present in these venoms that might be useful for bioengineering of drug leads. Expert opinion: Like most arthropod predators, centipede venoms are rich in peptides that target neuronal ion channels and receptors, but it is also becoming increasingly apparent that many of these peptides have novel or unexpected pharmacological properties with potential applications in drug discovery and development.
Collapse
Affiliation(s)
- Eivind A B Undheim
- a Institute for Molecular Bioscience , The University of Queensland , St Lucia , Australia.,b Centre for Advanced Imaging , The University of Queensland , St Lucia , Australia
| | - Ronald A Jenner
- c Department of Life Sciences , Natural History Museum , London , UK
| | - Glenn F King
- a Institute for Molecular Bioscience , The University of Queensland , St Lucia , Australia
| |
Collapse
|
34
|
Fernández R, Edgecombe GD, Giribet G. Exploring Phylogenetic Relationships within Myriapoda and the Effects of Matrix Composition and Occupancy on Phylogenomic Reconstruction. Syst Biol 2016; 65:871-89. [PMID: 27162151 PMCID: PMC4997009 DOI: 10.1093/sysbio/syw041] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 04/28/2016] [Indexed: 11/14/2022] Open
Abstract
Myriapods, including the diverse and familiar centipedes and millipedes, are one of the dominant terrestrial arthropod groups. Although molecular evidence has shown that Myriapoda is monophyletic, its internal phylogeny remains contentious and understudied, especially when compared to those of Chelicerata and Hexapoda. Until now, efforts have focused on taxon sampling (e.g., by including a handful of genes from many species) or on maximizing matrix size (e.g., by including hundreds or thousands of genes in just a few species), but a phylogeny maximizing sampling at both levels remains elusive. In this study, we analyzed 40 Illumina transcriptomes representing 3 of the 4 myriapod classes (Diplopoda, Chilopoda, and Symphyla); 25 transcriptomes were newly sequenced to maximize representation at the ordinal level in Diplopoda and at the family level in Chilopoda. Ten supermatrices were constructed to explore the effect of several potential phylogenetic biases (e.g., rate of evolution, heterotachy) at 3 levels of gene occupancy per taxon (50%, 75%, and 90%). Analyses based on maximum likelihood and Bayesian mixture models retrieved monophyly of each myriapod class, and resulted in 2 alternative phylogenetic positions for Symphyla, as sister group to Diplopoda + Chilopoda, or closer to Diplopoda, the latter hypothesis having been traditionally supported by morphology. Within centipedes, all orders were well supported, but 2 deep nodes remained in conflict in the different analyses despite dense taxon sampling at the family level. Relationships among centipede orders in all analyses conducted with the most complete matrix (90% occupancy) are at odds not only with the sparser but more gene-rich supermatrices (75% and 50% supermatrices) and with the matrices optimizing phylogenetic informativeness or most conserved genes, but also with previous hypotheses based on morphology, development, or other molecular data sets. Our results indicate that a high percentage of ribosomal proteins in the most complete matrices, in conjunction with distance from the root, can act in concert to compromise the estimated relationships within the ingroup. We discuss the implications of these findings in the context of the ever more prevalent quest for completeness in phylogenomic studies.
Collapse
Affiliation(s)
- Rosa Fernández
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Gonzalo Giribet
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
35
|
Lozano-Fernandez J, Carton R, Tanner AR, Puttick MN, Blaxter M, Vinther J, Olesen J, Giribet G, Edgecombe GD, Pisani D. A molecular palaeobiological exploration of arthropod terrestrialization. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150133. [PMID: 27325830 PMCID: PMC4920334 DOI: 10.1098/rstb.2015.0133] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2016] [Indexed: 12/28/2022] Open
Abstract
Understanding animal terrestrialization, the process through which animals colonized the land, is crucial to clarify extant biodiversity and biological adaptation. Arthropoda (insects, spiders, centipedes and their allies) represent the largest majority of terrestrial biodiversity. Here we implemented a molecular palaeobiological approach, merging molecular and fossil evidence, to elucidate the deepest history of the terrestrial arthropods. We focused on the three independent, Palaeozoic arthropod terrestrialization events (those of Myriapoda, Hexapoda and Arachnida) and showed that a marine route to the colonization of land is the most likely scenario. Molecular clock analyses confirmed an origin for the three terrestrial lineages bracketed between the Cambrian and the Silurian. While molecular divergence times for Arachnida are consistent with the fossil record, Myriapoda are inferred to have colonized land earlier, substantially predating trace or body fossil evidence. An estimated origin of myriapods by the Early Cambrian precedes the appearance of embryophytes and perhaps even terrestrial fungi, raising the possibility that terrestrialization had independent origins in crown-group myriapod lineages, consistent with morphological arguments for convergence in tracheal systems.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.
