1
|
Christel S, Carrell AA, Hochanadel LH, Villalobos Solis MI, Abraham PE, Jawdy SS, Chaves JE, Engle NL, Berhane TK, Yao T, Chen JG, Muchero W, Tschaplinski TJ, Cregger MA, Michener JK. Catabolic pathway acquisition by rhizosphere bacteria readily enables growth with a root exudate component but does not affect root colonization. mBio 2025; 16:e0301624. [PMID: 39660924 PMCID: PMC11708038 DOI: 10.1128/mbio.03016-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Horizontal gene transfer (HGT) is a fundamental evolutionary process that plays a key role in bacterial evolution. The likelihood of a successful transfer event is expected to depend on the precise balance of costs and benefits resulting from pathway acquisition. Most experimental analyses of HGT have focused on phenotypes that have large fitness benefits under appropriate selective conditions, such as antibiotic resistance. However, many examples of HGT involve phenotypes that are predicted to provide smaller benefits, such as the ability to catabolize additional carbon sources. We have experimentally simulated the consequences of one such HGT event in the laboratory, studying the effects of transferring a pathway for catabolism of the plant-derived aromatic compound salicyl alcohol between rhizosphere isolates from the Pseudomonas genus. We find that pathway acquisition enables rapid catabolism of salicyl alcohol with only minor disruptions to the existing metabolic and regulatory networks of the new host. However, this new catabolic potential does not confer a measurable fitness advantage during competitive growth in the rhizosphere. We conclude that the phenotype of salicyl alcohol catabolism is readily transferable but is selectively neutral under environmentally relevant conditions. We propose that this condition is common and that HGT of many pathways will be self-limiting because the selective benefits are small.IMPORTANCEHorizontal gene transfer (HGT) is a key process in microbial evolution, but the factors limiting HGT are poorly understood. Aside from the rather unique scenario of antibiotic resistance, the evolutionary benefits of pathway acquisition are still unclear. To experimentally test the effects of pathway acquisition, we transferred a pathway for catabolism of a plant-derived aromatic compound between soil bacteria isolated from the roots of poplar trees and determined the resulting phenotypic and fitness effects. We found that pathway acquisition allowed bacteria to grow using the plant-derived compound in the laboratory, but that this new phenotype did not provide an advantage when the bacteria were reinoculated onto plant roots. These results suggest that the benefits of pathway acquisition may be small when measured under ecologically-relevant conditions. From an engineering perspective, efforts to alter microbial community composition in situ by manipulating catabolic pathways or nutrient availability will be challenging when gaining access to a new niche does not provide a benefit.
Collapse
Affiliation(s)
- Stephan Christel
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Alyssa A. Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Leah H. Hochanadel
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Sara S. Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Julie E. Chaves
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Nancy L. Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Melissa A. Cregger
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Joshua K. Michener
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
2
|
Champie A, Lachance JC, Sastry A, Matteau D, Lloyd CJ, Grenier F, Lamoureux CR, Jeanneau S, Feist AM, Jacques PÉ, Palsson BO, Rodrigue S. Diagnosis and mitigation of the systemic impact of genome reduction in Escherichia coli DGF-298. mBio 2024; 15:e0087324. [PMID: 39207109 PMCID: PMC11481515 DOI: 10.1128/mbio.00873-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Microorganisms with simplified genomes represent interesting cell chassis for systems and synthetic biology. However, genome reduction can lead to undesired traits, such as decreased growth rate and metabolic imbalances. To investigate the impact of genome reduction on Escherichia coli strain DGF-298, a strain in which ~ 36% of the genome has been removed, we reconstructed a strain-specific metabolic model (iAC1061), investigated the regulation of gene expression using iModulon-based transcriptome analysis, and performed adaptive laboratory evolution to let the strain correct potential imbalances that arose during its simplification. The model notably predicted that the removal of all three key pathways for glycolaldehyde disposal in this microorganism would lead to a metabolic bottleneck through folate starvation. Glycolaldehyde is also known to cause self-generation of reactive oxygen species, as evidenced by the increased expression of oxidative stress resistance genes in the SoxS iModulon. The reintroduction of the aldA gene, responsible for one native glycolaldehyde disposal route, alleviated the constitutive oxidative stress response. Our results suggest that systems-level approaches and adaptive laboratory evolution have additive benefits when trying to repair and optimize genome-engineered strains. IMPORTANCE Genomic streamlining can be employed in model organisms to reduce complexity and enhance strain predictability. One of the most striking examples is the bacterial strain Escherichia coli DGF-298, notable for having over one-third of its genome deleted. However, such extensive genome modifications raise the question of how similar this simplified cell remains when compared with its parent, and what are the possible unintended consequences of this simplification. In this study, we used metabolic modeling along with iModulon-based transcriptomic analysis in different growth conditions to assess the impact of genome reduction on metabolism and gene regulation. We observed little impact of genomic reduction on the regulatory network of E. coli DGF-298 and identified a potential metabolic bottleneck leading to the constitutive activity of the SoxS iModulon. We then leveraged the model's predictions to successfully restore SoxS activity to the basal level.
Collapse
Affiliation(s)
- Antoine Champie
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Anand Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Dominick Matteau
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Colton J. Lloyd
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Frédéric Grenier
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Cameron R. Lamoureux
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Simon Jeanneau
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Adam M. Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| | | | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Sébastien Rodrigue
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
3
|
Gifford I, Suárez GA, Barrick JE. Evolution recovers the fitness of Acinetobacter baylyi strains with large deletions through mutations in deletion-specific targets and global post-transcriptional regulators. PLoS Genet 2024; 20:e1011306. [PMID: 39283914 PMCID: PMC11426457 DOI: 10.1371/journal.pgen.1011306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/26/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024] Open
Abstract
Organelles and endosymbionts have naturally evolved dramatically reduced genome sizes compared to their free-living ancestors. Synthetic biologists have purposefully engineered streamlined microbial genomes to create more efficient cellular chassis and define the minimal components of cellular life. During natural or engineered genome streamlining, deletion of many non-essential genes in combination often reduces bacterial fitness for idiosyncratic or unknown reasons. We investigated how and to what extent laboratory evolution could overcome these defects in six variants of the transposon-free Acinetobacter baylyi strain ADP1-ISx that each had a deletion of a different 22- to 42-kilobase region and two strains with larger deletions of 70 and 293 kilobases. We evolved replicate populations of ADP1-ISx and each deletion strain for ~300 generations in a chemically defined minimal medium or a complex medium and sequenced the genomes of endpoint clonal isolates. Fitness increased in all cases that were examined except for two ancestors that each failed to improve in one of the two environments. Mutations affecting nine protein-coding genes and two small RNAs were significantly associated with one of the two environments or with certain deletion ancestors. The global post-transcriptional regulators rnd (ribonuclease D), csrA (RNA-binding carbon storage regulator), and hfq (RNA-binding protein and chaperone) were frequently mutated across all strains, though the incidence and effects of these mutations on gene function and bacterial fitness varied with the ancestral deletion and evolution environment. Mutations in this regulatory network likely compensate for how an earlier deletion of a transposon in the ADP1-ISx ancestor of all the deletion strains restored csrA function. More generally, our results demonstrate that fitness lost during genome streamlining can usually be regained rapidly through laboratory evolution and that recovery tends to occur through a combination of deletion-specific compensation and global regulatory adjustments.
Collapse
Affiliation(s)
- Isaac Gifford
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Gabriel A Suárez
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
4
|
Kim K, Choe D, Cho S, Palsson B, Cho BK. Reduction-to-synthesis: the dominant approach to genome-scale synthetic biology. Trends Biotechnol 2024; 42:1048-1063. [PMID: 38423803 DOI: 10.1016/j.tibtech.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Advances in systems and synthetic biology have propelled the construction of reduced bacterial genomes. Genome reduction was initially focused on exploring properties of minimal genomes, but more recently it has been deployed as an engineering strategy to enhance strain performance. This review provides the latest updates on reduced genomes, focusing on dual-track approaches of top-down reduction and bottom-up synthesis for their construction. Using cases from studies that are based on established industrial workhorse strains, we discuss the construction of a series of synthetic phenotypes that are candidates for biotechnological applications. Finally, we address the possible uses of reduced genomes for biotechnological applications and the needed future research directions that may ultimately lead to the total synthesis of rationally designed genomes.
Collapse
Affiliation(s)
- Kangsan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Donghui Choe
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Suhyung Cho
- KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kongens, Lyngby, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Nyerges A, Chiappino-Pepe A, Budnik B, Baas-Thomas M, Flynn R, Yan S, Ostrov N, Liu M, Wang M, Zheng Q, Hu F, Chen K, Rudolph A, Chen D, Ahn J, Spencer O, Ayalavarapu V, Tarver A, Harmon-Smith M, Hamilton M, Blaby I, Yoshikuni Y, Hajian B, Jin A, Kintses B, Szamel M, Seregi V, Shen Y, Li Z, Church GM. Synthetic genomes unveil the effects of synonymous recoding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.599206. [PMID: 38915524 PMCID: PMC11195188 DOI: 10.1101/2024.06.16.599206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Engineering the genetic code of an organism provides the basis for (i) making any organism safely resistant to natural viruses and (ii) preventing genetic information flow into and out of genetically modified organisms while (iii) allowing the biosynthesis of genetically encoded unnatural polymers1-4. Achieving these three goals requires the reassignment of multiple of the 64 codons nature uses to encode proteins. However, synonymous codon replacement-recoding-is frequently lethal, and how recoding impacts fitness remains poorly explored. Here, we explore these effects using whole-genome synthesis, multiplexed directed evolution, and genome-transcriptome-translatome-proteome co-profiling on multiple recoded genomes. Using this information, we assemble a synthetic Escherichia coli genome in seven sections using only 57 codons to encode proteins. By discovering the rules responsible for the lethality of synonymous recoding and developing a data-driven multi-omics-based genome construction workflow that troubleshoots synthetic genomes, we overcome the lethal effects of 62,007 synonymous codon swaps and 11,108 additional genomic edits. We show that synonymous recoding induces transcriptional noise including new antisense RNAs, leading to drastic transcriptome and proteome perturbation. As the elimination of select codons from an organism's genetic code results in the widespread appearance of cryptic promoters, we show that synonymous codon choice may naturally evolve to minimize transcriptional noise. Our work provides the first genome-scale description of how synonymous codon changes influence organismal fitness and paves the way for the construction of functional genomes that provide genetic firewalls from natural ecosystems and safely produce biopolymers, drugs, and enzymes with an expanded chemistry.
