1
|
Yew CL, Tsuchimatsu T, Shimizu-Inatsugi R, Yasuda S, Hatakeyama M, Kakui H, Ohta T, Suwabe K, Watanabe M, Takayama S, Shimizu KK. Dominance in self-compatibility between subgenomes of allopolyploid Arabidopsis kamchatica shown by transgenic restoration of self-incompatibility. Nat Commun 2023; 14:7618. [PMID: 38030610 PMCID: PMC10687001 DOI: 10.1038/s41467-023-43275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
The evolutionary transition to self-compatibility facilitates polyploid speciation. In Arabidopsis relatives, the self-incompatibility system is characterized by epigenetic dominance modifiers, among which small RNAs suppress the expression of a recessive SCR/SP11 haplogroup. Although the contribution of dominance to polyploid self-compatibility is speculated, little functional evidence has been reported. Here we employ transgenic techniques to the allotetraploid plant A. kamchatica. We find that when the dominant SCR-B is repaired by removing a transposable element insertion, self-incompatibility is restored. This suggests that SCR was responsible for the evolution of self-compatibility. By contrast, the reconstruction of recessive SCR-D cannot restore self-incompatibility. These data indicate that the insertion in SCR-B conferred dominant self-compatibility to A. kamchatica. Dominant self-compatibility supports the prediction that dominant mutations increasing selfing rate can pass through Haldane's sieve against recessive mutations. The dominance regulation between subgenomes inherited from progenitors contrasts with previous studies on novel epigenetic mutations at polyploidization termed genome shock.
Collapse
Grants
- JPMJCR16O3 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- 310030_212551, 31003A_182318, 31003A_159767, 31003A_140917, 310030_212674 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- 310030_212674 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- grant numbers 16H06469, 16K21727, 22H02316, 22K21352, 22H05172 and 22H05179 MEXT | Japan Society for the Promotion of Science (JSPS)
- Postdoctoral fellowship, 22K21352, 16H06467 and 17H05833 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21H02162, 22H05172 and 22H05179 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21H04711 and 21H05030 MEXT | Japan Society for the Promotion of Science (JSPS)
- URPP Evolutoin in Action, Global Strategy and Partnerships Funding Scheme Universität Zürich (University of Zurich)
- URPP Evolutoini in Action Universität Zürich (University of Zurich)
- fellowship European Molecular Biology Organization (EMBO)
Collapse
Affiliation(s)
- Chow-Lih Yew
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Takashi Tsuchimatsu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
- Department of Biological Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Shinsuke Yasuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
- Functional Genomics Center Zurich, 8057, Zurich, Switzerland
| | - Hiroyuki Kakui
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan
- Institute for Sustainable Agro-ecosystem Services, Graduate School of Agricultural and Life Sciences, University of Tokyo, Nishitokyo, 188-0002, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Takuma Ohta
- Graduate School of Bioresources, Mie University, Tsu, 514-0102, Japan
| | - Keita Suwabe
- Graduate School of Bioresources, Mie University, Tsu, 514-0102, Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Seiji Takayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland.
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland.
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan.
| |
Collapse
|
2
|
Akiyama R, Goto T, Tameshige T, Sugisaka J, Kuroki K, Sun J, Akita J, Hatakeyama M, Kudoh H, Kenta T, Tonouchi A, Shimahara Y, Sese J, Kutsuna N, Shimizu-Inatsugi R, Shimizu KK. Seasonal pigment fluctuation in diploid and polyploid Arabidopsis revealed by machine learning-based phenotyping method PlantServation. Nat Commun 2023; 14:5792. [PMID: 37737204 PMCID: PMC10517152 DOI: 10.1038/s41467-023-41260-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
Long-term field monitoring of leaf pigment content is informative for understanding plant responses to environments distinct from regulated chambers but is impractical by conventional destructive measurements. We developed PlantServation, a method incorporating robust image-acquisition hardware and deep learning-based software that extracts leaf color by detecting plant individuals automatically. As a case study, we applied PlantServation to examine environmental and genotypic effects on the pigment anthocyanin content estimated from leaf color. We processed >4 million images of small individuals of four Arabidopsis species in the field, where the plant shape, color, and background vary over months. Past radiation, coldness, and precipitation significantly affected the anthocyanin content. The synthetic allopolyploid A. kamchatica recapitulated the fluctuations of natural polyploids by integrating diploid responses. The data support a long-standing hypothesis stating that allopolyploids can inherit and combine the traits of progenitors. PlantServation facilitates the study of plant responses to complex environments termed "in natura".
Collapse
Affiliation(s)
- Reiko Akiyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Takao Goto
- Research and Development Division, LPIXEL Inc., Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Toshiaki Tameshige
- Kihara Institute for Biological Research (KIBR), Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama, 244-0813, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-Cho, Ikoma, Nara, 630-0192, Japan
| | - Jiro Sugisaka
- Kihara Institute for Biological Research (KIBR), Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama, 244-0813, Japan
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, 520-2113, Japan
| | - Ken Kuroki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jianqiang Sun
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8517, Japan
| | - Junichi Akita
- Department of Electric and Computer Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Functional Genomics Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, 520-2113, Japan
| | - Tanaka Kenta
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, 1278-294 Sugadaira-kogen, Ueda, 386-2204, Japan
| | - Aya Tonouchi
- Research and Development Division, LPIXEL Inc., Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Yuki Shimahara
- Research and Development Division, LPIXEL Inc., Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Jun Sese
- Artificial Intelligence Research Center, AIST, 2-3-26 Aomi, Koto-ku, Tokyo, 135-0064, Japan
- Humanome Lab, Inc., L-HUB 3F, 1-4, Shumomiyabi-cho, Shinjuku, Tokyo, 162-0822, Japan
- AIST-Tokyo Tech RWBC-OIL, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Natsumaro Kutsuna
- Research and Development Division, LPIXEL Inc., Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- Kihara Institute for Biological Research (KIBR), Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama, 244-0813, Japan.
| |
Collapse
|
3
|
Sun J, Okada M, Tameshige T, Shimizu-Inatsugi R, Akiyama R, Nagano A, Sese J, Shimizu K. A low-coverage 3' RNA-seq to detect homeolog expression in polyploid wheat. NAR Genom Bioinform 2023; 5:lqad067. [PMID: 37448590 PMCID: PMC10336777 DOI: 10.1093/nargab/lqad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Although allopolyploid species are common among natural and crop species, it is not easy to distinguish duplicated genes, known as homeologs, during their genomic analysis. Yet, cost-efficient RNA sequencing (RNA-seq) is to be developed for large-scale transcriptomic studies such as time-series analysis and genome-wide association studies in allopolyploids. In this study, we employed a 3' RNA-seq utilizing 3' untranslated regions (UTRs) containing frequent mutations among homeologous genes, compared to coding sequence. Among the 3' RNA-seq protocols, we examined a low-cost method Lasy-Seq using an allohexaploid bread wheat, Triticum aestivum. HISAT2 showed the best performance for 3' RNA-seq with the least mapping errors and quick computational time. The number of detected homeologs was further improved by extending 1 kb of the 3' UTR annotation. Differentially expressed genes in response to mild cold treatment detected by the 3' RNA-seq were verified with high-coverage conventional RNA-seq, although the latter detected more differentially expressed genes. Finally, downsampling showed that even a 2 million sequencing depth can still detect more than half of expressed homeologs identifiable by the conventional 32 million reads. These data demonstrate that this low-cost 3' RNA-seq facilitates large-scale transcriptomic studies of allohexaploid wheat and indicate the potential application to other allopolyploid species.