Collapse
Affiliation(s)
- Jesus Lozano-Fernandez
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Robert Carton
- Department of Biology, The National University of Ireland Maynooth, Maynooth, Kildare, Ireland
| | - Alastair R Tanner
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Mark N Puttick
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3TF, UK
| | - Jakob Vinther
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Jørgen Olesen
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Davide Pisani
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
36
|
Ballesteros JA, Hormiga G. A New Orthology Assessment Method for Phylogenomic Data: Unrooted Phylogenetic Orthology. Mol Biol Evol 2016; 33:2117-34. [PMID: 27189539 DOI: 10.1093/molbev/msw069] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Current sequencing technologies are making available unprecedented amounts of genetic data for a large variety of species including nonmodel organisms. Although many phylogenomic surveys spend considerable time finding orthologs from the wealth of sequence data, these results do not transcend the original study and after being processed for specific phylogenetic purposes these orthologs do not become stable orthology hypotheses. We describe a procedure to detect and document the phylogenetic distribution of orthologs allowing researchers to use this information to guide selection of loci best suited to test specific evolutionary questions. At the core of this pipeline is a new phylogenetic orthology method that is neither affected by the position of the root nor requires explicit assignment of outgroups. We discuss the properties of this new orthology assessment method and exemplify its utility for phylogenomics using a small insects dataset. In addition, we exemplify the pipeline to identify and document stable orthologs for the group of orb-weaving spiders (Araneoidea) using RNAseq data. The scripts used in this study, along with sample files and additional documentation, are available at https://github.com/ballesterus/UPhO.
Collapse
Affiliation(s)
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University
| |
Collapse
|
37
|
Mitić BM, Stojanović DZ, Antić DŽ, Ilić BS, Gedged AM, Borković-Mitić SS, Ristić NM, Živić NV, Makarov SE. Maternal care in epimorphic centipedes (Chilopoda: Phylactometria: Epimorpha) from the Balkan Peninsula. INVERTEBR REPROD DEV 2016. [DOI: 10.1080/07924259.2016.1143040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Zhang J, Gordon ERL, Forthman M, Hwang WS, Walden K, Swanson DR, Johnson KP, Meier R, Weirauch C. Evolution of the assassin's arms: insights from a phylogeny of combined transcriptomic and ribosomal DNA data (Heteroptera: Reduvioidea). Sci Rep 2016; 6:22177. [PMID: 26916580 PMCID: PMC4768186 DOI: 10.1038/srep22177] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 02/09/2016] [Indexed: 01/24/2023] Open
Abstract
Assassin bugs (Reduvioidea) are one of the most diverse (>7,000 spp.) lineages of predatory animals and have evolved an astounding diversity of raptorial leg modifications for handling prey. The evolution of these modifications is not well understood due to the lack of a robust phylogeny, especially at deeper nodes. We here utilize refined data from transcriptomes (370 loci) to stabilize the backbone phylogeny of Reduvioidea, revealing the position of major clades (e.g., the Chagas disease vectors Triatominae). Analyses combining transcriptomic and Sanger-sequencing datasets result in the first well-resolved phylogeny of Reduvioidea. Despite amounts of missing data, the transcriptomic loci resolve deeper nodes while the targeted ribosomal genes anchor taxa at shallower nodes, both with high support. This phylogeny reveals patterns of raptorial leg evolution across major leg types. Hairy attachment structures (fossula spongiosa), present in the ancestor of Reduvioidea, were lost multiple times within the clade. In contrast to prior hypotheses, this loss is not directly correlated with the evolution of alternative raptorial leg types. Our results suggest that prey type, predatory behavior, salivary toxicity, and morphological adaptations pose intricate and interrelated factors influencing the evolution of this diverse group of predators.