Collapse
Affiliation(s)
- Akos Nyerges
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Bogdan Budnik
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | | | - Regan Flynn
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Shirui Yan
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- BGI Research, Shenzhen 518083, China
| | - Nili Ostrov
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Min Liu
- GenScript USA Inc., Piscataway, NJ 08854, USA
| | | | | | | | | | - Alexandra Rudolph
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Dawn Chen
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jenny Ahn
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Owen Spencer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Angela Tarver
- DOE Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Miranda Harmon-Smith
- DOE Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthew Hamilton
- DOE Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ian Blaby
- DOE Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yasuo Yoshikuni
- DOE Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Behnoush Hajian
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Adeline Jin
- GenScript USA Inc., Piscataway, NJ 08854, USA
| | - Balint Kintses
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, 6726, Hungary
| | - Monika Szamel
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, 6726, Hungary
| | - Viktoria Seregi
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, 6726, Hungary
| | - Yue Shen
- BGI Research, Shenzhen 518083, China
- BGI Research, Changzhou 213299, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen 518083, China
| | - Zilong Li
- GenScript USA Inc., Piscataway, NJ 08854, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
6
|
Ma S, Su T, Lu X, Qi Q. Bacterial genome reduction for optimal chassis of synthetic biology: a review. Crit Rev Biotechnol 2024; 44:660-673. [PMID: 37380345 DOI: 10.1080/07388551.2023.2208285] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/13/2022] [Accepted: 02/20/2023] [Indexed: 06/30/2023]
Abstract
Bacteria with streamlined genomes, that harbor full functional genes for essential metabolic networks, are able to synthesize the desired products more effectively and thus have advantages as production platforms in industrial applications. To obtain streamlined chassis genomes, a large amount of effort has been made to reduce existing bacterial genomes. This work falls into two categories: rational and random reduction. The identification of essential gene sets and the emergence of various genome-deletion techniques have greatly promoted genome reduction in many bacteria over the past few decades. Some of the constructed genomes possessed desirable properties for industrial applications, such as: increased genome stability, transformation capacity, cell growth, and biomaterial productivity. The decreased growth and perturbations in physiological phenotype of some genome-reduced strains may limit their applications as optimized cell factories. This review presents an assessment of the advancements made to date in bacterial genome reduction to construct optimal chassis for synthetic biology, including: the identification of essential gene sets, the genome-deletion techniques, the properties and industrial applications of artificially streamlined genomes, the obstacles encountered in constructing reduced genomes, and the future perspectives.
Collapse
Affiliation(s)
- Shuai Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| |
Collapse
|
7
|
Hitomi K, Ishii Y, Ying BW. Experimental evolution for the recovery of growth loss due to genome reduction. eLife 2024; 13:RP93520. [PMID: 38690805 PMCID: PMC11062635 DOI: 10.7554/elife.93520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
As the genome encodes the information crucial for cell growth, a sizeable genomic deficiency often causes a significant decrease in growth fitness. Whether and how the decreased growth fitness caused by genome reduction could be compensated by evolution was investigated here. Experimental evolution with an Escherichia coli strain carrying a reduced genome was conducted in multiple lineages for approximately 1000 generations. The growth rate, which largely declined due to genome reduction, was considerably recovered, associated with the improved carrying capacity. Genome mutations accumulated during evolution were significantly varied across the evolutionary lineages and were randomly localized on the reduced genome. Transcriptome reorganization showed a common evolutionary direction and conserved the chromosomal periodicity, regardless of highly diversified gene categories, regulons, and pathways enriched in the differentially expressed genes. Genome mutations and transcriptome reorganization caused by evolution, which were found to be dissimilar to those caused by genome reduction, must have followed divergent mechanisms in individual evolutionary lineages. Gene network reconstruction successfully identified three gene modules functionally differentiated, which were responsible for the evolutionary changes of the reduced genome in growth fitness, genome mutation, and gene expression, respectively. The diversity in evolutionary approaches improved the growth fitness associated with the homeostatic transcriptome architecture as if the evolutionary compensation for genome reduction was like all roads leading to Rome.
Collapse
Affiliation(s)
- Kenya Hitomi
- School of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| | - Yoichiro Ishii
- School of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| |
Collapse
|
8
|
Matteau D, Duval A, Baby V, Rodrigue S. Mesoplasma florum: a near-minimal model organism for systems and synthetic biology. Front Genet 2024; 15:1346707. [PMID: 38404664 PMCID: PMC10884336 DOI: 10.3389/fgene.2024.1346707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Mesoplasma florum is an emerging model organism for systems and synthetic biology due to its small genome (∼800 kb) and fast growth rate. While M. florum was isolated and first described almost 40 years ago, many important aspects of its biology have long remained uncharacterized due to technological limitations, the absence of dedicated molecular tools, and since this bacterial species has not been associated with any disease. However, the publication of the first M. florum genome in 2004 paved the way for a new era of research fueled by the rise of systems and synthetic biology. Some of the most important studies included the characterization and heterologous use of M. florum regulatory elements, the development of the first replicable plasmids, comparative genomics and transposon mutagenesis, whole-genome cloning in yeast, genome transplantation, in-depth characterization of the M. florum cell, as well as the development of a high-quality genome-scale metabolic model. The acquired data, knowledge, and tools will greatly facilitate future genome engineering efforts in M. florum, which could next be exploited to rationally design and create synthetic cells to advance fundamental knowledge or for specific applications.
Collapse
Affiliation(s)
- Dominick Matteau
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Anthony Duval
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Vincent Baby
- Centre de diagnostic vétérinaire de l'Université de Montréal, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Sébastien Rodrigue
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
9
|
Zheng R, Wang C, Cai R, Shan Y, Sun C. Mechanisms of nucleic acid degradation and high hydrostatic pressure tolerance of a novel deep-sea wall-less bacterium. mBio 2023; 14:e0095823. [PMID: 37551978 PMCID: PMC10470597 DOI: 10.1128/mbio.00958-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023] Open
Abstract
Wall-less bacteria are broadly distributed in diverse habitats. They evolved from a common ancestor within the Firmicutes phylum through reductive evolution. Here, we report the cultivation, characterization, and polyphasic taxonomic analysis of the novel free-living wall-less bacterium, Hujiaoplasma nucleasis zrk29. We demonstrated that strain zrk29 had a strong ability to degrade DNA and RNA both under laboratory conditions and in the deep sea. We found that nucleic acids induced strain zrk29 to release chronic bacteriophages which supported strain zrk29 and other marine bacteria to metabolize nucleic acids without lysing host cells. We also showed that strain zrk29 tolerated high hydrostatic pressure via two pathways: (i) by transporting cations into its cells to increase intracellular osmotic pressure and (ii) by adjusting the unsaturated fatty acid chain content in its cell membrane phospholipids to increase cell membrane fluidity. This study extends our understanding of free-living wall-less bacteria and provides a useful model to explore the unique adaptation mechanisms of deep-sea microbes. IMPORTANCE The unique physiology and survival strategies of the Tenericutes bacterium-a typical wall-less bacterium-have fascinated scientists and the public, especially in extreme deep-sea environments where there is high hydrostatic pressure (HHP) and limited availability of nutrients. Here, we have isolated a novel free-living Tenericutes strain from deep-sea sediment and have found that it metabolizes nucleic acids with the support of chronic bacteriophages. This Tenericutes strain tolerates HHP stress by increasing intracellular osmotic pressure and the unsaturated fatty acid chain content of phospholipids in its cell membrane. Our results provide insights into the unique physiology of deep-sea free-living Tenericutes bacteria and highlight the significant role that chronic bacteriophages play in assisting wall-less bacteria to adapt to harsh conditions.
Collapse
Affiliation(s)
- Rikuan Zheng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Chong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Ruining Cai
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yeqi Shan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Aida H, Ying BW. Efforts to Minimise the Bacterial Genome as a Free-Living Growing System. BIOLOGY 2023; 12:1170. [PMID: 37759570 PMCID: PMC10525146 DOI: 10.3390/biology12091170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
Exploring the minimal genetic requirements for cells to maintain free living is an exciting topic in biology. Multiple approaches are employed to address the question of the minimal genome. In addition to constructing the synthetic genome in the test tube, reducing the size of the wild-type genome is a practical approach for obtaining the essential genomic sequence for living cells. The well-studied Escherichia coli has been used as a model organism for genome reduction owing to its fast growth and easy manipulation. Extensive studies have reported how to reduce the bacterial genome and the collections of genomic disturbed strains acquired, which were sufficiently reviewed previously. However, the common issue of growth decrease caused by genetic disturbance remains largely unaddressed. This mini-review discusses the considerable efforts made to improve growth fitness, which was decreased due to genome reduction. The proposal and perspective are clarified for further accumulated genetic deletion to minimise the Escherichia coli genome in terms of genome reduction, experimental evolution, medium optimization, and machine learning.
Collapse
Affiliation(s)
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| |
Collapse
|
11
|
Kotaka Y, Hashimoto M, Lee KI, Kato JI. Mutations identified in engineered Escherichia coli with a reduced genome. Front Microbiol 2023; 14:1189877. [PMID: 37303809 PMCID: PMC10249474 DOI: 10.3389/fmicb.2023.1189877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Characterizing genes that regulate cell growth and survival in model organisms is important for understanding higher organisms. Construction of strains harboring large deletions in the genome can provide insights into the genetic basis of cell growth compared with only studying wild-type strains. We have constructed a series of genome-reduced strains with deletions spanning approximately 38.9% of the E. coli chromosome. Strains were constructed by combining large deletions in chromosomal regions encoding nonessential gene groups. We also isolated strains Δ33b and Δ37c, whose growth was partially restored by adaptive laboratory evolution (ALE). Genome sequencing of nine strains, including those selected following ALE, identified the presence of several Single Nucleotide Variants (SNVs), insertions, deletions, and inversions. In addition to multiple SNVs, two insertions were identified in ALE strain Δ33b. The first was an insertion at the promoter region of pntA, which increased cognate gene expression. The second was an insertion sequence (IS) present in sibE, encoding the antitoxin in a toxin-antitoxin system, which decreased expression of sibE. 5 strains of Δ37c independently isolated following ALE harboring multiple SNVs and genetic rearrangements. Interestingly, a SNV was identified in the promoter region of hcaT in all five strains, which increased hcaT expression and, we predict, rescued the attenuated Δ37b growth. Experiments using defined deletion mutants suggested that hcaT encodes a 3-phenylpropionate transporter protein and is involved in survival during stationary phase under oxidative stress. This study is the first to document accumulation of mutations during construction of genome-reduced strains. Furthermore, isolation and analysis of strains derived from ALE in which the growth defect mediated by large chromosomal deletions was rescued identified novel genes involved in cell survival.