Collapse
Affiliation(s)
- Jianqiang Sun
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8517, Japan
| | - Moeko Okada
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama, Kanagawa 244-0813, Japan
| | - Toshiaki Tameshige
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama, Kanagawa 244-0813, Japan
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Reiko Akiyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Yokotani 1-5, Seta Ohe-cho, Otsu, Shiga 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan
| | - Jun Sese
- Humanome Lab, Inc., 2-4-10, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | | |
Collapse
|
4
|
Leal JL, Milesi P, Salojärvi J, Lascoux M. Phylogenetic Analysis of Allotetraploid Species Using Polarized Genomic Sequences. Syst Biol 2023; 72:372-390. [PMID: 36932679 PMCID: PMC10275558 DOI: 10.1093/sysbio/syad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 10/14/2022] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
Phylogenetic analysis of polyploid hybrid species has long posed a formidable challenge as it requires the ability to distinguish between alleles of different ancestral origins in order to disentangle their individual evolutionary history. This problem has been previously addressed by conceiving phylogenies as reticulate networks, using a two-step phasing strategy that first identifies and segregates homoeologous loci and then, during a second phasing step, assigns each gene copy to one of the subgenomes of an allopolyploid species. Here, we propose an alternative approach, one that preserves the core idea behind phasing-to produce separate nucleotide sequences that capture the reticulate evolutionary history of a polyploid-while vastly simplifying its implementation by reducing a complex multistage procedure to a single phasing step. While most current methods used for phylogenetic reconstruction of polyploid species require sequencing reads to be pre-phased using experimental or computational methods-usually an expensive, complex, and/or time-consuming endeavor-phasing executed using our algorithm is performed directly on the multiple-sequence alignment (MSA), a key change that allows for the simultaneous segregation and sorting of gene copies. We introduce the concept of genomic polarization that, when applied to an allopolyploid species, produces nucleotide sequences that capture the fraction of a polyploid genome that deviates from that of a reference sequence, usually one of the other species present in the MSA. We show that if the reference sequence is one of the parental species, the polarized polyploid sequence has a close resemblance (high pairwise sequence identity) to the second parental species. This knowledge is harnessed to build a new heuristic algorithm where, by replacing the allopolyploid genomic sequence in the MSA by its polarized version, it is possible to identify the phylogenetic position of the polyploid's ancestral parents in an iterative process. The proposed methodology can be used with long-read and short-read high-throughput sequencing data and requires only one representative individual for each species to be included in the phylogenetic analysis. In its current form, it can be used in the analysis of phylogenies containing tetraploid and diploid species. We test the newly developed method extensively using simulated data in order to evaluate its accuracy. We show empirically that the use of polarized genomic sequences allows for the correct identification of both parental species of an allotetraploid with up to 97% certainty in phylogenies with moderate levels of incomplete lineage sorting (ILS) and 87% in phylogenies containing high levels of ILS. We then apply the polarization protocol to reconstruct the reticulate histories of Arabidopsis kamchatica and Arabidopsis suecica, two allopolyploids whose ancestry has been well documented. [Allopolyploidy; Arabidopsis; genomic polarization; homoeologs; incomplete lineage sorting; phasing; polyploid phylogenetics; reticulate evolution.].
Collapse
Affiliation(s)
- J Luis Leal
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| |
Collapse
|
5
|
Yang C, Xia L, Zeng Y, Chen Y, Zhang S. Hexaploid Salix rehderiana is more suitable for remediating lead contamination than diploids, especially male plants. CHEMOSPHERE 2023; 333:138902. [PMID: 37182717 DOI: 10.1016/j.chemosphere.2023.138902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Willows are promising candidates for phytoremediation, but the lead (Pb) phytoremediation potential of different willow ploidy and sex has not yet been exploited. In this study, the Pb uptake, translocation and detoxification capacities of hexaploid and diploid, female and male Salix rehderiana were investigated. The results showed that Pb treatment inhibited biomass accumulation and gas exchange, caused ultrastructural and oxidative damage, and induced antioxidant, phytohormonal and transcriptional regulation in S. rehderiana. Absorbed Pb was mainly accumulated in the roots with restricted root-to-shoot transport. Despite lower biomass, greater transpiration, phytohormonal and transcriptional regulation indicated that hexaploid S. rehderiana had higher tissue Pb concentration, total accumulated Pb amount (4.39 mg, 6.19 mg, 6.60 mg and 10.83 mg in diploid and hexaploid females and males, respectively) as well as bioconcentration factors and translocation factors (0.412, 0.593, 0.921 and 1.320 for bioconcentration factors in roots, and 0.029, 0.032, 0.035 and 0.047 for translocation factors in diploid and hexaploid females and males, respectively) than diploids. Higher soil urease and acid phosphatase activities also favored hexaploids to use more available N and P than diploids in Pb-contaminated soils. Additionally, hexaploid S. rehderiana had stronger antioxidant, phytohormonal and transcriptional responses, and displayed less morphological and ultrastructural damage than diploids after Pb treatment, suggesting that hexaploids have greater Pb uptake, translocation and detoxification capacities than diploids. Moreover, S. rehderiana males had greater Pb uptake and translocation abilities, as well as stronger antioxidant, phytohormonal, and transcriptional regulation mediated Pb detoxification capacities than females. Therefore, hexaploid S. rehderiana are superior to diploids, and males are better than females in Pb phytoremediation. This study provides novel and valuable insights for selecting better willow materials to mitigate Pb contamination.
Collapse
Affiliation(s)
- Congcong Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yao Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
6
|
Shimizu KK. Robustness and the generalist niche of polyploid species: Genome shock or gradual evolution? CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102292. [PMID: 36063635 DOI: 10.1016/j.pbi.2022.102292] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 05/26/2023]
Abstract
The prevalence of polyploidy in wild and crop species has stimulated debate over its evolutionary advantages and disadvantages. Previous studies have focused on changes occurring at the polyploidization events, including genome-wide changes termed "genome shock," as well as ancient polyploidy. Recent bioinformatics advances and empirical studies of Arabidopsis and wheat relatives are filling a research gap: the functional evolutionary study of polyploid species using RNA-seq, DNA polymorphism, and epigenomics. Polyploid species can become generalists in natura through environmental robustness by inheriting and merging parental stress responses. Their evolvability is enhanced by mutational robustness working on inherited standing variation. The identification of key genes responsible for gradual adaptive evolution will encourage synthetic biological approaches to transfer polyploid advantages to other species.