Collapse
Affiliation(s)
- Junxia Zhang
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Eric R. L. Gordon
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Michael Forthman
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Wei Song Hwang
- Lee Kong Chian Natural History Museum, Department of Biological Sciences, National University of Singapore, 117377, Singapore
| | - Kim Walden
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| | - Daniel R. Swanson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| | - Kevin P. Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| | - Rudolf Meier
- Lee Kong Chian Natural History Museum, Department of Biological Sciences, National University of Singapore, 117377, Singapore
| | - Christiane Weirauch
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
39
|
Zhang L, Wu W, Yan HF, Ge XJ. Phylotranscriptomic Analysis Based on Coalescence was Less Influenced by the Evolving Rates and the Number of Genes: A Case Study in Ericales. Evol Bioinform Online 2016; 11:81-91. [PMID: 26819541 PMCID: PMC4718149 DOI: 10.4137/ebo.s22448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 12/19/2022] Open
Abstract
Advances in high-throughput sequencing have generated a vast amount of transcriptomic data that are being increasingly used in phylogenetic reconstruction. However, processing the vast datasets for a huge number of genes and even identifying optimal analytical methodology are challenging. Through de novo sequenced and retrieved data from public databases, we identified 221 orthologous protein-coding genes to reconstruct the phylogeny of Ericales, an order characterized by rapid ancient radiation. Seven species representing different families in Ericales were used as in-groups. Both concatenation and coalescence methods yielded the same well-supported topology as previous studies, with only two nodes conflicting with previously reported relationships. The results revealed that a partitioning strategy could improve the traditional concatenation methodology. Rapidly evolving genes negatively affected the concatenation analysis, while slowly evolving genes slightly affected the coalescence analysis. The coalescence methods usually accommodated rate heterogeneity better and required fewer genes to yield well-supported topologies than the concatenation methods with both real and simulated data.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
40
|
Novo M, Fernández R, Andrade SCS, Marchán DF, Cunha L, Díaz Cosín DJ. Phylogenomic analyses of a Mediterranean earthworm family (Annelida: Hormogastridae). Mol Phylogenet Evol 2015; 94:473-478. [PMID: 26522608 DOI: 10.1016/j.ympev.2015.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/19/2015] [Accepted: 10/24/2015] [Indexed: 10/22/2022]
Abstract
Earthworm taxonomy and evolutionary biology remain a challenge because of their scarce distinct morphological characters of taxonomic value, the morphological convergence by adaptation to the uniformity of the soil where they inhabit, and their high plasticity when challenged with stressful or new environmental conditions. Here we present a phylogenomic study of the family Hormogastridae, representing also the first piece of work of this type within earthworms. We included seven transcriptomes of the group representing the main lineages as previously-described, analysed in a final matrix that includes twelve earthworms and eleven outgroups. While there is a high degree of gene conflict in the generated trees that obscure some of the internal relationships, the origin of the family is well resolved: the hormogastrid Hemigastrodrilus appears as the most ancestral group, followed by the ailoscolecid Ailoscolex, therefore rejecting the validity of the family Ailoscolecidae. Our results place the origin of hormogastrids in Southern France, as previously hypothesised.
Collapse
Affiliation(s)
- Marta Novo
- Cardiff School of Biosciences, Cardiff University, BIOSI 1, Museum Avenue, Cardiff CF10 3AT, UK; Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense de Madrid, C/ José Antonio Nováis 2, 28040 Madrid, Spain.
| | - Rosa Fernández
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Sónia C S Andrade
- Departamento de Genética e Biologia Evolutiva, IB-USP, São Paulo, CEP 05508-090, Brazil
| | - Daniel F Marchán
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense de Madrid, C/ José Antonio Nováis 2, 28040 Madrid, Spain
| | - Luis Cunha
- Cardiff School of Biosciences, Cardiff University, BIOSI 1, Museum Avenue, Cardiff CF10 3AT, UK
| | - Darío J Díaz Cosín
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense de Madrid, C/ José Antonio Nováis 2, 28040 Madrid, Spain
| |
Collapse
|
41
|
Akkari N, Enghoff H, Metscher BD. A New Dimension in Documenting New Species: High-Detail Imaging for Myriapod Taxonomy and First 3D Cybertype of a New Millipede Species (Diplopoda, Julida, Julidae). PLoS One 2015; 10:e0135243. [PMID: 26309113 PMCID: PMC4550252 DOI: 10.1371/journal.pone.0135243] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/20/2015] [Indexed: 12/14/2022] Open
Abstract
We review the state-of-the-art approaches currently applied in myriapod taxonomy, and we describe, for the first time, a new species of millipede (Ommatoiulus avatar n. sp., family Julidae) using high-resolution X-ray microtomography (microCT) as a substantive adjunct to traditional morphological examination. We present 3D models of the holotype and paratype specimens and discuss the potential of this non-destructive technique in documenting new species of millipedes and other organisms. The microCT data have been uploaded to an open repository (Dryad) to serve as the first actual millipede cybertypes to be published.