Collapse
Affiliation(s)
- Yuto Kotaka
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Hashimoto
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ken-ichi Lee
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Jun-ichi Kato
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
12
|
Marquez-Zavala E, Utrilla J. Engineering resource allocation in artificially minimized cells: Is genome reduction the best strategy? Microb Biotechnol 2023; 16:990-999. [PMID: 36808834 PMCID: PMC10128133 DOI: 10.1111/1751-7915.14233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/26/2023] [Indexed: 02/20/2023] Open
Abstract
The elimination of the expression of cellular functions that are not needed in a certain well-defined artificial environment, such as those used in industrial production facilities, has been the goal of many cellular minimization projects. The generation of a minimal cell with reduced burden and less host-function interactions has been pursued as a tool to improve microbial production strains. In this work, we analysed two cellular complexity reduction strategies: genome and proteome reduction. With the aid of an absolute proteomics data set and a genome-scale model of metabolism and protein expression (ME-model), we quantitatively assessed the difference of reducing genome to the correspondence of reducing proteome. We compare the approaches in terms of energy consumption, defined in ATP equivalents. We aim to show what is the best strategy for improving resource allocation in minimized cells. Our results show that genome reduction by length is not proportional to reducing resource use. When we normalize calculated energy savings, we show that strains with the larger calculated proteome reduction show the largest resource use reduction. Furthermore, we propose that reducing highly expressed proteins should be the target as the translation of a gene uses most of the energy. The strategies proposed here should guide cell design when the aim of a project is to reduce the maximum amount or cellular resources.
Collapse
Affiliation(s)
- Elisa Marquez-Zavala
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway.,Synthetic Biology Program, Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Jose Utrilla
- Synthetic Biology Program, Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
13
|
Hackl T, Laurenceau R, Ankenbrand MJ, Bliem C, Cariani Z, Thomas E, Dooley KD, Arellano AA, Hogle SL, Berube P, Leventhal GE, Luo E, Eppley JM, Zayed AA, Beaulaurier J, Stepanauskas R, Sullivan MB, DeLong EF, Biller SJ, Chisholm SW. Novel integrative elements and genomic plasticity in ocean ecosystems. Cell 2023; 186:47-62.e16. [PMID: 36608657 DOI: 10.1016/j.cell.2022.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/16/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
Horizontal gene transfer accelerates microbial evolution. The marine picocyanobacterium Prochlorococcus exhibits high genomic plasticity, yet the underlying mechanisms are elusive. Here, we report a novel family of DNA transposons-"tycheposons"-some of which are viral satellites while others carry cargo, such as nutrient-acquisition genes, which shape the genetic variability in this globally abundant genus. Tycheposons share distinctive mobile-lifecycle-linked hallmark genes, including a deep-branching site-specific tyrosine recombinase. Their excision and integration at tRNA genes appear to drive the remodeling of genomic islands-key reservoirs for flexible genes in bacteria. In a selection experiment, tycheposons harboring a nitrate assimilation cassette were dynamically gained and lost, thereby promoting chromosomal rearrangements and host adaptation. Vesicles and phage particles harvested from seawater are enriched in tycheposons, providing a means for their dispersal in the wild. Similar elements are found in microbes co-occurring with Prochlorococcus, suggesting a common mechanism for microbial diversification in the vast oligotrophic oceans.
Collapse
Affiliation(s)
- Thomas Hackl
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA; Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700CC Groningen, the Netherlands.
| | - Raphaël Laurenceau
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Markus J Ankenbrand
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA; University of Würzburg, Center for Computational and Theoretical Biology, 97070 Würzburg, Germany
| | - Christina Bliem
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Zev Cariani
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Elaina Thomas
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Keven D Dooley
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Aldo A Arellano
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Shane L Hogle
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Paul Berube
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Gabriel E Leventhal
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Elaine Luo
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, University of Hawai'i Manoa, Honolulu, HI 96822, USA
| | - John M Eppley
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, University of Hawai'i Manoa, Honolulu, HI 96822, USA
| | - Ahmed A Zayed
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | | | | | - Matthew B Sullivan
- Department of Microbiology & Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA; EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, University of Hawai'i Manoa, Honolulu, HI 96822, USA
| | - Steven J Biller
- Wellesley College, Department of Biological Sciences, Wellesley, MA 02481, USA
| | - Sallie W Chisholm
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA; Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Hackl T, Laurenceau R, Ankenbrand MJ, Bliem C, Cariani Z, Thomas E, Dooley KD, Arellano AA, Hogle SL, Berube P, Leventhal GE, Luo E, Eppley JM, Zayed AA, Beaulaurier J, Stepanauskas R, Sullivan MB, DeLong EF, Biller SJ, Chisholm SW. Novel integrative elements and genomic plasticity in ocean ecosystems. Cell 2023. [DOI: doi.org/10.1016/j.cell.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Matsui Y, Nagai M, Ying BW. Growth rate-associated transcriptome reorganization in response to genomic, environmental, and evolutionary interruptions. Front Microbiol 2023; 14:1145673. [PMID: 37032868 PMCID: PMC10073601 DOI: 10.3389/fmicb.2023.1145673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
The genomic, environmental, and evolutionary interruptions caused the changes in bacterial growth, which were stringently associated with changes in gene expression. The growth and gene expression changes remained unclear in response to these interruptions that occurred combinative. As a pilot study, whether and how bacterial growth was affected by the individual and dual interruptions of genome reduction, environmental stress, and adaptive evolution were investigated. Growth assay showed that the presence of the environmental stressors, i.e., threonine and chloramphenicol, significantly decreased the growth rate of the wild-type Escherichia coli, whereas not that of the reduced genome. It indicated a canceling effect in bacterial growth due to the dual interruption of the genomic and environmental changes. Experimental evolution of the reduced genome released the canceling effect by improving growth fitness. Intriguingly, the transcriptome architecture maintained a homeostatic chromosomal periodicity regardless of the genomic, environmental, and evolutionary interruptions. Negative epistasis in transcriptome reorganization was commonly observed in response to the dual interruptions, which might contribute to the canceling effect. It was supported by the changes in the numbers of differentially expressed genes (DEGs) and the enriched regulons and functions. Gene network analysis newly constructed 11 gene modules, one out of which was correlated to the growth rate. Enrichment of DEGs in these modules successfully categorized them into three types, i.e., conserved, responsive, and epistatic. Taken together, homeostasis in transcriptome architecture was essential to being alive, and it might be attributed to the negative epistasis in transcriptome reorganization and the functional differentiation in gene modules. The present study directly connected bacterial growth fitness with transcriptome reorganization and provided a global view of how microorganisms responded to genomic, environmental, and evolutionary interruptions for survival from wild nature.
Collapse
|
16
|
Lao Z, Matsui Y, Ijichi S, Ying BW. Global coordination of the mutation and growth rates across the genetic and nutritional variety in Escherichia coli. Front Microbiol 2022; 13:990969. [PMID: 36204613 PMCID: PMC9530902 DOI: 10.3389/fmicb.2022.990969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Fitness and mutability are the primary traits of living organisms for adaptation and evolution. However, their quantitative linkage remained largely deficient. Whether there is any general relationship between the two features and how genetic and environmental variables influence them remained unclear and were addressed here. The mutation and growth rates of an assortment of Escherichia coli strain collections, including the wild-type strains and the genetically disturbed strains of either reduced genomes or deletion of the genes involved in the DNA replication fidelity, were evaluated in various media. The contribution of media to the mutation and growth rates was differentiated depending on the types of genetic disturbance. Nevertheless, the negative correlation between the mutation and growth rates was observed across the genotypes and was common in all media. It indicated the comprehensive association of the correlated mutation and growth rates with the genetic and medium variation. Multiple linear regression and support vector machine successfully predicted the mutation and growth rates and the categories of genotypes and media, respectively. Taken together, the study provided a quantitative dataset linking the mutation and growth rates, genotype, and medium and presented a simple and successful example of predicting bacterial growth and mutability by data-driven approaches.
Collapse
|
17
|
Ma S, Su T, Liu J, Wang Q, Liang Q, Lu X, Qi Q. Random genome reduction coupled with polyhydroxybutyrate biosynthesis to facilitate its accumulation in Escherichia coli. Front Bioeng Biotechnol 2022; 10:978211. [PMID: 36105609 PMCID: PMC9465206 DOI: 10.3389/fbioe.2022.978211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Genome reduction has been emerged as a powerful tool to construct ideal chassis for synthetic biology. Random genome reduction couple genomic deletion with growth and has the potential to construct optimum genome for a given environment. Recently, we developed a transposon-mediated random deletion (TMRD) method that allows the random and continuous reduction of Escherichia coli genome. Here, to prove its ability in constructing optimal cell factories, we coupled polyhydroxybutyrate (PHB) accumulation with random genome reduction and proceeded to reduce the E. coli genome. Five mutants showed high biomass and PHB yields were selected from 18 candidates after ten rounds of genome reduction. And eight or nine genomic fragments (totally 230.1–270.0 Kb) were deleted in their genomes, encompassing 4.95%–5.82% of the parental MG1655 genome. Most mutants displayed better growth, glucose utilization, protein expression, and significant increase of electroporation efficiency compared with MG1655. The PHB content and concentration enhanced up to 13.3%–37.2% and 60.2%–102.9% when batch fermentation was performed in M9-glucose medium using the five mutants. Particularly, in mutant H16, lacking 5.28% of its genome, the increase of biomass and PHB concentration were more than 50% and 100% compared with MG1655, respectively. This work expands the strategy for creating streamlined chassis to improve the production of high value-added products.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuemei Lu
- *Correspondence: Xuemei Lu, ; Qingsheng Qi,
| | | |
Collapse
|
18
|
Hitomi K, Weng J, Ying BW. Contribution of the genomic and nutritional differentiation to the spatial distribution of bacterial colonies. Front Microbiol 2022; 13:948657. [PMID: 36081803 PMCID: PMC9448356 DOI: 10.3389/fmicb.2022.948657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Colony growth is a common phenomenon of structured populations dispersed in nature; nevertheless, studies on the spatial distribution of colonies are largely insufficient. Here, we performed a systematic survey to address the questions of whether and how the spatial distribution of colonies was influenced by the genome and environment. Six Escherichia coli strains carrying either the wild-type or reduced genomes and eight media of varied nutritional richness were used to evaluate the genomic and environmental impacts, respectively. The genome size and nutritional variation contributed to the mean size and total area but not the variation and shape of size distribution of the colonies formed within the identical space and of equivalent spatial density. The spatial analysis by means of the Voronoi diagram found that the Voronoi correlation remained nearly constant in common, in comparison to the Voronoi response decreasing in correlation to genome reduction and nutritional enrichment. Growth analysis at the single colony level revealed positive correlations of the relative growth rate to both the maximal colony size and the Voronoi area, regardless of the genomic and nutritional variety. This result indicated fast growth for the large space assigned and supported homeostasis in the Voronoi correlation. Taken together, the spatial distribution of colonies might benefit efficient clonal growth. Although the mechanisms remain unclear, the findings provide quantitative insights into the genomic and environmental contributions to the growth and distribution of spatially or geographically isolated populations.