Collapse
Affiliation(s)
- Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zürich, Switzerland; Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, 244-0813 Totsuka-ward, Yokohama, Japan.
| |
Collapse
|
7
|
Alsafran M, Usman K, Ahmed B, Rizwan M, Saleem MH, Al Jabri H. Understanding the Phytoremediation Mechanisms of Potentially Toxic Elements: A Proteomic Overview of Recent Advances. FRONTIERS IN PLANT SCIENCE 2022; 13:881242. [PMID: 35646026 PMCID: PMC9134791 DOI: 10.3389/fpls.2022.881242] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/11/2022] [Indexed: 05/03/2023]
Abstract
Potentially toxic elements (PTEs) such as cadmium (Cd), lead (Pb), chromium (Cr), and arsenic (As), polluting the environment, pose a significant risk and cause a wide array of adverse changes in plant physiology. Above threshold accumulation of PTEs is alarming which makes them prone to ascend along the food chain, making their environmental prevention a critical intervention. On a global scale, current initiatives to remove the PTEs are costly and might lead to more pollution. An emerging technology that may help in the removal of PTEs is phytoremediation. Compared to traditional methods, phytoremediation is eco-friendly and less expensive. While many studies have reported several plants with high PTEs tolerance, uptake, and then storage capacity in their roots, stem, and leaves. However, the wide application of such a promising strategy still needs to be achieved, partly due to a poor understanding of the molecular mechanism at the proteome level controlling the phytoremediation process to optimize the plant's performance. The present study aims to discuss the detailed mechanism and proteomic response, which play pivotal roles in the uptake of PTEs from the environment into the plant's body, then scavenge/detoxify, and finally bioaccumulate the PTEs in different plant organs. In this review, the following aspects are highlighted as: (i) PTE's stress and phytoremediation strategies adopted by plants and (ii) PTEs induced expressional changes in the plant proteome more specifically with arsenic, cadmium, copper, chromium, mercury, and lead with models describing the metal uptake and plant proteome response. Recently, interest in the comparative proteomics study of plants exposed to PTEs toxicity results in appreciable progress in this area. This article overviews the proteomics approach to elucidate the mechanisms underlying plant's PTEs tolerance and bioaccumulation for optimized phytoremediation of polluted environments.
Collapse
Affiliation(s)
- Mohammed Alsafran
- Agricultural Research Station (ARS), Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
- Central Laboratories Unit (CLU), Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Kamal Usman
- Agricultural Research Station (ARS), Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Muhammad Rizwan
- Office of Academic Research, Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Hareb Al Jabri
- Center for Sustainable Development (CSD), College of Arts and Sciences, Qatar University, Doha, Qatar
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
8
|
Halstead-Nussloch G, Tanaka T, Copetti D, Paape T, Kobayashi F, Hatakeyama M, Kanamori H, Wu J, Mascher M, Kawaura K, Shimizu KK, Handa H. Multiple Wheat Genomes Reveal Novel Gli-2 Sublocus Location and Variation of Celiac Disease Epitopes in Duplicated α-Gliadin Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:715985. [PMID: 34539709 PMCID: PMC8446623 DOI: 10.3389/fpls.2021.715985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/12/2021] [Indexed: 05/28/2023]
Abstract
The seed protein α-gliadin is a major component of wheat flour and causes gluten-related diseases. However, due to the complexity of this multigene family with a genome structure composed of dozens of copies derived from tandem and genome duplications, little was known about the variation between accessions, and thus little effort has been made to explicitly target α-gliadin for bread wheat breeding. Here, we analyzed genomic variation in α-gliadins across 11 recently published chromosome-scale assemblies of hexaploid wheat, with validation using long-read data. We unexpectedly found that the Gli-B2 locus is not a single contiguous locus but is composed of two subloci, suggesting the possibility of recombination between the two during breeding. We confirmed that the number of immunogenic epitopes among 11 accessions varied. The D subgenome of a European spelt line also contained epitopes, in agreement with its hybridization history. Evolutionary analysis identified amino acid sites under diversifying selection, suggesting their functional importance. The analysis opens the way for improved grain quality and safety through wheat breeding.
Collapse
Affiliation(s)
- Gwyneth Halstead-Nussloch
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Tsuyoshi Tanaka
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Dario Copetti
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zürich, Zurich, Switzerland
| | - Timothy Paape
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Brookhaven National Laboratory, Upton, NY, United States
| | - Fuminori Kobayashi
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Hiroyuki Kanamori
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Jianzhong Wu
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Hirokazu Handa
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
9
|
Kuo TCY, Hatakeyama M, Tameshige T, Shimizu KK, Sese J. Homeolog expression quantification methods for allopolyploids. Brief Bioinform 2021; 21:395-407. [PMID: 30590436 PMCID: PMC7299288 DOI: 10.1093/bib/bby121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/06/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022] Open
Abstract
Genome duplication with hybridization, or allopolyploidization, occurs in animals, fungi and plants, and is especially common in crop plants. There is an increasing interest in the study of allopolyploids because of advances in polyploid genome assembly; however, the high level of sequence similarity in duplicated gene copies (homeologs) poses many challenges. Here we compared standard RNA-seq expression quantification approaches used currently for diploid species against subgenome-classification approaches which maps reads to each subgenome separately. We examined mapping error using our previous and new RNA-seq data in which a subgenome is experimentally added (synthetic allotetraploid Arabidopsis kamchatica) or reduced (allohexaploid wheat Triticum aestivum versus extracted allotetraploid) as ground truth. The error rates in the two species were very similar. The standard approaches showed higher error rates (>10% using pseudo-alignment with Kallisto) while subgenome-classification approaches showed much lower error rates (<1% using EAGLE-RC, <2% using HomeoRoq). Although downstream analysis may partly mitigate mapping errors, the difference in methods was substantial in hexaploid wheat, where Kallisto appeared to have systematic differences relative to other methods. Only approximately half of the differentially expressed homeologs detected using Kallisto overlapped with those by any other method in wheat. In general, disagreement in low-expression genes was responsible for most of the discordance between methods, which is consistent with known biases in Kallisto. We also observed that there exist uncertainties in genome sequences and annotation which can affect each method differently. Overall, subgenome-classification approaches tend to perform better than standard approaches with EAGLE-RC having the highest precision.