Collapse
Affiliation(s)
- Nesrine Akkari
- 3rd Zoological department, Natural History Museum Vienna, Burgring 7, 1010, Vienna, Austria
| | - Henrik Enghoff
- Natural History Museum of Denmark, Universitetsparken 15, DK-2100, København Ø–Denmark
| | - Brian D. Metscher
- Department of Theoretical Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| |
Collapse
|
42
|
Chen MY, Liang D, Zhang P. Selecting Question-Specific Genes to Reduce Incongruence in Phylogenomics: A Case Study of Jawed Vertebrate Backbone Phylogeny. Syst Biol 2015; 64:1104-20. [PMID: 26276158 DOI: 10.1093/sysbio/syv059] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 08/10/2015] [Indexed: 11/13/2022] Open
Abstract
Incongruence between different phylogenomic analyses is the main challenge faced by phylogeneticists in the genomic era. To reduce incongruence, phylogenomic studies normally adopt some data filtering approaches, such as reducing missing data or using slowly evolving genes, to improve the signal quality of data. Here, we assembled a phylogenomic data set of 58 jawed vertebrate taxa and 4682 genes to investigate the backbone phylogeny of jawed vertebrates under both concatenation and coalescent-based frameworks. To evaluate the efficiency of extracting phylogenetic signals among different data filtering methods, we chose six highly intractable internodes within the backbone phylogeny of jawed vertebrates as our test questions. We found that our phylogenomic data set exhibits substantial conflicting signal among genes for these questions. Our analyses showed that non-specific data sets that are generated without bias toward specific questions are not sufficient to produce consistent results when there are several difficult nodes within a phylogeny. Moreover, phylogenetic accuracy based on non-specific data is considerably influenced by the size of data and the choice of tree inference methods. To address such incongruences, we selected genes that resolve a given internode but not the entire phylogeny. Notably, not only can this strategy yield correct relationships for the question, but it also reduces inconsistency associated with data sizes and inference methods. Our study highlights the importance of gene selection in phylogenomic analyses, suggesting that simply using a large amount of data cannot guarantee correct results. Constructing question-specific data sets may be more powerful for resolving problematic nodes.
Collapse
Affiliation(s)
- Meng-Yun Chen
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Dan Liang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Peng Zhang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
43
|
Zapata F, Wilson NG, Howison M, Andrade SCS, Jörger KM, Schrödl M, Goetz FE, Giribet G, Dunn CW. Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda. Proc Biol Sci 2015; 281:20141739. [PMID: 25232139 DOI: 10.1098/rspb.2014.1739] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Gastropods are a highly diverse clade of molluscs that includes many familiar animals, such as limpets, snails, slugs and sea slugs. It is one of the most abundant groups of animals in the sea and the only molluscan lineage that has successfully colonized land. Yet the relationships among and within its constituent clades have remained in flux for over a century of morphological, anatomical and molecular study. Here, we re-evaluate gastropod phylogenetic relationships by collecting new transcriptome data for 40 species and analysing them in combination with publicly available genomes and transcriptomes. Our datasets include all five main gastropod clades: Patellogastropoda, Vetigastropoda, Neritimorpha, Caenogastropoda and Heterobranchia. We use two different methods to assign orthology, subsample each of these matrices into three increasingly dense subsets, and analyse all six of these supermatrices with two different models of molecular evolution. All 12 analyses yield the same unrooted network connecting the five major gastropod lineages. This reduces deep gastropod phylogeny to three alternative rooting hypotheses. These results reject the prevalent hypothesis of gastropod phylogeny, Orthogastropoda. Our dated tree is congruent with a possible end-Permian recovery of some gastropod clades, namely Caenogastropoda and some Heterobranchia subclades.