Collapse
|
19
|
Guo HX, Zhu SB, Deng Z, Guo FB. EcoliGD: An Online Tool for Designing Escherichia coli Genome. ACS Synth Biol 2022; 11:2267-2274. [PMID: 35770895 DOI: 10.1021/acssynbio.2c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic biology is an important interdisciplinary field that has emerged in this century, focusing on the rewriting and reprogramming of DNA through the cycles of "design-edit", and so, the cell's own operating system, its genome, is naturally coming into focus. Here, we propose EcoliGD, an online genome design tool with a visual interactive interface and the function of browsing information, as well as the ability to perform insertion, exchange, deletion, and codon replacement operations on the E. coli genome and display the results in real-time. Users can utilize EcoliGD to check various functional characteristic about E. coli genes, to help them build their genomes. Furthermore, we also collected experimentally verified large genomic segments that have been successfully deleted from the genome for users to choose from and simplify the genome. EcoliGD can help recode the entire E. coli genome, providing a novel way to explore the diversity and function of this microorganism. The EcoliGD web tool is available at http://guolab.whu.edu.cn/EcoliGD/.
Collapse
Affiliation(s)
- Hai-Xia Guo
- School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Sen-Bin Zhu
- School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Feng-Biao Guo
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| |
Collapse
|
20
|
Kurokawa M, Nishimura I, Ying BW. Experimental Evolution Expands the Breadth of Adaptation to an Environmental Gradient Correlated With Genome Reduction. Front Microbiol 2022; 13:826894. [PMID: 35154062 PMCID: PMC8826082 DOI: 10.3389/fmicb.2022.826894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022] Open
Abstract
Whether and how adaptive evolution adjusts the breadth of adaptation in coordination with the genome are essential issues for connecting evolution with ecology. To address these questions, experimental evolution in five Escherichia coli strains carrying either the wild-type genome or a reduced genome was performed in a defined minimal medium (C0). The ancestral and evolved populations were subsequently subjected to fitness and chemical niche analyses across an environmental gradient with 29 combinations of eight chemical components of the minimal medium. The results showed that adaptation was achieved not only specific to the evolutionary condition (C0), but also generally, to the environmental gradient; that is, the breadth of adaptation to the eight chemical niches was expanded. The magnitudes of the adaptive improvement and the breadth increase were both correlated with genome reduction and were highly significant in two out of eight niches (i.e., glucose and sulfate). The direct adaptation-induced correlated adaptation to the environmental gradient was determined by only a few genome mutations. An additive increase in fitness associated with the stepwise fixation of mutations was consistently observed in the reduced genomes. In summary, this preliminary survey demonstrated that evolution finely tuned the breadth of adaptation correlated with genome reduction.
Collapse
Affiliation(s)
- Masaomi Kurokawa
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Issei Nishimura
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
21
|
McFarland AG, Kennedy NW, Mills CE, Tullman-Ercek D, Huttenhower C, Hartmann EM. Density-based binning of gene clusters to infer function or evolutionary history using GeneGrouper. Bioinformatics 2022; 38:612-620. [PMID: 34734968 DOI: 10.1093/bioinformatics/btab752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Identifying variant forms of gene clusters of interest in phylogenetically proximate and distant taxa can help to infer their evolutionary histories and functions. Conserved gene clusters may differ by only a few genes, but these small differences can in turn induce substantial phenotypes, such as by the formation of pseudogenes or insertions interrupting regulation. Particularly as microbial genomes and metagenomic assemblies become increasingly abundant, unsupervised grouping of similar, but not necessarily identical, gene clusters into consistent bins can provide a population-level understanding of their gene content variation and functional homology. RESULTS We developed GeneGrouper, a command-line tool that uses a density-based clustering method to group gene clusters into bins. GeneGrouper demonstrated high recall and precision in benchmarks for the detection of the 23-gene Salmonella enterica LT2 Pdu gene cluster and four-gene Pseudomonas aeruginosa PAO1 Mex gene cluster among 435 genomes spanning mixed taxa. In a subsequent application investigating the diversity and impact of gene-complete and -incomplete LT2 Pdu gene clusters in 1130 S.enterica genomes, GeneGrouper identified a novel, frequently occurring pduN pseudogene. When investigated in vivo, introduction of the pduN pseudogene negatively impacted microcompartment formation. We next demonstrated the versatility of GeneGrouper by clustering distant homologous gene clusters and variable gene clusters found in integrative and conjugative elements. AVAILABILITY AND IMPLEMENTATION GeneGrouper software and code are publicly available at https://pypi.org/project/GeneGrouper/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alexander G McFarland
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Nolan W Kennedy
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Carolyn E Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Curtis Huttenhower
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Departments of Biostatistics and Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
22
|
Lu H, Aida H, Kurokawa M, Chen F, Xia Y, Xu J, Li K, Ying BW, Yomo T. Primordial mimicry induces morphological change in Escherichia coli. Commun Biol 2022; 5:24. [PMID: 35017623 PMCID: PMC8752768 DOI: 10.1038/s42003-021-02954-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 12/07/2021] [Indexed: 11/09/2022] Open
Abstract
The morphology of primitive cells has been the subject of extensive research. A spherical form was commonly presumed in prebiotic studies but lacked experimental evidence in living cells. Whether and how the shape of living cells changed are unclear. Here we exposed the rod-shaped bacterium Escherichia coli to a resource utilization regime mimicking a primordial environment. Oleate was given as an easy-to-use model prebiotic nutrient, as fatty acid vesicles were likely present on the prebiotic Earth and might have been used as an energy resource. Six evolutionary lineages were generated under glucose-free but oleic acid vesicle (OAV)-rich conditions. Intriguingly, fitness increase was commonly associated with the morphological change from rod to sphere and the decreases in both the size and the area-to-volume ratio of the cell. The changed cell shape was conserved in either OAVs or glucose, regardless of the trade-offs in carbon utilization and protein abundance. Highly differentiated mutations present in the genome revealed two distinct strategies of adaption to OAV-rich conditions, i.e., either directly targeting the cell wall or not. The change in cell morphology of Escherichia coli for adapting to fatty acid availability supports the assumption of the primitive spherical form. Lu et al. investigate the evolution of the shape of living cells by generating six experimental lineages of the rod-shaped E. coli under glucose-free conditions in the presence of oleic acid mimicking a primordial environment. The authors show that the morphological changes from rod to sphere accompanied fitness increases and adaptation amongst fatty acid availability supports the assumption of a primitive spherical form.
Collapse
Affiliation(s)
- Hui Lu
- Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Honoka Aida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Masaomi Kurokawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Feng Chen
- School of Software Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Yang Xia
- Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Jian Xu
- Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Kai Li
- Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Bei-Wen Ying
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Tetsuya Yomo
- Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China.
| |
Collapse
|
23
|
Chuckran PF, Hungate BA, Schwartz E, Dijkstra P. Variation in genomic traits of microbial communities among ecosystems. FEMS MICROBES 2021. [DOI: 10.1093/femsmc/xtab020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
ABSTRACT
Free-living bacteria in nutrient limited environments often exhibit traits which may reduce the cost of reproduction, such as smaller genome size, low GC content and fewer sigma (σ) factor and 16S rRNA gene copies. Despite the potential utility of these traits to detect relationships between microbial communities and ecosystem-scale properties, few studies have assessed these traits on a community-scale. Here, we analysed these traits from publicly available metagenomes derived from marine, soil, host-associated and thermophilic communities. In marine and thermophilic communities, genome size and GC content declined in parallel, consistent with genomic streamlining, with GC content in thermophilic communities generally higher than in marine systems. In contrast, soil communities averaging smaller genomes featured higher GC content and were often from low-carbon environments, suggesting unique selection pressures in soil bacteria. The abundance of specific σ-factors varied with average genome size and ecosystem type. In oceans, abundance of fliA, a σ-factor controlling flagella biosynthesis, was positively correlated with community average genome size—reflecting known trade-offs between nutrient conservation and chemotaxis. In soils, a high abundance of the stress response σ-factor gene rpoS was associated with smaller average genome size and often located in harsh and/or carbon-limited environments—a result which tracks features observed in culture and indicates an increased capacity for stress response in nutrient-poor soils. This work shows how ecosystem-specific constraints are associated with trade-offs which are embedded in the genomic features of bacteria in microbial communities, and which can be detected at the community level, highlighting the importance of genomic features in microbial community analysis.
Collapse
Affiliation(s)
- Peter F Chuckran
- Center for Ecosystem Science and Society (ECOSS) and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Bruce A Hungate
- Center for Ecosystem Science and Society (ECOSS) and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Egbert Schwartz
- Center for Ecosystem Science and Society (ECOSS) and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Paul Dijkstra
- Center for Ecosystem Science and Society (ECOSS) and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
24
|
Song S, Kim JS, Yamasaki R, Oh S, Benedik MJ, Wood TK. Escherichia coli cryptic prophages sense nutrients to influence persister cell resuscitation. Environ Microbiol 2021; 23:7245-7254. [PMID: 34668292 DOI: 10.1111/1462-2920.15816] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/07/2021] [Indexed: 11/28/2022]
Abstract
Cryptic prophages are not genomic junk but instead enable cells to combat myriad stresses as an active stress response. How these phage fossils affect persister cell resuscitation has, however, not been explored. Persister cells form as a result of stresses such as starvation, antibiotics and oxidative conditions, and resuscitation of these persister cells likely causes recurring infections such as those associated with tuberculosis, cystic fibrosis and Lyme disease. Deletion of each of the nine Escherichia coli cryptic prophages has no effect on persister cell formation. Strikingly, elimination of each cryptic prophage results in an increase in persister cell resuscitation with a dramatic increase in resuscitation upon deleting all nine prophages. This increased resuscitation includes eliminating the need for a carbon source and is due to activation of the phosphate import system resulting from inactivating the transcriptional regulator AlpA of the CP4-57 cryptic prophage. Deletion of alpA increases persister resuscitation, and AlpA represses phosphate regulator PhoR. Both phosphate regulators PhoP and PhoB stimulate resuscitation. This suggests a novel cellular stress mechanism controlled by cryptic prophages: regulation of phosphate uptake which controls the exit of the cell from dormancy and prevents premature resuscitation in the absence of nutrients.