Collapse
Affiliation(s)
- Tony C Y Kuo
- Artificial Intelligence Research Center, AIST, 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan.,AIST-Tokyo Tech RWBC-OIL, 2-12-1 Okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland.,Functional Genomics Center Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Genopode, Lausanne 1015, Switzerland
| | - Toshiaki Tameshige
- Kihara Institute for Biological Research, Yokohama City University, 641-12, Maioka, Totsuka-ku, Yokohama 244-0813, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland.,Kihara Institute for Biological Research, Yokohama City University, 641-12, Maioka, Totsuka-ku, Yokohama 244-0813, Japan
| | - Jun Sese
- Artificial Intelligence Research Center, AIST, 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan.,AIST-Tokyo Tech RWBC-OIL, 2-12-1 Okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
10
|
Akiyama R, Sun J, Hatakeyama M, Lischer HEL, Briskine RV, Hay A, Gan X, Tsiantis M, Kudoh H, Kanaoka MM, Sese J, Shimizu KK, Shimizu‐Inatsugi R. Fine-scale empirical data on niche divergence and homeolog expression patterns in an allopolyploid and its diploid progenitor species. THE NEW PHYTOLOGIST 2021; 229:3587-3601. [PMID: 33222195 PMCID: PMC7986779 DOI: 10.1111/nph.17101] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 11/09/2020] [Indexed: 05/09/2023]
Abstract
Polyploidization is pervasive in plants, but little is known about the niche divergence of wild allopolyploids (species that harbor polyploid genomes originating from different diploid species) relative to their diploid progenitor species and the gene expression patterns that may underlie such ecological divergence. We conducted a fine-scale empirical study on habitat and gene expression of an allopolyploid and its diploid progenitors. We quantified soil properties and light availability of habitats of an allotetraploid Cardamine flexuosa and its diploid progenitors Cardamine amara and Cardamine hirsuta in two seasons. We analyzed expression patterns of genes and homeologs (homeologous gene copies in allopolyploids) using RNA sequencing. We detected niche divergence between the allopolyploid and its diploid progenitors along water availability gradient at a fine scale: the diploids in opposite extremes and the allopolyploid in a broader range between diploids, with limited overlap with diploids at both ends. Most of the genes whose homeolog expression ratio changed among habitats in C. flexuosa varied spatially and temporally. These findings provide empirical evidence for niche divergence between an allopolyploid and its diploid progenitor species at a fine scale and suggest that divergent expression patterns of homeologs in an allopolyploid may underlie its persistence in diverse habitats.
Collapse
Affiliation(s)
- Reiko Akiyama
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
| | - Jianqiang Sun
- Research Center for Agricultural Information TechnologyNational Agriculture and Food Research Organization3‐1‐1 KannondaiTsukubaIbaraki305‐8517Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Functional Genomics Center ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Swiss Institute of BioinformaticsQuartier Sorge – Batiment GenopodeLausanneCH‐1015Switzerland
| | - Heidi E. L. Lischer
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Swiss Institute of BioinformaticsQuartier Sorge – Batiment GenopodeLausanneCH‐1015Switzerland
- Interfaculty Bioinformatics UnitUniversity of BernBaltzerstrasse 6BernCH‐3012Switzerland
| | - Roman V. Briskine
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Functional Genomics Center ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
| | - Angela Hay
- Department of Comparative Development and GeneticsMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Köln50829Germany
| | - Xiangchao Gan
- Department of Comparative Development and GeneticsMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Köln50829Germany
| | - Miltos Tsiantis
- Department of Comparative Development and GeneticsMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Köln50829Germany
| | - Hiroshi Kudoh
- Center for Ecological ResearchKyoto UniversityHirano 2‐509‐3Otsu520‐2113Japan
| | - Masahiro M. Kanaoka
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8602Japan
| | - Jun Sese
- Humanome Lab, Inc.L‐HUB 3F1‐4, Shumomiyabi‐choShinjukuTokyo162‐0822Japan
- Artificial Intelligence Research CenterAIST2‐3‐26 AomiKoto‐kuTokyo135‐0064Japan
- AIST‐Tokyo Tech RWBC‐OIL2‐12‐1 OkayamaMeguro‐kuTokyo152‐8550Japan
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Kihara Institute for Biological Research (KIBR)Yokohama City University641‐12 MaiokaTotsuka‐wardYokohama244‐0813Japan
| | - Rie Shimizu‐Inatsugi
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
| |
Collapse
|
11
|
Multiple wheat genomes reveal global variation in modern breeding. Nature 2020; 588:277-283. [PMID: 33239791 PMCID: PMC7759465 DOI: 10.1038/s41586-020-2961-x] [Citation(s) in RCA: 430] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022]
Abstract
Advances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat (Triticum spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome1, and the lack of genome-assembly data for multiple wheat lines2,3. Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses4,5. We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of Sm16, a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars. Comparison of multiple genome assemblies from wheat reveals extensive diversity that results from the complex breeding history of wheat and provides a basis for further potential improvements to this important food crop.
Collapse
|
12
|
Sun J, Shimizu-Inatsugi R, Hofhuis H, Shimizu K, Hay A, Shimizu KK, Sese J. A Recently Formed Triploid Cardamine insueta Inherits Leaf Vivipary and Submergence Tolerance Traits of Parents. Front Genet 2020; 11:567262. [PMID: 33133153 PMCID: PMC7573311 DOI: 10.3389/fgene.2020.567262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/18/2020] [Indexed: 12/03/2022] Open
Abstract
Contemporary speciation provides a unique opportunity to directly observe the traits and environmental responses of a new species. Cardamine insueta is an allotriploid species that appeared within the past 150 years in a Swiss village, Urnerboden. In contrast to its two progenitor species, Cardamine amara and Cardamine rivularis that live in wet and open habitats, respectively, C. insueta is found in-between their habitats with temporal water level fluctuation. This triploid species propagates clonally and serves as a triploid bridge to form higher ploidy species. Although niche separation is observed in field studies, the mechanisms underlying the environmental robustness of C. insueta are not clear. To characterize responses to a fluctuating environment, we performed a time-course analysis of homeolog gene expression in C. insueta in response to submergence treatment. For this purpose, the two parental (C. amara and C. rivularis) genome sequences were assembled with a reference-guided approach, and homeolog-specific gene expression was quantified using HomeoRoq software. We found that C. insueta and C. rivularis initiated vegetative propagation by forming ectopic meristems on leaves, while C. amara did not. We examined homeolog-specific gene expression of three species at nine time points during the treatment. The genome-wide expression ratio of homeolog pairs was 2:1 over the time-course, consistent with the ploidy number. By searching the genes with high coefficient of variation of expression over time-course transcriptome data, we found many known key transcriptional factors related to meristem development and formation upregulated in both C. rivularis and rivularis-homeolog of C. insueta, but not in C. amara. Moreover, some amara-homeologs of these genes were also upregulated in the triploid, suggesting trans-regulation. In turn, Gene Ontology analysis suggested that the expression pattern of submergence tolerant genes in the triploid was inherited from C. amara. These results suggest that the triploid C. insueta combined advantageous patterns of parental transcriptomes to contribute to its establishment in a new niche along a water-usage gradient.