Collapse
Affiliation(s)
- Felipe Zapata
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA
| | | | - Mark Howison
- Center for Computation and Visualization, Brown University, Providence, RI 02906, USA
| | - Sónia C S Andrade
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Katharina M Jörger
- SNSB-Bavarian State Collection of Zoology, Munich 81247, Germany Department Biology II, BioZentrum, Ludwig-Maximilians-Universität, Planegg-Martinsried 82152, Germany
| | - Michael Schrödl
- SNSB-Bavarian State Collection of Zoology, Munich 81247, Germany Department Biology II, BioZentrum, Ludwig-Maximilians-Universität, Planegg-Martinsried 82152, Germany
| | - Freya E Goetz
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Casey W Dunn
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA
| |
Collapse
|
44
|
Fernández R, Giribet G. Unnoticed in the tropics: phylogenomic resolution of the poorly known arachnid order Ricinulei (Arachnida). ROYAL SOCIETY OPEN SCIENCE 2015; 2:150065. [PMID: 26543583 PMCID: PMC4632547 DOI: 10.1098/rsos.150065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/29/2015] [Indexed: 06/05/2023]
Abstract
Ricinulei are among the most obscure and cryptic arachnid orders, constituting a micro-diverse group with extreme endemism. The 76 extant species described to date are grouped in three genera: Ricinoides, from tropical Western and Central Africa, and the two Neotropical genera Cryptocellus and Pseudocellus. Until now, a single molecular phylogeny of Ricinulei has been published, recovering the African Ricinoides as the sister group of the American Pseudocellus and providing evidence for the diversification of the order pre-dating the fragmentation of Gondwana. Here, we present, to our knowledge, the first phylogenomic study of this neglected arachnid order based on data from five transcriptomes obtained from the five major mitochondrial lineages of Ricinulei. Our results, based on up to more than 2000 genes, strongly support a clade containing Pseudocellus and Cryptocellus, constituting the American group of Ricinulei, with the African Ricinoides nesting outside. Our dating of the diversification of the African and American clades using a 76 gene data matrix with 90% gene occupancy indicates that this arachnid lineage was distributed in the South American, North American and African plates of Gondwana and that its diversification is concordant with a biogeographic scenario (both for pattern and tempo) of Gondwanan vicariance.
Collapse
Affiliation(s)
- Rosa Fernández
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | | |
Collapse
|
45
|
Chang Y, Wang S, Sekimoto S, Aerts AL, Choi C, Clum A, LaButti KM, Lindquist EA, Yee Ngan C, Ohm RA, Salamov AA, Grigoriev IV, Spatafora JW, Berbee ML. Phylogenomic Analyses Indicate that Early Fungi Evolved Digesting Cell Walls of Algal Ancestors of Land Plants. Genome Biol Evol 2015; 7:1590-601. [PMID: 25977457 PMCID: PMC4494064 DOI: 10.1093/gbe/evv090] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As decomposers, fungi are key players in recycling plant material in global carbon cycles. We hypothesized that genomes of early diverging fungi may have inherited pectinases from an ancestral species that had been able to extract nutrients from pectin-containing land plants and their algal allies (Streptophytes). We aimed to infer, based on pectinase gene expansions and on the organismal phylogeny, the geological timing of the plant-fungus association. We analyzed 40 fungal genomes, three of which, including Gonapodya prolifera, were sequenced for this study. In the organismal phylogeny from 136 housekeeping loci, Rozella diverged first from all other fungi. Gonapodya prolifera was included among the flagellated, predominantly aquatic fungal species in Chytridiomycota. Sister to Chytridiomycota were the predominantly terrestrial fungi including zygomycota I and zygomycota II, along with the ascomycetes and basidiomycetes that comprise Dikarya. The Gonapodya genome has 27 genes representing five of the seven classes of pectin-specific enzymes known from fungi. Most of these share a common ancestry with pectinases from Dikarya. Indicating functional and sequence similarity, Gonapodya, like many Dikarya, can use pectin as a carbon source for growth in pure culture. Shared pectinases of Dikarya and Gonapodya provide evidence that even ancient aquatic fungi had adapted to extract nutrients from the plants in the green lineage. This implies that 750 million years, the estimated maximum age of origin of the pectin-containing streptophytes represents a maximum age for the divergence of Chytridiomycota from the lineage including Dikarya.