Collapse
Affiliation(s)
- Sooyeon Song
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802-4400, USA.,Department of Animal Science, Jeonbuk National University, 587 Baekje-Daero, Deokjin-Gu, Jeonju-Si, Jeollabuk-Do, 54896, South Korea.,Department of Agricultural Convergence Technology, Jeonbuk National University, 587 Baekje-Daero, Deokjin-Gu, Jeonju-Si, Jeollabuk-Do, 54896, South Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, 119 Academy-ro, Incheon, 22012, South Korea
| | - Ryota Yamasaki
- Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Sejong Oh
- Division of Animal Science, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, South Korea
| | - Michael J Benedik
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802-4400, USA
| |
Collapse
|
25
|
Ziegler M, Zieringer J, Döring CL, Paul L, Schaal C, Takors R. Engineering of a robust Escherichia coli chassis and exploitation for large-scale production processes. Metab Eng 2021; 67:75-87. [PMID: 34098100 DOI: 10.1016/j.ymben.2021.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 11/28/2022]
Abstract
In large-scale bioprocesses microbes are exposed to heterogeneous substrate availability reducing the overall process performance. A series of deletion strains was constructed from E. coli MG1655 aiming for a robust phenotype in heterogeneous fermentations with transient starvation. Deletion targets were hand-picked based on a list of genes derived from previous large-scale simulation runs. Each gene deletion was conducted on the premise of strict neutrality towards growth parameters in glucose minimal medium. The final strain of the series, named E. coli RM214, was cultivated continuously in an STR-PFR (stirred tank reactor - plug flow reactor) scale-down reactor. The scale-down reactor system simulated repeated passages through a glucose starvation zone. When exposed to nutrient gradients, E. coli RM214 had a significantly lower maintenance coefficient than E. coli MG1655 (Δms = 0.038 gGlucose/gCDW/h, p < 0.05). In an exemplary protein production scenario E. coli RM214 remained significantly more productive than E. coli MG1655 reaching 44% higher eGFP yield after 28 h of STR-PFR cultivation. This study developed E. coli RM214 as a robust chassis strain and demonstrated the feasibility of engineering microbial hosts for large-scale applications.
Collapse
Affiliation(s)
- Martin Ziegler
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| | - Julia Zieringer
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| | - Clarissa-Laura Döring
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| | - Liv Paul
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| | - Christoph Schaal
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| | - Ralf Takors
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
26
|
Bell TH, Bell T. Many roads to bacterial generalism. FEMS Microbiol Ecol 2021; 97:6006266. [PMID: 33238305 DOI: 10.1093/femsec/fiaa240] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
The fundamental niches of bacteria can be defined along many environmental axes, including temperature tolerance and resources consumed, while interactions with other organisms can constrain (e.g. competition) or enlarge (e.g. cross-feeding) realized niches. Organisms are often categorized as generalists or specialists, corresponding to broad or narrow niche requirements, which can then be linked to their functional role in an ecosystem. We show how these terms are applied to bacteria, make predictions about how the type and extent of generalism displayed by an organism relates to its functional potential and discuss the value of collecting different types of generalist bacteria. We believe that new approaches that take advantage of both high-throughput sequencing and environmental manipulation can allow us to understand the many types of generalism found within both cultivated and yet-to-be-cultivated bacteria.
Collapse
Affiliation(s)
- Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA.,Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Thomas Bell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| |
Collapse
|
27
|
Domingo-Sananes MR, McInerney JO. Mechanisms That Shape Microbial Pangenomes. Trends Microbiol 2021; 29:493-503. [PMID: 33423895 DOI: 10.1016/j.tim.2020.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/02/2023]
Abstract
Analyses of multiple whole-genome sequences from the same species have revealed that differences in gene content can be substantial, particularly in prokaryotes. Such variation has led to the recognition of pangenomes, the complete set of genes present in a species - consisting of core genes, present in all individuals, and accessory genes whose presence is variable. Questions now arise about how pangenomes originate and evolve. We describe how gene content variation can arise as a result of the combination of several processes, including random drift, selection, gain/loss balance, and the influence of ecological and epistatic interactions. We believe that identifying the contributions of these processes to pangenomes will need novel theoretical approaches and empirical data.
Collapse
Affiliation(s)
- Maria Rosa Domingo-Sananes
- School of Life Sciences, University of Nottingham, Nottingham, UK; School of Science and Technology, Nottingham Trent University, Nottingham, UK.
| | | |
Collapse
|
28
|
Correlated chromosomal periodicities according to the growth rate and gene expression. Sci Rep 2020; 10:15531. [PMID: 32968121 PMCID: PMC7511328 DOI: 10.1038/s41598-020-72389-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/10/2020] [Indexed: 12/02/2022] Open
Abstract
Linking genetic information to population fitness is crucial to understanding living organisms. Despite the abundant knowledge of the genetic contribution to growth, the overall patterns/features connecting genes, their expression, and growth remain unclear. To reveal the quantitative and direct connections, systematic growth assays of single-gene knockout Escherichia coli strains under both rich and poor nutritional conditions were performed; subsequently, the resultant growth rates were associated with the original expression levels of the knockout genes in the parental genome. Comparative analysis of growth and the transcriptome identified not only the nutritionally differentiated fitness cost genes but also a significant correlation between the growth rates of the single-gene knockout strains and the original expression levels of these knockout genes in the parental strain, regardless of the nutritional variation. In addition, the coordinated chromosomal periodicities of the wild-type transcriptome and the growth rates of the strains lacking the corresponding genes were observed. The common six-period periodicity was somehow attributed to the essential genes, although the underlying mechanism remains to be addressed. The correlated chromosomal periodicities associated with the gene expression-growth dataset were highly valuable for bacterial growth prediction and discovering the working principles governing minimal genetic information.
Collapse
|
29
|
Nagai M, Kurokawa M, Ying BW. The highly conserved chromosomal periodicity of transcriptomes and the correlation of its amplitude with the growth rate in Escherichia coli. DNA Res 2020; 27:5899727. [PMID: 32866232 PMCID: PMC7508348 DOI: 10.1093/dnares/dsaa018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/24/2020] [Indexed: 11/12/2022] Open
Abstract
The growth rate, representing the fitness of a bacterial population, is determined by the transcriptome. Chromosomal periodicity, which is known as the periodic spatial pattern of a preferred chromosomal distance in microbial genomes, is a representative overall feature of the transcriptome; however, whether and how it is associated with the bacterial growth rate are unknown. To address these questions, we analysed a total of 213 transcriptomes of multiple Escherichia coli strains growing in an assortment of culture conditions varying in terms of temperature, nutrition level and osmotic pressure. Intriguingly, Fourier transform analyses of the transcriptome identified a common chromosomal periodicity of transcriptomes, which was independent of the variation in genomes and environments. In addition, fitting of the data to a theoretical model, we found that the amplitudes of the periodic transcriptomes were significantly correlated with the growth rates. These results indicated that the amplitude of periodic transcriptomes is a parameter representing the global pattern of gene expression in correlation with the bacterial growth rate. Thus, our study provides a novel parameter for evaluating the adaptiveness of a growing bacterial population and quantitatively predicting the growth dynamics according to the global expression pattern.
Collapse
Affiliation(s)
- Motoki Nagai
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Masaomi Kurokawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Bei-Wen Ying
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
30
|
Exploring the fitness benefits of genome reduction in Escherichia coli by a selection-driven approach. Sci Rep 2020; 10:7345. [PMID: 32355292 PMCID: PMC7193553 DOI: 10.1038/s41598-020-64074-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/08/2020] [Indexed: 11/26/2022] Open
Abstract
Artificial simplification of bacterial genomes is thought to have the potential to yield cells with reduced complexity, enhanced genetic stability, and improved cellular economy. Of these goals, economical gains, supposedly due to the elimination of superfluous genetic material, and manifested in elevated growth parameters in selected niches, have not yet been convincingly achieved. This failure might stem from limitations of the targeted genome reduction approach that assumes full knowledge of gene functions and interactions, and allows only a limited number of reduction trajectories to interrogate. To explore the potential fitness benefits of genome reduction, we generated successive random deletions in E. coli by a novel, selection-driven, iterative streamlining process. The approach allows the exploration of multiple streamlining trajectories, and growth periods inherent in the procedure ensure selection of the fittest variants of the population. By generating single- and multiple-deletion strains and reconstructing the deletions in the parental genetic background, we showed that favourable deletions can be obtained and accumulated by the procedure. The most reduced multiple-deletion strain, obtained in five deletion cycles (2.5% genome reduction), outcompeted the wild-type, and showed elevated biomass yield. The spectrum of advantageous deletions, however, affecting only a few genomic regions, appears to be limited.
Collapse
|
31
|
Wu H, Wang D, Gao F. Toward a high-quality pan-genome landscape of Bacillus subtilis by removal of confounding strains. Brief Bioinform 2020; 22:1951-1971. [PMID: 32065216 DOI: 10.1093/bib/bbaa013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 02/05/2023] Open
Abstract
Pan-genome analysis is widely used to study the evolution and genetic diversity of species, particularly in bacteria. However, the impact of strain selection on the outcome of pan-genome analysis is poorly understood. Furthermore, a standard protocol to ensure high-quality pan-genome results is lacking. In this study, we carried out a series of pan-genome analyses of different strain sets of Bacillus subtilis to understand the impact of various strains on the performance and output quality of pan-genome analyses. Consequently, we found that the results obtained by pan-genome analyses of B. subtilis can be influenced by the inclusion of incorrectly classified Bacillus subspecies strains, phylogenetically distinct strains, engineered genome-reduced strains, chimeric strains, strains with a large number of unique genes or a large proportion of pseudogenes, and multiple clonal strains. Since the presence of these confounding strains can seriously affect the quality and true landscape of the pan-genome, we should remove these deviations in the process of pan-genome analyses. Our study provides new insights into the removal of biases from confounding strains in pan-genome analyses at the beginning of data processing, which enables the achievement of a closer representation of a high-quality pan-genome landscape of B. subtilis that better reflects the performance and credibility of the B. subtilis pan-genome. This procedure could be added as an important quality control step in pan-genome analyses for improving the efficiency of analyses, and ultimately contributing to a better understanding of genome function, evolution and genome-reduction strategies for B. subtilis in the future.
Collapse
Affiliation(s)
- Hao Wu
- Department of Physics, School of Science, Tianjin University
| | - Dan Wang
- Department of Physics, School of Science, Tianjin University
| | - Feng Gao
- Department of Physics, School of Science, and the Frontier Science Center of Synthetic Biology (MOE), Key Laboratory of Systems Bioengineering (MOE), Tianjin University
| |
Collapse
|
32
|
Kurokawa M, Ying BW. Experimental Challenges for Reduced Genomes: The Cell Model Escherichia coli. Microorganisms 2019; 8:E3. [PMID: 31861355 PMCID: PMC7022904 DOI: 10.3390/microorganisms8010003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Genome reduction, as a top-down approach to obtain the minimal genetic information essential for a living organism, has been conducted with bacterial cells for decades. The most popular and well-studied cell models for genome reduction are Escherichia coli strains. As the previous literature intensively introduced the genetic construction and application of the genome-reduced Escherichia coli strains, the present review focuses the design principles and compares the reduced genome collections from the specific viewpoint of growth, which represents a fundamental property of living cells and is an important feature for their biotechnological application. For the extended simplification of the genomic sequences, the approach of experimental evolution and concern for medium optimization are newly proposed. The combination of the current techniques of genomic construction and the newly proposed methodologies could allow us to acquire growing Escherichia coli cells carrying the extensively reduced genome and to address the question of what the minimal genome essential for life is.