Collapse
Affiliation(s)
- Jianqiang Sun
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Hugo Hofhuis
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kentaro Shimizu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Kihara Institute for Biological Research (KIBR), Yokohama City University, Yokohama, Japan
| | - Jun Sese
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.,Humanome Lab, Inc., Tokyo, Japan
| |
Collapse
|
13
|
Paape T, Akiyama R, Cereghetti T, Onda Y, Hirao AS, Kenta T, Shimizu KK. Experimental and Field Data Support Range Expansion in an Allopolyploid Arabidopsis Owing to Parental Legacy of Heavy Metal Hyperaccumulation. Front Genet 2020; 11:565854. [PMID: 33193650 PMCID: PMC7554548 DOI: 10.3389/fgene.2020.565854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/04/2020] [Indexed: 01/31/2023] Open
Abstract
Empirical evidence is limited on whether allopolyploid species combine or merge parental adaptations to broaden habitats. The allopolyploid Arabidopsis kamchatica is a hybrid of the two diploid parents Arabidopsis halleri and Arabidopsis lyrata. A. halleri is a facultative heavy metal hyperaccumulator, and may be found in cadmium (Cd) and zinc (Zn) contaminated environments, as well as non-contaminated environments. A. lyrata is considered non-tolerant to these metals, but can be found in serpentine habitats. Therefore, the parents have adaptation to different environments. Here, we measured heavy metals in soils from native populations of A. kamchatica. We found that soil Zn concentration of nearly half of the sampled 40 sites was higher than the critical toxicity level. Many of the sites were near human construction, suggesting adaptation of A. kamchatica to artificially contaminated soils. Over half of the A. kamchatica populations had >1,000 μg g–1 Zn in leaf tissues. Using hydroponic treatments, most genotypes accumulated >3,000 μg g–1 Zn, with high variability among them, indicating substantial genetic variation in heavy metal accumulation. Genes involved in heavy metal hyperaccumulation showed an expression bias in the A. halleri-derived homeolog in widely distributed plant genotypes. We also found that two populations were found growing on serpentine soils. These data suggest that A. kamchatica can inhabit a range of both natural and artificial soil environments with high levels of ions that either of the parents specializes and that it can accumulate varying amount of heavy metals. Our field and experimental data provide a compelling example of combining genetic toolkits for soil adaptations to expand the habitat of an allopolyploid species.
Collapse
Affiliation(s)
- Timothy Paape
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Sugadaira Montane Research Center, University of Tsukuba, Tsukuba, Japan
| | - Reiko Akiyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Teo Cereghetti
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Yoshihiko Onda
- Sugadaira Montane Research Center, University of Tsukuba, Tsukuba, Japan
| | - Akira S Hirao
- Sugadaira Montane Research Center, University of Tsukuba, Tsukuba, Japan.,Faculty of Symbiotic Systems Science, Fukushima University, Fukushima, Japan
| | - Tanaka Kenta
- Sugadaira Montane Research Center, University of Tsukuba, Tsukuba, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
14
|
Baniaga AE, Marx HE, Arrigo N, Barker MS. Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives. Ecol Lett 2019; 23:68-78. [PMID: 31637845 DOI: 10.1111/ele.13402] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/01/2019] [Accepted: 09/16/2019] [Indexed: 01/02/2023]
Abstract
Polyploid speciation entails substantial and rapid postzygotic reproductive isolation of nascent species that are initially sympatric with one or both parents. Despite strong postzygotic isolation, ecological niche differentiation has long been thought to be important for polyploid success. Using biogeographic data from across vascular plants, we tested whether the climatic niches of polyploid species are more differentiated than their diploid relatives and if the climatic niches of polyploid species differentiated faster than those of related diploids. We found that polyploids are often more climatically differentiated from their diploid parents than the diploids are from each other. Consistent with this pattern, we estimated that polyploid species generally have higher rates of multivariate niche differentiation than their diploid relatives. In contrast to recent analyses, our results confirm that ecological niche differentiation is an important component of polyploid speciation and that niche differentiation is often significantly faster in polyploids.
Collapse
Affiliation(s)
- Anthony E Baniaga
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Hannah E Marx
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Nils Arrigo
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
15
|
Griffiths AG, Moraga R, Tausen M, Gupta V, Bilton TP, Campbell MA, Ashby R, Nagy I, Khan A, Larking A, Anderson C, Franzmayr B, Hancock K, Scott A, Ellison NW, Cox MP, Asp T, Mailund T, Schierup MH, Andersen SU. Breaking Free: The Genomics of Allopolyploidy-Facilitated Niche Expansion in White Clover. THE PLANT CELL 2019; 31:1466-1487. [PMID: 31023841 PMCID: PMC6635854 DOI: 10.1105/tpc.18.00606] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 03/15/2019] [Accepted: 04/22/2019] [Indexed: 05/18/2023]
Abstract
The merging of distinct genomes, allopolyploidization, is a widespread phenomenon in plants. It generates adaptive potential through increased genetic diversity, but examples demonstrating its exploitation remain scarce. White clover (Trifolium repens) is a ubiquitous temperate allotetraploid forage crop derived from two European diploid progenitors confined to extreme coastal or alpine habitats. We sequenced and assembled the genomes and transcriptomes of this species complex to gain insight into the genesis of white clover and the consequences of allopolyploidization. Based on these data, we estimate that white clover originated ∼15,000 to 28,000 years ago during the last glaciation when alpine and coastal progenitors were likely colocated in glacial refugia. We found evidence of progenitor diversity carryover through multiple hybridization events and show that the progenitor subgenomes have retained integrity and gene expression activity as they traveled within white clover from their original confined habitats to a global presence. At the transcriptional level, we observed remarkably stable subgenome expression ratios across tissues. Among the few genes that show tissue-specific switching between homeologous gene copies, we found flavonoid biosynthesis genes strongly overrepresented, suggesting an adaptive role of some allopolyploidy-associated transcriptional changes. Our results highlight white clover as an example of allopolyploidy-facilitated niche expansion, where two progenitor genomes, adapted and confined to disparate and highly specialized habitats, expanded to a ubiquitous global presence after glaciation-associated allopolyploidization.
Collapse
Affiliation(s)
- Andrew G Griffiths
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Roger Moraga
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Marni Tausen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus C, Denmark
| | - Vikas Gupta
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Timothy P Bilton
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Matthew A Campbell
- Bioinformatics and Statistics Group, Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Rachael Ashby
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Istvan Nagy
- Department of Molecular Biology and Genetics, Aarhus University, 200 Slagelse, Denmark
| | - Anar Khan
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Anna Larking
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Craig Anderson
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Benjamin Franzmayr
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Kerry Hancock
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Alicia Scott
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Nick W Ellison
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Murray P Cox
- Bioinformatics and Statistics Group, Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Torben Asp
- Department of Molecular Biology and Genetics, Aarhus University, 200 Slagelse, Denmark
| | - Thomas Mailund
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus C, Denmark
| | - Mikkel H Schierup
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
- Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
16
|
Kryvokhyzha D, Salcedo A, Eriksson MC, Duan T, Tawari N, Chen J, Guerrina M, Kreiner JM, Kent TV, Lagercrantz U, Stinchcombe JR, Glémin S, Wright SI, Lascoux M. Parental legacy, demography, and admixture influenced the evolution of the two subgenomes of the tetraploid Capsella bursa-pastoris (Brassicaceae). PLoS Genet 2019; 15:e1007949. [PMID: 30768594 PMCID: PMC6395008 DOI: 10.1371/journal.pgen.1007949] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/28/2019] [Accepted: 01/09/2019] [Indexed: 11/18/2022] Open
Abstract
Allopolyploidy is generally perceived as a major source of evolutionary novelties and as an instantaneous way to create isolation barriers. However, we do not have a clear understanding of how two subgenomes evolve and interact once they have fused in an allopolyploid species nor how isolated they are from their relatives. Here, we address these questions by analyzing genomic and transcriptomic data of allotetraploid Capsella bursa-pastoris in three differentiated populations, Asia, Europe, and the Middle East. We phased the two subgenomes, one descended from the outcrossing and highly diverse Capsella grandiflora (CbpCg) and the other one from the selfing and genetically depauperate Capsella orientalis (CbpCo). For each subgenome, we assessed its relationship with the diploid relatives, temporal changes of effective population size (Ne), signatures of positive and negative selection, and gene expression patterns. In all three regions, Ne of the two subgenomes decreased gradually over time and the CbpCo subgenome accumulated more deleterious changes than CbpCg. There were signs of widespread admixture between C. bursa-pastoris and its diploid relatives. The two subgenomes were impacted differentially depending on geographic region suggesting either strong interploidy gene flow or multiple origins of C. bursa-pastoris. Selective sweeps were more common on the CbpCg subgenome in Europe and the Middle East, and on the CbpCo subgenome in Asia. In contrast, differences in expression were limited with the CbpCg subgenome slightly more expressed than CbpCo in Europe and the Middle-East. In summary, after more than 100,000 generations of co-existence, the two subgenomes of C. bursa-pastoris still retained a strong signature of parental legacy but their evolutionary trajectory strongly varied across geographic regions.