Collapse
Affiliation(s)
- Ying Chang
- Department of Botany, University of British Columbia, Vancouver, British Columbia
| | - Sishuo Wang
- Department of Botany, University of British Columbia, Vancouver, British Columbia
| | - Satoshi Sekimoto
- Department of Botany, University of British Columbia, Vancouver, British Columbia NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation, Chiba, Japan
| | | | - Cindy Choi
- DOE Joint Genome Institute, Walnut Creek, California
| | - Alicia Clum
- DOE Joint Genome Institute, Walnut Creek, California
| | | | | | - Chew Yee Ngan
- DOE Joint Genome Institute, Walnut Creek, California
| | - Robin A Ohm
- DOE Joint Genome Institute, Walnut Creek, California
| | | | | | | | - Mary L Berbee
- Department of Botany, University of British Columbia, Vancouver, British Columbia
| |
Collapse
|
46
|
Whelan NV, Kocot KM, Halanych KM. Employing Phylogenomics to Resolve the Relationships among Cnidarians, Ctenophores, Sponges, Placozoans, and Bilaterians. Integr Comp Biol 2015; 55:1084-95. [PMID: 25972566 DOI: 10.1093/icb/icv037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite an explosion in the amount of sequence data, phylogenomics has failed to settle controversy regarding some critical nodes on the animal tree of life. Understanding relationships among Bilateria, Ctenophora, Cnidaria, Placozoa, and Porifera is essential for studying how complex traits such as neurons, muscles, and gastrulation have evolved. Recent studies have cast doubt on the historical viewpoint that sponges are sister to all other animal lineages with recent studies recovering ctenophores as sister. However, the ctenophore-sister hypothesis has been criticized as unrealistic and caused by systematic error. We review past phylogenomic studies and potential causes of systematic error in an effort to identify areas that can be improved in future studies. Increased sampling of taxa, less missing data, and a priori removal of sequences and taxa that may cause systematic error in phylogenomic inference will likely be the most fruitful areas of focus when assembling future datasets. Ultimately, we foresee metazoan relationships being resolved with higher support in the near future, and we caution against dismissing novel hypotheses merely because they conflict with historical viewpoints of animal evolution.
Collapse
Affiliation(s)
- Nathan V Whelan
- *Department of Biological Sciences, Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, 101 Life Sciences Building, Auburn, AL 36849, USA;
| | - Kevin M Kocot
- School of Biological Sciences, The University of Queensland, 325 Goddard Building, St Lucia, QLD 4101, Australia
| | - Kenneth M Halanych
- *Department of Biological Sciences, Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, 101 Life Sciences Building, Auburn, AL 36849, USA
| |
Collapse
|
47
|
Sharma PP, Fernández R, Esposito LA, González-Santillán E, Monod L. Phylogenomic resolution of scorpions reveals multilevel discordance with morphological phylogenetic signal. Proc Biol Sci 2015; 282:20142953. [PMID: 25716788 PMCID: PMC4375871 DOI: 10.1098/rspb.2014.2953] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/26/2015] [Indexed: 01/22/2023] Open
Abstract
Scorpions represent an iconic lineage of arthropods, historically renowned for their unique bauplan, ancient fossil record and venom potency. Yet, higher level relationships of scorpions, based exclusively on morphology, remain virtually untested, and no multilocus molecular phylogeny has been deployed heretofore towards assessing the basal tree topology. We applied a phylogenomic assessment to resolve scorpion phylogeny, for the first time, to our knowledge, sampling extensive molecular sequence data from all superfamilies and examining basal relationships with up to 5025 genes. Analyses of supermatrices as well as species tree approaches converged upon a robust basal topology of scorpions that is entirely at odds with traditional systematics and controverts previous understanding of scorpion evolutionary history. All analyses unanimously support a single origin of katoikogenic development, a form of parental investment wherein embryos are nurtured by direct connections to the parent's digestive system. Based on the phylogeny obtained herein, we propose the following systematic emendations: Caraboctonidae is transferred to Chactoidea new superfamilial assignment: ; superfamily Bothriuroidea revalidated: is resurrected and Bothriuridae transferred therein; and Chaerilida and Pseudochactida are synonymized with Buthida new parvordinal synonymies: .