Collapse
Affiliation(s)
| | - Bei-Wen Ying
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 305-8572 Ibaraki, Japan;
| |
Collapse
|
33
|
Armetta J, Berthome R, Cros A, Pophillat C, Colombo BM, Pandi A, Grigoras I. Biosensor-based enzyme engineering approach applied to psicose biosynthesis. Synth Biol (Oxf) 2019; 4:ysz028. [PMID: 32995548 PMCID: PMC7445875 DOI: 10.1093/synbio/ysz028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 10/11/2019] [Accepted: 10/25/2019] [Indexed: 11/16/2022] Open
Abstract
Bioproduction of chemical compounds is of great interest for modern industries, as it reduces their production costs and ecological impact. With the use of synthetic biology, metabolic engineering and enzyme engineering tools, the yield of production can be improved to reach mass production and cost-effectiveness expectations. In this study, we explore the bioproduction of D-psicose, also known as D-allulose, a rare non-toxic sugar and a sweetener present in nature in low amounts. D-psicose has interesting properties and seemingly the ability to fight against obesity and type 2 diabetes. We developed a biosensor-based enzyme screening approach as a tool for enzyme selection that we benchmarked with the Clostridium cellulolyticum D-psicose 3-epimerase for the production of D-psicose from D-fructose. For this purpose, we constructed and characterized seven psicose responsive biosensors based on previously uncharacterized transcription factors and either their predicted promoters or an engineered promoter. In order to standardize our system, we created the Universal Biosensor Chassis, a construct with a highly modular architecture that allows rapid engineering of any transcription factor-based biosensor. Among the seven biosensors, we chose the one displaying the most linear behavior and the highest increase in fluorescence fold change. Next, we generated a library of D-psicose 3-epimerase mutants by error-prone PCR and screened it using the biosensor to select gain of function enzyme mutants, thus demonstrating the framework's efficiency.
Collapse
Affiliation(s)
- Jeremy Armetta
- iSSB, UMR8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Genopole Campus 1, Bât. 6, 5 rue Henri Desbruères, 91030 Evry, France
| | - Rose Berthome
- iSSB, UMR8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Genopole Campus 1, Bât. 6, 5 rue Henri Desbruères, 91030 Evry, France
| | - Antonin Cros
- iSSB, UMR8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Genopole Campus 1, Bât. 6, 5 rue Henri Desbruères, 91030 Evry, France
| | - Celine Pophillat
- iSSB, UMR8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Genopole Campus 1, Bât. 6, 5 rue Henri Desbruères, 91030 Evry, France
| | - Bruno Maria Colombo
- iSSB, UMR8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Genopole Campus 1, Bât. 6, 5 rue Henri Desbruères, 91030 Evry, France
| | - Amir Pandi
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Ioana Grigoras
- iSSB, UMR8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Genopole Campus 1, Bât. 6, 5 rue Henri Desbruères, 91030 Evry, France
| |
Collapse
|
34
|
MazF activation causes ACA sequence-independent and selective alterations in RNA levels in Escherichia coli. Arch Microbiol 2019; 202:105-114. [PMID: 31485711 DOI: 10.1007/s00203-019-01726-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
Abstract
Escherichia coli MazF is a toxin protein that cleaves RNA at ACA sequences. Its activation has been thought to cause growth inhibition, primarily through indiscriminate cleavage of RNA. To investigate responses following MazF activation, transcriptomic profiles of mazF-overexpressing and non-overexpressing E. coli K12 cells were compared. Analyses of differentially expressed genes demonstrated that the presence and the number of ACA trimers in RNA was unrelated to cellular RNA levels. Mapping differentially expressed genes onto the chromosome identified two chromosomal segments in which upregulated genes formed clusters, and these segments were absent in the chromosomes of E. coli strains other than K12. These results suggest that MazF regulates selective, rather than indiscriminate, categories of genes, and is involved in the regulation of horizontally acquired genes. We conclude that the primary role of MazF is not only cleaving RNA indiscriminately but also generating a specific cellular state.
Collapse
|
35
|
Rapid Evolution of Reduced Susceptibility against a Balanced Dual-Targeting Antibiotic through Stepping-Stone Mutations. Antimicrob Agents Chemother 2019; 63:AAC.00207-19. [PMID: 31235632 DOI: 10.1128/aac.00207-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/14/2019] [Indexed: 11/20/2022] Open
Abstract
Multitargeting antibiotics, i.e., single compounds capable of inhibiting two or more bacterial targets, are generally considered to be a promising therapeutic strategy against resistance evolution. The rationale for this theory is that multitargeting antibiotics demand the simultaneous acquisition of multiple mutations at their respective target genes to achieve significant resistance. The theory presumes that individual mutations provide little or no benefit to the bacterial host. Here, we propose that such individual stepping-stone mutations can be prevalent in clinical bacterial isolates, as they provide significant resistance to other antimicrobial agents. To test this possibility, we focused on gepotidacin, an antibiotic candidate that selectively inhibits both bacterial DNA gyrase and topoisomerase IV. In a susceptible organism, Klebsiella pneumoniae, a combination of two specific mutations in these target proteins provide an >2,000-fold reduction in susceptibility, while individually, none of these mutations affect resistance significantly. Alarmingly, strains with decreased susceptibility against gepotidacin are found to be as virulent as the wild-type Klebsiella pneumoniae strain in a murine model. Moreover, numerous pathogenic isolates carry mutations which could promote the evolution of clinically significant reduction of susceptibility against gepotidacin in the future. As might be expected, prolonged exposure to ciprofloxacin, a clinically widely employed gyrase inhibitor, coselected for reduced susceptibility against gepotidacin. We conclude that extensive antibiotic usage could select for mutations that serve as stepping-stones toward resistance against antimicrobial compounds still under development. Our research indicates that even balanced multitargeting antibiotics are prone to resistance evolution.
Collapse
|
36
|
Apjok G, Boross G, Nyerges Á, Fekete G, Lázár V, Papp B, Pál C, Csörgő B. Limited Evolutionary Conservation of the Phenotypic Effects of Antibiotic Resistance Mutations. Mol Biol Evol 2019; 36:1601-1611. [PMID: 31058961 PMCID: PMC6657729 DOI: 10.1093/molbev/msz109] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multidrug-resistant clinical isolates are common in certain pathogens, but rare in others. This pattern may be due to the fact that mutations shaping resistance have species-specific effects. To investigate this issue, we transferred a range of resistance-conferring mutations and a full resistance gene into Escherichia coli and closely related bacteria. We found that resistance mutations in one bacterial species frequently provide no resistance, in fact even yielding drug hypersensitivity in close relatives. In depth analysis of a key gene involved in aminoglycoside resistance (trkH) indicated that preexisting mutations in other genes-intergenic epistasis-underlie such extreme differences in mutational effects between species. Finally, reconstruction of adaptive landscapes under multiple antibiotic stresses revealed that mutations frequently provide multidrug resistance or elevated drug susceptibility (i.e., collateral sensitivity) only with certain combinations of other resistance mutations. We conclude that resistance and collateral sensitivity are contingent upon the genetic makeup of the bacterial population, and such contingency could shape the long-term fate of resistant bacteria. These results underlie the importance of species-specific treatment strategies.
Collapse
Affiliation(s)
- Gábor Apjok
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Gábor Boross
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Department of Biology, Stanford University, Stanford, CA
| | - Ákos Nyerges
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Technion – Israel Institute of Technology, Faculty of Biology, Haifa, Israel
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
37
|
Corel E, Méheust R, Watson AK, McInerney JO, Lopez P, Bapteste E. Bipartite Network Analysis of Gene Sharings in the Microbial World. Mol Biol Evol 2019; 35:899-913. [PMID: 29346651 PMCID: PMC5888944 DOI: 10.1093/molbev/msy001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extensive microbial gene flows affect how we understand virology, microbiology, medical sciences, genetic modification, and evolutionary biology. Phylogenies only provide a narrow view of these gene flows: plasmids and viruses, lacking core genes, cannot be attached to cellular life on phylogenetic trees. Yet viruses and plasmids have a major impact on cellular evolution, affecting both the gene content and the dynamics of microbial communities. Using bipartite graphs that connect up to 149,000 clusters of homologous genes with 8,217 related and unrelated genomes, we can in particular show patterns of gene sharing that do not map neatly with the organismal phylogeny. Homologous genes are recycled by lateral gene transfer, and multiple copies of homologous genes are carried by otherwise completely unrelated (and possibly nested) genomes, that is, viruses, plasmids and prokaryotes. When a homologous gene is present on at least one plasmid or virus and at least one chromosome, a process of "gene externalization," affected by a postprocessed selected functional bias, takes place, especially in Bacteria. Bipartite graphs give us a view of vertical and horizontal gene flow beyond classic taxonomy on a single very large, analytically tractable, graph that goes beyond the cellular Web of Life.