Collapse
Affiliation(s)
- Dmytro Kryvokhyzha
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Adriana Salcedo
- Department of Ecology and Evolution, University of Toronto, Toronto, Canada
| | - Mimmi C. Eriksson
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Tianlin Duan
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nilesh Tawari
- Computational and Systems Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A*Star), Singapore
| | - Jun Chen
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Guerrina
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Julia M. Kreiner
- Department of Ecology and Evolution, University of Toronto, Toronto, Canada
| | - Tyler V. Kent
- Department of Ecology and Evolution, University of Toronto, Toronto, Canada
| | - Ulf Lagercrantz
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Sylvain Glémin
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- CNRS, Université de Rennes 1, ECOBIO (Ecosystémes, biodiversité, évolution) - UMR 6553, F-35000 Rennes, France
| | - Stephen I. Wright
- Department of Ecology and Evolution, University of Toronto, Toronto, Canada
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Takahagi K, Inoue K, Shimizu M, Uehara-Yamaguchi Y, Onda Y, Mochida K. Homoeolog-specific activation of genes for heat acclimation in the allopolyploid grass Brachypodium hybridum. Gigascience 2018; 7:4924998. [PMID: 29697823 PMCID: PMC5915950 DOI: 10.1093/gigascience/giy020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 03/01/2018] [Indexed: 11/21/2022] Open
Abstract
Background Allopolyploid plants often show wider environmental tolerances than their ancestors; this is expected to be due to the merger of multiple distinct genomes with a fixed heterozygosity. The complex homoeologous gene expression could have been evolutionarily advantageous for the adaptation of allopolyploid plants. Despite multiple previous studies reporting homoeolog-specific gene expression in allopolyploid species, there are no clear examples of homoeolog-specific function in acclimation to a long-term stress condition. Results We found that the allopolyploid grass Brachypodium hybridum and its ancestor Brachypodium stacei show long-term heat stress tolerance, unlike its other ancestor, Brachypodium distachyon. To understand the physiological traits of B. hybridum, we compared the transcriptome of the 3 Brachypodium species grown under normal and heat stress conditions. We found that the expression patterns of approximately 26% and approximately 38% of the homoeolog groups in B. hybridum changed toward nonadditive expression and nonancestral expression, respectively, under normal condition. Moreover, we found that B. distachyon showed similar expression patterns between normal and heat stress conditions, whereas B. hybridum and B. stacei significantly altered their transcriptome in response to heat after 3 days of stress exposure, and homoeologs that were inherited from B. stacei may have contributed to the transcriptional stress response to heat in B. hybridum. After 15 days of heat exposure, B. hybridum and B. stacei maintained transcriptional states similar to those under normal conditions. These results suggest that an earlier response to heat that was specific to homoeologs originating from B. stacei contributed to cellular homeostasis under long-term heat stress in B. hybridum. Conclusions Our results provide insights into different regulatory events of the homoeo-transcriptome that are associated with stress acclimation in allopolyploid plants.
Collapse
Affiliation(s)
- Kotaro Takahagi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan.,Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan.,Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Komaki Inoue
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Minami Shimizu
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan.,Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yukiko Uehara-Yamaguchi
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshihiko Onda
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan.,Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Keiichi Mochida
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan.,Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan.,Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
18
|
Paape T, Briskine RV, Halstead-Nussloch G, Lischer HEL, Shimizu-Inatsugi R, Hatakeyama M, Tanaka K, Nishiyama T, Sabirov R, Sese J, Shimizu KK. Patterns of polymorphism and selection in the subgenomes of the allopolyploid Arabidopsis kamchatica. Nat Commun 2018; 9:3909. [PMID: 30254374 PMCID: PMC6156220 DOI: 10.1038/s41467-018-06108-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/10/2018] [Indexed: 12/30/2022] Open
Abstract
Genome duplication is widespread in wild and crop plants. However, little is known about genome-wide selection in polyploids due to the complexity of duplicated genomes. In polyploids, the patterns of purifying selection and adaptive substitutions may be affected by masking owing to duplicated genes or homeologs as well as effective population size. Here, we resequence 25 accessions of the allotetraploid Arabidopsis kamchatica, which is derived from the diploid species A. halleri and A. lyrata. We observe a reduction in purifying selection compared with the parental species. Interestingly, proportions of adaptive non-synonymous substitutions are significantly positive in contrast to most plant species. A recurrent pattern observed in both frequency and divergence–diversity neutrality tests is that the genome-wide distributions of both subgenomes are similar, but the correlation between homeologous pairs is low. This may increase the opportunity of different evolutionary trajectories such as in the HMA4 gene involved in heavy metal hyperaccumulation. Despite the prevalence of genome duplication in plants, little is known about the evolutionary patterns of entire subgenomes. Here the authors resequence allopolyploid Arabidopsis kamchatica genome to estimate diversity, linkage disequilibrium and strengths of both positive and purifying selection.