Collapse
Affiliation(s)
- Prashant P Sharma
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Rosa Fernández
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Lauren A Esposito
- Essig Museum of Entomology, University of California at Berkeley, 130 Mulford Hall, Berkeley, CA 94720, USA
| | - Edmundo González-Santillán
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigaciones y de Estudios Avanzados del Instituto Politecnico Nacional, and Laboratorio de Aracnología, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, C.P. 04510, México DF, México
| | - Lionel Monod
- Département des Arthropodes et d'Entomologie I, Muséum d'Histoire Naturelle de la Ville de Genève, Route de Malagnou 1, Genève 1208, Switzerland
| |
Collapse
|
48
|
Production and packaging of a biological arsenal: evolution of centipede venoms under morphological constraint. Proc Natl Acad Sci U S A 2015; 112:4026-31. [PMID: 25775536 DOI: 10.1073/pnas.1424068112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Venom represents one of the most extreme manifestations of a chemical arms race. Venoms are complex biochemical arsenals, often containing hundreds to thousands of unique protein toxins. Despite their utility for prey capture, venoms are energetically expensive commodities, and consequently it is hypothesized that venom complexity is inversely related to the capacity of a venomous animal to physically subdue prey. Centipedes, one of the oldest yet least-studied venomous lineages, appear to defy this rule. Although scutigeromorph centipedes produce less complex venom than those secreted by scolopendrid centipedes, they appear to rely heavily on venom for prey capture. We show that the venom glands are large and well developed in both scutigerid and scolopendrid species, but that scutigerid forcipules lack the adaptations that allow scolopendrids to inflict physical damage on prey and predators. Moreover, we reveal that scolopendrid venom glands have evolved to accommodate a much larger number of secretory cells and, by using imaging mass spectrometry, we demonstrate that toxin production is heterogeneous across these secretory units. We propose that the differences in venom complexity between centipede orders are largely a result of morphological restrictions of the venom gland, and consequently there is a strong correlation between the morphological and biochemical complexity of this unique venom system. The current data add to the growing body of evidence that toxins are not expressed in a spatially homogenous manner within venom glands, and they suggest that the link between ecology and toxin evolution is more complex than previously thought.
Collapse
|
49
|
Laumer CE, Hejnol A, Giribet G. Nuclear genomic signals of the 'microturbellarian' roots of platyhelminth evolutionary innovation. eLife 2015; 4:e05503. [PMID: 25764302 PMCID: PMC4398949 DOI: 10.7554/elife.05503] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/06/2015] [Indexed: 12/25/2022] Open
Abstract
Flatworms number among the most diverse invertebrate phyla and represent the most biomedically significant branch of the major bilaterian clade Spiralia, but to date, deep evolutionary relationships within this group have been studied using only a single locus (the rRNA operon), leaving the origins of many key clades unclear. In this study, using a survey of genomes and transcriptomes representing all free-living flatworm orders, we provide resolution of platyhelminth interrelationships based on hundreds of nuclear protein-coding genes, exploring phylogenetic signal through concatenation as well as recently developed consensus approaches. These analyses robustly support a modern hypothesis of flatworm phylogeny, one which emphasizes the primacy of the often-overlooked 'microturbellarian' groups in understanding the major evolutionary transitions within Platyhelminthes: perhaps most notably, we propose a novel scenario for the interrelationships between free-living and vertebrate-parasitic flatworms, providing new opportunities to shed light on the origins and biological consequences of parasitism in these iconic invertebrates.
Collapse
Affiliation(s)
- Christopher E Laumer
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| |
Collapse
|
50
|
Undheim EAB, Fry BG, King GF. Centipede venom: recent discoveries and current state of knowledge. Toxins (Basel) 2015; 7:679-704. [PMID: 25723324 PMCID: PMC4379518 DOI: 10.3390/toxins7030679] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/27/2022] Open
Abstract
Centipedes are among the oldest extant venomous predators on the planet. Armed with a pair of modified, venom-bearing limbs, they are an important group of predatory arthropods and are infamous for their ability to deliver painful stings. Despite this, very little is known about centipede venom and its composition. Advances in analytical tools, however, have recently provided the first detailed insights into the composition and evolution of centipede venoms. This has revealed that centipede venom proteins are highly diverse, with 61 phylogenetically distinct venom protein and peptide families. A number of these have been convergently recruited into the venoms of other animals, providing valuable information on potential underlying causes of the occasionally serious complications arising from human centipede envenomations. However, the majority of venom protein and peptide families bear no resemblance to any characterised protein or peptide family, highlighting the novelty of centipede venoms. This review highlights recent discoveries and summarises the current state of knowledge on the fascinating venom system of centipedes.
Collapse
Affiliation(s)
- Eivind A B Undheim
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Bryan G Fry
- School of Biological Sciences, the University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Glenn F King
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|