Collapse
Affiliation(s)
- Eduardo Corel
- Unité Mixte de Recherche 7138 Evolution Paris-Seine, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Sorbonne Université, Université Pierre et Marie Curie, Paris, France
| | - Raphaël Méheust
- Unité Mixte de Recherche 7138 Evolution Paris-Seine, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Sorbonne Université, Université Pierre et Marie Curie, Paris, France
| | - Andrew K Watson
- Unité Mixte de Recherche 7138 Evolution Paris-Seine, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Sorbonne Université, Université Pierre et Marie Curie, Paris, France
| | - James O McInerney
- Chair in Evolutionary Biology, The University of Manchester, United Kingdom
| | - Philippe Lopez
- Unité Mixte de Recherche 7138 Evolution Paris-Seine, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Sorbonne Université, Université Pierre et Marie Curie, Paris, France
| | - Eric Bapteste
- Unité Mixte de Recherche 7138 Evolution Paris-Seine, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Sorbonne Université, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
38
|
Noack S, Baumgart M. Communities of Niche-Optimized Strains: Small-Genome Organism Consortia in Bioproduction. Trends Biotechnol 2019; 37:126-139. [DOI: 10.1016/j.tibtech.2018.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/30/2022]
|
39
|
Abstract
The streamlining hypothesis is usually used to explain the genomic reduction events in free-living bacteria like SAR11. However, we find that the genomic reduction phenomenon in the bacterial genus Idiomarina is different from that in SAR11. Therefore, we propose a new hypothesis to explain genomic reduction in this genus based on trophic specialization that could result in genomic reduction, which would be not uncommon in nature. Not only can the trophic specialization hypothesis explain the genomic reduction in the genus Idiomarina, but it also sheds new light on our understanding of the genomic reduction processes in other free-living bacterial lineages. The streamlining hypothesis is generally used to explain the genomic reduction events related to the small genome size of free-living bacteria like marine bacteria SAR11. However, our current understanding of the correlation between bacterial genome size and environmental adaptation relies on too few species. It is still unclear whether there are other paths leading to genomic reduction in free-living bacteria. The genome size of marine free-living bacteria of the genus Idiomarina belonging to the order Alteromonadales (Gammaproteobacteria) is much smaller than the size of related genomes from bacteria in the same order. Comparative genomic and physiological analyses showed that the genomic reduction pattern in this genus is different from that of the classical SAR11 lineage. Genomic reduction reconstruction and substrate utilization profile showed that Idiomarina spp. lost a large number of genes related to carbohydrate utilization, and instead they specialized on using proteinaceous resources. Here we propose a new hypothesis to explain genomic reduction in this genus; we propose that trophic specialization increasing the metabolic efficiency for using one kind of substrate but reducing the substrate utilization spectrum could result in bacterial genomic reduction, which would be not uncommon in nature. This hypothesis was further tested in another free-living genus, Kangiella, which also shows dramatic genomic reduction. These findings highlight that trophic specialization is potentially an important path leading to genomic reduction in some marine free-living bacteria, which is distinct from the classical lineages like SAR11.
Collapse
|
40
|
Ying BW, Yama K. Gene Expression Order Attributed to Genome Reduction and the Steady Cellular State in Escherichia coli. Front Microbiol 2018; 9:2255. [PMID: 30294319 PMCID: PMC6158460 DOI: 10.3389/fmicb.2018.02255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/04/2018] [Indexed: 11/13/2022] Open
Abstract
Transcriptomes not only reflect the growth status but also link to the genome in bacteria. To investigate if and how genome or cellular state changes contribute to the gene expression order, the growth profile-associated transcriptomes of an assortment of genetically differentiated Escherichia coli either exponentially growing under varied conditions or in response to environmental disturbance were analyzed. A total of 168 microarray data sets representing 56 transcriptome variations, were categorized by genome size (full length or reduced) and cellular state (steady or unsteady). At the genome-wide level, the power-law distribution of gene expression was found to be significantly disturbed by the genome size but not the cellular state. At the regulatory network level, more networks with improved coordination of growth rates were observed in genome reduction than at the steady state. At the single-gene level, both genome reduction and steady state increased the correlation of gene expression to growth rate, but the enriched gene categories with improved correlations were different. These findings not only illustrate the order of gene expression attributed to genome reduction and steady cellular state but also indicate that the accessory sequences acquired during genome evolution largely participated in the coordination of transcriptomes to growth fitness.
Collapse
Affiliation(s)
- Bei-Wen Ying
- Institute of Biology and Information Science, East China Normal University, Shanghai, China.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kazuma Yama
- Advanced Analytical Science Laboratories, Research & Development Headquarters, Lion Corporation, Tokyo, Japan
| |
Collapse
|
41
|
Murillo T, Ramírez-Vargas G, Riedel T, Overmann J, Andersen JM, Guzmán-Verri C, Chaves-Olarte E, Rodríguez C. Two Groups of Cocirculating, Epidemic Clostridiodes difficile Strains Microdiversify through Different Mechanisms. Genome Biol Evol 2018; 10:982-998. [PMID: 29617810 PMCID: PMC5888409 DOI: 10.1093/gbe/evy059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2018] [Indexed: 02/04/2023] Open
Abstract
Clostridiodes difficile strains from the NAPCR1/ST54 and NAP1/ST01 types have caused outbreaks despite of their notable differences in genome diversity. By comparing whole genome sequences of 32 NAPCR1/ST54 isolates and 17 NAP1/ST01 recovered from patients infected with C. difficile we assessed whether mutation, homologous recombination (r) or nonhomologous recombination (NHR) through lateral gene transfer (LGT) have differentially shaped the microdiversification of these strains. The average number of single nucleotide polymorphisms (SNPs) in coding sequences (NAPCR1/ST54 = 24; NAP1/ST01 = 19) and SNP densities (NAPCR1/ST54 = 0.54/kb; NAP1/ST01 = 0.46/kb) in the NAPCR1/ST54 and NAP1/ST01 isolates was comparable. However, the NAP1/ST01 isolates showed 3× higher average dN/dS rates (8.35) that the NAPCR1/ST54 isolates (2.62). Regarding r, whereas 31 of the NAPCR1/ST54 isolates showed 1 recombination block (3,301–8,226 bp), the NAP1/ST01 isolates showed no bases in recombination. As to NHR, the pangenome of the NAPCR1/ST54 isolates was larger (4,802 gene clusters, 26% noncore genes) and more heterogeneous (644 ± 33 gene content changes) than that of the NAP1/ST01 isolates (3,829 gene clusters, ca. 6% noncore genes, 129 ± 37 gene content changes). Nearly 55% of the gene content changes seen among the NAPCR1/ST54 isolates (355 ± 31) were traced back to MGEs with putative genes for antimicrobial resistance and virulence factors that were only detected in single isolates or isolate clusters. Congruently, the LGT/SNP rate calculated for the NAPCR1/ST54 isolates (26.8 ± 2.8) was 4× higher than the one obtained for the NAP1/ST1 isolates (6.8 ± 2.0). We conclude that NHR-LGT has had a greater role in the microdiversification of the NAPCR1/ST54 strains, opposite to the NAP1/ST01 strains, where mutation is known to play a more prominent role.
Collapse
Affiliation(s)
- Tatiana Murillo
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Gabriel Ramírez-Vargas
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Joakim M Andersen
- Department of Food, Processing and Nutritional Sciences, North Carolina State University
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Esteban Chaves-Olarte
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - César Rodríguez
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
42
|
Goyal A. Metabolic adaptations underlying genome flexibility in prokaryotes. PLoS Genet 2018; 14:e1007763. [PMID: 30372443 PMCID: PMC6224172 DOI: 10.1371/journal.pgen.1007763] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/08/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022] Open
Abstract
Even across genomes of the same species, prokaryotes exhibit remarkable flexibility in gene content. We do not know whether this flexible or "accessory" content is mostly neutral or adaptive, largely due to the lack of explicit analyses of accessory gene function. Here, across 96 diverse prokaryotic species, I show that a considerable fraction (~40%) of accessory genomes harbours beneficial metabolic functions. These functions take two forms: (1) they significantly expand the biosynthetic potential of individual strains, and (2) they help reduce strain-specific metabolic auxotrophies via intra-species metabolic exchanges. I find that the potential of both these functions increases with increasing genome flexibility. Together, these results are consistent with a significant adaptive role for prokaryotic pangenomes.
Collapse
Affiliation(s)
- Akshit Goyal
- The Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
43
|
Genomic organization underlying deletional robustness in bacterial metabolic systems. Proc Natl Acad Sci U S A 2018; 115:7075-7080. [PMID: 29915048 DOI: 10.1073/pnas.1717243115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Large-scale DNA deletions and gene loss are pervasive in bacterial genomes. This observation raises the possibility that evolutionary adaptation has altered bacterial genome organization to increase its robustness to large-scale tandem gene deletions. To find out, we systematically analyzed 55 bacterial genome-scale metabolisms and showed that metabolic gene ordering renders an organism's viability in multiple nutrient environments significantly more robust against tandem multigene deletions than expected by chance. This excess robustness is caused by multiple factors, which include the clustering of essential metabolic genes, a greater-than-expected distance of synthetically lethal metabolic gene pairs, and the clustering of nonessential metabolic genes. By computationally creating minimal genomes, we show that a nonadaptive origin of such clustering could in principle arise as a passive byproduct of bacterial genome growth. However, because genome randomization forces such as translocation and inversion would eventually erode such clustering, adaptive processes are necessary to sustain it. We provide evidence suggesting that this organization might result from adaptation to ongoing gene deletions, and from selective advantages associated with coregulating functionally related genes. Horizontal gene transfer in the presence of gene deletions contributes to sustaining the clustering of essential genes. In sum, our observations suggest that the genome organization of bacteria is driven by adaptive processes that provide phenotypic robustness in response to large-scale gene deletions. This robustness may be especially important for bacterial populations that take advantage of gene loss to adapt to new environments.
Collapse
|
44
|
Lázár V, Martins A, Spohn R, Daruka L, Grézal G, Fekete G, Számel M, Jangir PK, Kintses B, Csörgő B, Nyerges Á, Györkei Á, Kincses A, Dér A, Walter FR, Deli MA, Urbán E, Hegedűs Z, Olajos G, Méhi O, Bálint B, Nagy I, Martinek TA, Papp B, Pál C. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nat Microbiol 2018; 3:718-731. [PMID: 29795541 DOI: 10.1038/s41564-018-0164-0] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 04/17/2018] [Indexed: 01/28/2023]
Abstract
Antimicrobial peptides are promising alternative antimicrobial agents. However, little is known about whether resistance to small-molecule antibiotics leads to cross-resistance (decreased sensitivity) or collateral sensitivity (increased sensitivity) to antimicrobial peptides. We systematically addressed this question by studying the susceptibilities of a comprehensive set of 60 antibiotic-resistant Escherichia coli strains towards 24 antimicrobial peptides. Strikingly, antibiotic-resistant bacteria show a high frequency of collateral sensitivity to antimicrobial peptides, whereas cross-resistance is relatively rare. We identify clinically relevant multidrug-resistance mutations that increase bacterial sensitivity to antimicrobial peptides. Collateral sensitivity in multidrug-resistant bacteria arises partly through regulatory changes shaping the lipopolysaccharide composition of the bacterial outer membrane. These advances allow the identification of antimicrobial peptide-antibiotic combinations that enhance antibiotic activity against multidrug-resistant bacteria and slow down de novo evolution of resistance. In particular, when co-administered as an adjuvant, the antimicrobial peptide glycine-leucine-amide caused up to 30-fold decrease in the antibiotic resistance level of resistant bacteria. Our work provides guidelines for the development of efficient peptide-based therapies of antibiotic-resistant infections.