Collapse
Affiliation(s)
- Timothy Paape
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland. .,Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland.
| | - Roman V Briskine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Environmental Systems Science, ETH Zurich, CH-8092, Zurich, Switzerland.,Functional Genomics Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Gwyneth Halstead-Nussloch
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Heidi E L Lischer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, 1015, Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, 1015, Switzerland.,Functional Genomics Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Kenta Tanaka
- Sugadaira Montane Research Center, University of Tsukuba, Nagano, Ueda, 386-2204, Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-0934, Japan
| | - Renat Sabirov
- Institute of Marine Geology and Geophysics, Far East Branch, Russian Academy of Sciences, Nauki street, 1-B, Yuzhno-Sakhalinsk, 693022, Russian Federation
| | - Jun Sese
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan.,AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory, Tokyo, 152-8550, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland. .,Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland. .,Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Yokohama, 244-0813, Japan.
| |
Collapse
|
19
|
Nomaguchi T, Maeda Y, Yoshino T, Asahi T, Tirichine L, Bowler C, Tanaka T. Homoeolog expression bias in allopolyploid oleaginous marine diatom Fistulifera solaris. BMC Genomics 2018; 19:330. [PMID: 29728068 PMCID: PMC5935921 DOI: 10.1186/s12864-018-4691-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/17/2018] [Indexed: 11/27/2022] Open
Abstract
Background Allopolyploidy is a genomic structure wherein two or more sets of chromosomes derived from divergent parental species coexist within an organism. It is a prevalent genomic configuration in plants, as an important source of genetic variation, and also frequently confers environmental adaptability and increased crop productivity. We previously reported the oleaginous marine diatom Fistulifera solaris JPCC DA0580 to be a promising host for biofuel production and that its genome is allopolyploid, which had never previously been reported in eukaryotic microalgae. However, the study of allopolyploidy in F. solaris was hindered by the difficulty in classifying the homoeologous genes based on their progenitor origins, owing to the shortage of diatom genomic references. Results In this study, the allopolyploid genome of F. solaris was tentatively classified into two pseudo-parental subgenomes using sequence analysis based on GC content and codon frequency in each homoeologous gene pair. This approach clearly separated the genome into two distinct fractions, subgenome Fso_h and Fso_l, which also showed the potency of codon usage analysis to differentiate the allopolyploid subgenome. Subsequent homoeolog expression bias analysis revealed that, although both subgenomes appear to contribute to global transcription, there were subgenomic preferences in approximately 61% of homoeologous gene pairs, and the majority of these genes showed continuous bias towards a specific subgenome during lipid accumulation. Additional promoter analysis indicated the possibility of promoter motifs involved in biased transcription of homoeologous genes. Among these subgenomic preferences, genes involved in lipid metabolic pathways showed interesting patterns in that biosynthetic and degradative pathways showed opposite subgenomic preferences, suggesting the possibility that the oleaginous characteristics of F. solaris derived from one of its progenitors. Conclusions We report the detailed genomic structure and expression patterns in the allopolyploid eukaryotic microalga F. solaris. The allele-specific patterns reported may contribute to the oleaginous characteristics of F. solaris and also suggest the robust oleaginous characteristics of one of its progenitors. Our data reveal novel aspects of allopolyploidy in a diatom that is not only important for evolutionary studies but may also be advantageous for biofuel production in microalgae. Electronic supplementary material The online version of this article (10.1186/s12864-018-4691-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tatsuhiro Nomaguchi
- Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Toru Asahi
- Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Leila Tirichine
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005, Paris, France
| | - Chris Bowler
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005, Paris, France
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
20
|
Novikova PY, Hohmann N, Van de Peer Y. Polyploid Arabidopsis species originated around recent glaciation maxima. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:8-15. [PMID: 29448159 DOI: 10.1016/j.pbi.2018.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/17/2018] [Indexed: 05/20/2023]
Abstract
Polyploidy may provide adaptive advantages and is considered to be important for evolution and speciation. Polyploidy events are found throughout the evolutionary history of plants, however they do not seem to be uniformly distributed along the time axis. For example, many of the detected ancient whole-genome duplications (WGDs) seem to cluster around the K/Pg boundary (∼66Mya), which corresponds to a drastic climate change event and a mass extinction. Here, we discuss more recent polyploidy events using Arabidopsis as the most developed plant model at the level of the entire genus. We review the history of the origin of allotetraploid species A. suecica and A. kamchatica, and tetraploid lineages of A. lyrata, A. arenosa and A. thaliana, and discuss potential adaptive advantages. Also, we highlight an association between recent glacial maxima and estimated times of origins of polyploidy in Arabidopsis. Such association might further support a link between polyploidy and environmental challenge, which has been observed now for different time-scales and for both ancient and recent polyploids.
Collapse
Affiliation(s)
- Polina Yu Novikova
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Nora Hohmann
- University of Basel, Department of Environmental Sciences, Basel, Switzerland
| | - Yves Van de Peer
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium; Department of Genetics, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
21
|
Yew CL, Kakui H, Shimizu KK. Agrobacterium-mediated floral dip transformation of the model polyploid species Arabidopsis kamchatica. JOURNAL OF PLANT RESEARCH 2018; 131:349-358. [PMID: 29032409 DOI: 10.1007/s10265-017-0982-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
Polyploidization has played an important role in the speciation and diversification of plant species. However, genetic analyses of polyploids are challenging because the vast majority of the model species are diploids. The allotetraploid Arabidopsis kamchatica, which originated through the hybridization of the diploid Arabidopsis halleri and Arabidopsis lyrata, is an emerging model system for studying various aspects of polyploidy. However, a transgenic method that allows the insertion of a gene of interest into A. kamchatica is still lacking. In this study, we investigated the early development of pistils in A. kamchatica and confirmed the formation of open pistils in young flower buds (stages 8-9), which is important for allowing Agrobacterium to access female reproductive tissues. We established a simple Agrobacterium-mediated floral dip transformation method to transform a gene of interest into A. kamchatica by dipping A. kamchatica inflorescences bearing many young flower buds into a 5% sucrose solution containing 0.05% Silwet L-77 and Agrobacterium harboring the gene of interest. We showed that a screenable marker comprising fluorescence-accumulating seed technology with green fluorescent protein was useful for screening the transgenic seeds of two accessions of A. kamchatica subsp. kamchatica and an accession of A. kamchatica subsp. kawasakiana.
Collapse
Affiliation(s)
- Chow-Lih Yew
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Hiroyuki Kakui
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama, 244-0813, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama, 244-0813, Japan.