Collapse
Affiliation(s)
- Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ana Martins
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Gábor Grézal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Mónika Számel
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Pramod K Jangir
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Bálint Kintses
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ákos Nyerges
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ádám Györkei
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - András Kincses
- Biomolecular Electronics Research Group, Bionanoscience Unit, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - András Dér
- Biomolecular Electronics Research Group, Bionanoscience Unit, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Fruzsina R Walter
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Mária A Deli
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Edit Urbán
- Institute of Clinical Microbiology, Albert Szent-Györgyi Medical and Pharmaceutical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsófia Hegedűs
- Institute of Pharmaceutical Analysis, University of Szeged, Szeged, Hungary
| | - Gábor Olajos
- Institute of Pharmaceutical Analysis, University of Szeged, Szeged, Hungary
| | - Orsolya Méhi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | - István Nagy
- SeqOmics Biotechnology Ltd, Mórahalom, Hungary.,Sequencing Platform, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Tamás A Martinek
- Institute of Pharmaceutical Analysis, University of Szeged, Szeged, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
| |
Collapse
|
45
|
Jiao J, Ni M, Zhang B, Zhang Z, Young JPW, Chan TF, Chen WX, Lam HM, Tian CF. Coordinated regulation of core and accessory genes in the multipartite genome of Sinorhizobium fredii. PLoS Genet 2018; 14:e1007428. [PMID: 29795552 PMCID: PMC5991415 DOI: 10.1371/journal.pgen.1007428] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/06/2018] [Accepted: 05/18/2018] [Indexed: 01/18/2023] Open
Abstract
Prokaryotes benefit from having accessory genes, but it is unclear how accessory genes can be linked with the core regulatory network when developing adaptations to new niches. Here we determined hierarchical core/accessory subsets in the multipartite pangenome (composed of genes from the chromosome, chromid and plasmids) of the soybean microsymbiont Sinorhizobium fredii by comparing twelve Sinorhizobium genomes. Transcriptomes of two S. fredii strains at mid-log and stationary growth phases and in symbiotic conditions were obtained. The average level of gene expression, variation of expression between different conditions, and gene connectivity within the co-expression network were positively correlated with the gene conservation level from strain-specific accessory genes to genus core. Condition-dependent transcriptomes exhibited adaptive transcriptional changes in pangenome subsets shared by the two strains, while strain-dependent transcriptomes were enriched with accessory genes on the chromid. Proportionally more chromid genes than plasmid genes were co-expressed with chromosomal genes, while plasmid genes had a higher within-replicon connectivity in expression than chromid ones. However, key nitrogen fixation genes on the symbiosis plasmid were characterized by high connectivity in both within- and between-replicon analyses. Among those genes with host-specific upregulation patterns, chromosomal znu and mdt operons, encoding a conserved high-affinity zinc transporter and an accessory multi-drug efflux system, respectively, were experimentally demonstrated to be involved in host-specific symbiotic adaptation. These findings highlight the importance of integrative regulation of hierarchical core/accessory components in the multipartite genome of bacteria during niche adaptation and in shaping the prokaryotic pangenome in the long run.
Collapse
Affiliation(s)
- Jian Jiao
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Meng Ni
- School of Life Sciences and Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Biliang Zhang
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
| | | | - Ting-Fung Chan
- School of Life Sciences and Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Hon-Ming Lam
- School of Life Sciences and Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
46
|
Rocha EPC. Neutral Theory, Microbial Practice: Challenges in Bacterial Population Genetics. Mol Biol Evol 2018; 35:1338-1347. [DOI: 10.1093/molbev/msy078] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
- CNRS, UMR3525, Paris, France
| |
Collapse
|
47
|
Sikora P, Augustyniak A, Cendrowski K, Nawrotek P, Mijowska E. Antimicrobial Activity of Al₂O₃, CuO, Fe₃O₄, and ZnO Nanoparticles in Scope of Their Further Application in Cement-Based Building Materials. NANOMATERIALS 2018; 8:nano8040212. [PMID: 29614721 PMCID: PMC5923542 DOI: 10.3390/nano8040212] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/15/2018] [Accepted: 03/29/2018] [Indexed: 01/10/2023]
Abstract
Nanoparticles were proposed as antibacterial cement admixtures for the production of cement-based composites. Nevertheless, the standards for evaluation of such admixtures still do not indicate which model organisms to use, particularly in regard to the further application of material. Apart from the known toxicity of nanomaterials, in the case of cement-based composites there are limitations associated with the mixing and dispersion of nanomaterials. Therefore, four nanooxides (Al2O3, CuO, Fe3O4, and ZnO) and seven microorganisms were tested to initially evaluate the applicability of nanooxides in relation to their further use in cement-based composites. Studies of nanoparticles included chemical analysis, microbial growth kinetics, 4- and 24 h toxicity, and biofilm formation assay. Nanooxides showed toxicity against microorganisms in the used concentration, although the populations were able to re-grow. Furthermore, the effect of action was variable even between strains from the same genus. The effect of nanoparticles on biofilms depended on the used strain. Gathered results show several problems that can occur while studying nanoparticles for specific further application. Proper protocols for nanomaterial dispersion prior the preparation of cement-based composites, as well as a standardized approach for their testing, are the fundamental issues that have to be resolved to produce efficient composites.
Collapse
Affiliation(s)
- Pawel Sikora
- Faculty of Civil Engineering and Architecture, West Pomeranian University of Technology, Szczecin, Al. Piastow 50, 71-310 Szczecin, Poland.
| | - Adrian Augustyniak
- Department of Immunology, Microbiology and Physiological Chemistry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Al. Piastów 45, 70-311 Szczecin, Poland.
| | - Krzysztof Cendrowski
- Nanomaterials Physicochemistry Department, Faculty of Technology and Chemical Engineering, West Pomeranian University of Technology, Szczecin, Al. Piastow 45, 70-311 Szczecin, Poland.
| | - Paweł Nawrotek
- Department of Immunology, Microbiology and Physiological Chemistry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Al. Piastów 45, 70-311 Szczecin, Poland.
| | - Ewa Mijowska
- Nanomaterials Physicochemistry Department, Faculty of Technology and Chemical Engineering, West Pomeranian University of Technology, Szczecin, Al. Piastow 45, 70-311 Szczecin, Poland.
| |
Collapse
|
48
|
Balikó G, Vernyik V, Karcagi I, Györfy Z, Draskovits G, Fehér T, Pósfai G. Rational Efforts to Streamline the Escherichia coliGenome. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Gabriella Balikó
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Viktor Vernyik
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Ildikó Karcagi
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Zsuzsanna Györfy
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Gábor Draskovits
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Tamás Fehér
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - György Pósfai
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| |
Collapse
|
49
|
Couto JM, McGarrity A, Russell J, Sloan WT. The effect of metabolic stress on genome stability of a synthetic biology chassis Escherichia coli K12 strain. Microb Cell Fact 2018; 17:8. [PMID: 29357936 PMCID: PMC5776760 DOI: 10.1186/s12934-018-0858-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 01/15/2018] [Indexed: 12/14/2022] Open
Abstract
Background Synthetic organism-based biotechnologies are increasingly being proposed for environmental applications, such as in situ sensing. Typically, the novel function of these organisms is delivered by compiling genetic fragments in the genome of a chassis organism. To behave predictably, these chassis are designed with reduced genomes that minimize biological complexity. However, in these proposed applications it is expected that even when contained within a device, organisms will be exposed to fluctuating, often stressful, conditions and it is not clear whether their genomes will retain stability. Results Here we employed a chemostat design which enabled us to maintained two strains of E. coli K12 under sustained starvation stress: first the reduced genome synthetic biology chassis MDS42 and then, the control parent strain MG1655. We estimated mutation rates and utilised them as indicators of an increase in genome instability. We show that within 24 h the spontaneous mutation rate had increased similarly in both strains, destabilizing the genomes. High rates were maintained for the duration of the experiment. Growth rates of a cohort of randomly sampled mutants from both strains were utilized as a proxy for emerging phenotypic, and by association genetic variation. Mutant growth rates were consistently less than rates in non-mutants, an indicator of reduced fitness and the presence of mildly deleterious mutations in both the strains. In addition, the effect of these mutations on the populations as a whole varied by strain. Conclusions Overall, this study shows that genome reductions in the MDS42 did not stabilize the chassis under metabolic stress. Over time, this could compromise the effectiveness of synthetic organisms built on chassis in environmental applications. Electronic supplementary material The online version of this article (10.1186/s12934-018-0858-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jillian M Couto
- Division of Infrastructure and Environment, School of Engineering, University of Glasgow, Rankine Building, Level 5, Glasgow, G12 8QQ, UK.
| | - Anne McGarrity
- Division of Infrastructure and Environment, School of Engineering, University of Glasgow, Rankine Building, Level 5, Glasgow, G12 8QQ, UK
| | - Julie Russell
- Division of Infrastructure and Environment, School of Engineering, University of Glasgow, Rankine Building, Level 5, Glasgow, G12 8QQ, UK
| | - William T Sloan
- Division of Infrastructure and Environment, School of Engineering, University of Glasgow, Rankine Building, Level 5, Glasgow, G12 8QQ, UK
| |
Collapse
|
50
|
Yuan X, Couto JM, Glidle A, Song Y, Sloan W, Yin H. Single-Cell Microfluidics to Study the Effects of Genome Deletion on Bacterial Growth Behavior. ACS Synth Biol 2017; 6:2219-2227. [PMID: 28844132 DOI: 10.1021/acssynbio.7b00177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
By directly monitoring single cell growth in a microfluidic platform, we interrogated genome-deletion effects in Escherichia coli strains. We compared the growth dynamics of a wild type strain with a clean genome strain, and their derived mutants at the single-cell level. A decreased average growth rate and extended average lag time were found for the clean genome strain, compared to those of the wild type strain. Direct correlation between the growth rate and lag time of individual cells showed that the clean genome population was more heterogeneous. Cell culturability (the ratio of growing cells to the sum of growing and nongrowing cells) of the clean genome population was also lower. Interestingly, after the random mutations induced by a glucose starvation treatment, for the clean genome population mutants that had survived the competition of chemostat culture, each parameter markedly improved (i.e., the average growth rate and cell culturability increased, and the lag time and heterogeneity decreased). However, this effect was not seen in the wild type strain; the wild type mutants cultured in a chemostat retained a high diversity of growth phenotypes. These results suggest that quasi-essential genes that were deleted in the clean genome might be required to retain a diversity of growth characteristics at the individual cell level under environmental stress. These observations highlight that single-cell microfluidics can reveal subtle individual cellular responses, enabling in-depth understanding of the population.
Collapse
Affiliation(s)
- Xiaofei Yuan
- College
of Science and Engineering, Division of Biomedical Engineering, School
of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Jillian M. Couto
- College
of Science and Engineering, Division of Infrastructure and Environment,
School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Andrew Glidle
- College
of Science and Engineering, Division of Biomedical Engineering, School
of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Yanqing Song
- College
of Science and Engineering, Division of Biomedical Engineering, School
of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - William Sloan
- College
of Science and Engineering, Division of Infrastructure and Environment,
School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Huabing Yin
- College
of Science and Engineering, Division of Biomedical Engineering, School
of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|