| |
Collapse
|
22
|
Lischer HEL, Shimizu KK. Reference-guided de novo assembly approach improves genome reconstruction for related species. BMC Bioinformatics 2017; 18:474. [PMID: 29126390 PMCID: PMC5681816 DOI: 10.1186/s12859-017-1911-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 11/01/2017] [Indexed: 12/31/2022] Open
Abstract
Background The development of next-generation sequencing has made it possible to sequence whole genomes at a relatively low cost. However, de novo genome assemblies remain challenging due to short read length, missing data, repetitive regions, polymorphisms and sequencing errors. As more and more genomes are sequenced, reference-guided assembly approaches can be used to assist the assembly process. However, previous methods mostly focused on the assembly of other genotypes within the same species. We adapted and extended a reference-guided de novo assembly approach, which enables the usage of a related reference sequence to guide the genome assembly. In order to compare and evaluate de novo and our reference-guided de novo assembly approaches, we used a simulated data set of a repetitive and heterozygotic plant genome. Results The extended reference-guided de novo assembly approach almost always outperforms the corresponding de novo assembly program even when a reference of a different species is used. Similar improvements can be observed in high and low coverage situations. In addition, we show that a single evaluation metric, like the widely used N50 length, is not enough to properly rate assemblies as it not always points to the best assembly evaluated with other criteria. Therefore, we used the summed z-scores of 36 different statistics to evaluate the assemblies. Conclusions The combination of reference mapping and de novo assembly provides a powerful tool to improve genome reconstruction by integrating information of a related genome. Our extension of the reference-guided de novo assembly approach enables the application of this strategy not only within but also between related species. Finally, the evaluation of genome assemblies is often not straight forward, as the truth is not known. Thus one should always use a combination of evaluation metrics, which not only try to assess the continuity but also the accuracy of an assembly. Electronic supplementary material The online version of this article (10.1186/s12859-017-1911-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heidi E L Lischer
- Department of Evolutionary Biology and Environmental Studies (IEU), University of Zurich, Zurich, Switzerland. .,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies (IEU), University of Zurich, Zurich, Switzerland.,Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan
| |
Collapse
|
23
|
Hatakeyama M, Aluri S, Balachadran MT, Sivarajan SR, Patrignani A, Grüter S, Poveda L, Shimizu-Inatsugi R, Baeten J, Francoijs KJ, Nataraja KN, Reddy YAN, Phadnis S, Ravikumar RL, Schlapbach R, Sreeman SM, Shimizu KK. Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop. DNA Res 2017; 25:39-47. [PMID: 28985356 PMCID: PMC5824816 DOI: 10.1093/dnares/dsx036] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/23/2017] [Indexed: 01/26/2023] Open
Abstract
Finger millet (Eleusine coracana (L.) Gaertn) is an important crop for food security because of its tolerance to drought, which is expected to be exacerbated by global climate changes. Nevertheless, it is often classified as an orphan/underutilized crop because of the paucity of scientific attention. Among several small millets, finger millet is considered as an excellent source of essential nutrient elements, such as iron and zinc; hence, it has potential as an alternate coarse cereal. However, high-quality genome sequence data of finger millet are currently not available. One of the major problems encountered in the genome assembly of this species was its polyploidy, which hampers genome assembly compared with a diploid genome. To overcome this problem, we sequenced its genome using diverse technologies with sufficient coverage and assembled it via a novel multiple hybrid assembly workflow that combines next-generation with single-molecule sequencing, followed by whole-genome optical mapping using the Bionano Irys® system. The total number of scaffolds was 1,897 with an N50 length >2.6 Mb and detection of 96% of the universal single-copy orthologs. The majority of the homeologs were assembled separately. This indicates that the proposed workflow is applicable to the assembly of other allotetraploid genomes.
Collapse
Affiliation(s)
- Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse. 190, 8057 Zurich, Switzerland.,Functional Genomics Center Zurich, ETH Zurich/University of Zurich, 8057 Zurich, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Genopode, 1015 Lausanne, Switzerland
| | - Sirisha Aluri
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, 8057 Zurich, Switzerland
| | - Mathi Thumilan Balachadran
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse. 190, 8057 Zurich, Switzerland.,Functional Genomics Center Zurich, ETH Zurich/University of Zurich, 8057 Zurich, Switzerland.,Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560065, India
| | - Sajeevan Radha Sivarajan
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse. 190, 8057 Zurich, Switzerland.,Functional Genomics Center Zurich, ETH Zurich/University of Zurich, 8057 Zurich, Switzerland.,Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560065, India
| | - Andrea Patrignani
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, 8057 Zurich, Switzerland
| | - Simon Grüter
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, 8057 Zurich, Switzerland
| | - Lucy Poveda
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, 8057 Zurich, Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse. 190, 8057 Zurich, Switzerland
| | | | | | - Karaba N Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560065, India
| | | | - Shamprasad Phadnis
- Department of Plant Biotechnology, University of Agricultural Sciences, GKVK, Bangalore 560065, India
| | - Ramapura L Ravikumar
- Department of Plant Biotechnology, University of Agricultural Sciences, GKVK, Bangalore 560065, India
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, 8057 Zurich, Switzerland
| | - Sheshshayee M Sreeman
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560065, India
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse. 190, 8057 Zurich, Switzerland.,Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
24
|
Briskine RV, Paape T, Shimizu-Inatsugi R, Nishiyama T, Akama S, Sese J, Shimizu KK. Genome assembly and annotation ofArabidopsis halleri, a model for heavy metal hyperaccumulation and evolutionary ecology. Mol Ecol Resour 2016; 17:1025-1036. [DOI: 10.1111/1755-0998.12604] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/04/2016] [Accepted: 09/16/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Roman V. Briskine
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
| | - Timothy Paape
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
| | - Tomoaki Nishiyama
- Advanced Science Research Center; Kanazawa University; 13-1 Takara-machi Kanazawa 920-0934 Japan
| | - Satoru Akama
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); 2-4-7 Aomi Koto-ku Tokyo 135-0064 Japan
| | - Jun Sese
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); 2-4-7 Aomi Koto-ku Tokyo 135-0064 Japan
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
- Kihara Institute for Biological Research; Yokohama City University; 642-12 Maioka Totsuka-ward Yokohama 244-0813 Japan
| |
Collapse
|
25
|
Shimizu‐Inatsugi R, Terada A, Hirose K, Kudoh H, Sese J, Shimizu KK. Plant adaptive radiation mediated by polyploid plasticity in transcriptomes. Mol Ecol 2016; 26:193-207. [DOI: 10.1111/mec.13738] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Rie Shimizu‐Inatsugi
- Department of Evolutionary Biology and Environmental Studies and Department of Plant and Microbial Biology University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Aika Terada
- PRESTO Japan Science and Technology Agency 4‐1‐8 Honcho Kawaguchi Saitama 332‐0012 Japan
- Department of Computational Biology and Medical Science Graduate School of Frontier Sciences The University of Tokyo 5‐1‐5 Kashiwanoha Kashiwa Chiba 277‐8561 Japan
- Biotechnology Research Institute for Drug Discovery National Institute of Advanced Industrial Science and Technology (AIST) 2‐4‐7 Aomi Koto‐ku Tokyo 135‐0064 Japan
| | - Kyosuke Hirose
- Center for Ecological Research Kyoto University Hirano 2‐509‐3 Otsu 520‐2113 Japan
| | - Hiroshi Kudoh
- Center for Ecological Research Kyoto University Hirano 2‐509‐3 Otsu 520‐2113 Japan
| | - Jun Sese
- Biotechnology Research Institute for Drug Discovery National Institute of Advanced Industrial Science and Technology (AIST) 2‐4‐7 Aomi Koto‐ku Tokyo 135‐0064 Japan
- Artificial Intelligence Research Center AIST 2‐4‐7 Aomi Koto‐ku Tokyo 135‐0064 Japan
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies and Department of Plant and Microbial Biology University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
- Biotechnology Research Institute for Drug Discovery National Institute of Advanced Industrial Science and Technology (AIST) 2‐4‐7 Aomi Koto‐ku Tokyo 135‐0064 Japan
- Center for Ecological Research Kyoto University Hirano 2‐509‐3 Otsu 520‐2113 Japan
- Kihara Institute for Biological Research Yokohama City University 641‐12 Maioka, Totsuka‐ward Yokohama Kanagawa 244‐0813 Japan
| |
Collapse
|