1
|
Li W, Song J, Tu H, Jiang S, Pan B, Li J, Zhao Y, Chen L, Xu Q. Genome sequencing of Coryphaenoides yaquinae reveals convergent and lineage-specific molecular evolution in deep-sea adaptation. Mol Ecol Resour 2024; 24:e13989. [PMID: 38946220 DOI: 10.1111/1755-0998.13989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Abyssal (3501-6500 m) and hadal (>6500 m) fauna evolve under harsh abiotic stresses, characterized by high hydrostatic pressure, darkness and food shortage, providing unique opportunities to investigate mechanisms underlying environmental adaptation. Genomes of several hadal species have recently been reported. However, the genetic adaptation of deep sea species across a broad spectrum of ocean depths has yet to be thoroughly investigated, due to the challenges imposed by collecting the deep sea species. To elucidate the correlation between genetic innovation and vertical distribution, we generated a chromosome-level genome assembly of the macrourids Coryphaenoides yaquinae, which is widely distributed in the abyssal/hadal zone ranging from 3655 to 7259 m in depth. Genomic comparisons among shallow, abyssal and hadal-living species identified idiosyncratic and convergent genetic alterations underlying the extraordinary adaptations of deep-sea species including light perception, circadian regulation, hydrostatic pressure and hunger tolerance. The deep-sea fishes (Coryphaenoides Sp. and Pseudoliparis swirei) venturing into various ocean depths independently have undergone convergent amino acid substitutions in multiple proteins such as rhodopsin 1, pancreatic and duodenal homeobox 1 and melanocortin 4 receptor which are known or verified in zebrafish to be related with vision adaptation and energy expenditure. Convergent evolution events were also identified in heat shock protein 90 beta family member 1 and valosin-containing protein genes known to be related to hydrostatic pressure adaptation specifically in fishes found around the hadal range. The uncovering of the molecular convergence among the deep-sea species shed new light on the common genetic innovations required for deep-sea adaptation by the fishes.
Collapse
Affiliation(s)
- Wenhao Li
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Jie Song
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Huaming Tu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Shouwen Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Binbin Pan
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jiazhen Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yongpeng Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Qianghua Xu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Hu Y, Wang X, Xu Y, Yang H, Tong Z, Tian R, Xu S, Yu L, Guo Y, Shi P, Huang S, Yang G, Shi S, Wei F. Molecular mechanisms of adaptive evolution in wild animals and plants. SCIENCE CHINA. LIFE SCIENCES 2023; 66:453-495. [PMID: 36648611 PMCID: PMC9843154 DOI: 10.1007/s11427-022-2233-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Wild animals and plants have developed a variety of adaptive traits driven by adaptive evolution, an important strategy for species survival and persistence. Uncovering the molecular mechanisms of adaptive evolution is the key to understanding species diversification, phenotypic convergence, and inter-species interaction. As the genome sequences of more and more non-model organisms are becoming available, the focus of studies on molecular mechanisms of adaptive evolution has shifted from the candidate gene method to genetic mapping based on genome-wide scanning. In this study, we reviewed the latest research advances in wild animals and plants, focusing on adaptive traits, convergent evolution, and coevolution. Firstly, we focused on the adaptive evolution of morphological, behavioral, and physiological traits. Secondly, we reviewed the phenotypic convergences of life history traits and responding to environmental pressures, and the underlying molecular convergence mechanisms. Thirdly, we summarized the advances of coevolution, including the four main types: mutualism, parasitism, predation and competition. Overall, these latest advances greatly increase our understanding of the underlying molecular mechanisms for diverse adaptive traits and species interaction, demonstrating that the development of evolutionary biology has been greatly accelerated by multi-omics technologies. Finally, we highlighted the emerging trends and future prospects around the above three aspects of adaptive evolution.
Collapse
Affiliation(s)
- Yibo Hu
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yongchao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zeyu Tong
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ran Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shuangquan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Fuwen Wei
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
3
|
Evolution of coastal forests based on a full set of mangrove genomes. Nat Ecol Evol 2022; 6:738-749. [PMID: 35484219 DOI: 10.1038/s41559-022-01744-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/22/2022] [Indexed: 12/11/2022]
Abstract
Genomic studies are now poised to explore whole communities of species. The ~70 species of woody plants that anchor the coastal ecosystems of the tropics, collectively referred to as mangroves, are particularly suited to this exploration. In this study, we de novo sequenced the whole genomes of 32 mangroves, which we combined with other sequences of 30 additional species, comprising almost all mangroves globally. These community-wide genomic data will be valuable for ecology, evolution and biodiversity research. While the data revealed 27 independent origins of mangroves, the total phylogeny shows only modest increases in species number, even in coastal areas of active speciation, suggesting that mangrove extinction is common. A possible explanation for common extinction is the frequent sea-level rises and falls (SLRs and SLFs) documented in the geological record. Indeed, near-extinctions of species with extremely small population size (N) often happened during periods of rapid SLR, as revealed by the genome-wide heterozygosity of almost all mangroves. Reduction in N has possibly been further compounded by population fragmentation and the subsequent accumulation of deleterious mutations, thus pushing mangroves even closer to extinction. Crucially, the impact of the next SLR will be exacerbated by human encroachment into these mangrove habitats, potentially altering the ecosystems of tropical coasts irreversibly.
Collapse
|
4
|
Wang L, Sun L, Wan QH, Fang SG. Comparative Genomics Provides Insights into Adaptive Evolution in Tactile-Foraging Birds. Genes (Basel) 2022; 13:genes13040678. [PMID: 35456484 PMCID: PMC9028243 DOI: 10.3390/genes13040678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022] Open
Abstract
Tactile-foraging birds have evolved an enlarged principal sensory nucleus (PrV) but smaller brain regions related to the visual system, which reflects the difference in sensory dependence. The “trade-off” may exist between different senses in tactile foragers, as well as between corresponding sensory-processing areas in the brain. We explored the mechanism underlying the adaptive evolution of sensory systems in three tactile foragers (kiwi, mallard, and crested ibis). The results showed that olfaction-related genes in kiwi and mallard and hearing-related genes in crested ibis were expanded, indicating they may also have sensitive olfaction or hearing, respectively. However, some genes required for visual development were positively selected or had convergent amino acid substitutions in all three tactile branches, and it seems to show the possibility of visual degradation. In addition, we may provide a new visual-degradation candidate gene PDLIM1 who suffered dense convergent amino acid substitutions within the ZM domain. At last, two genes responsible for regulating the proliferation and differentiation of neuronal progenitor cells may play roles in determining the relative sizes of sensory areas in brain. This exploration offers insight into the relationship between specialized tactile-forging behavior and the evolution of sensory abilities and brain structures.
Collapse
|
5
|
Zhou X, Yu D, Cao Z. Convergence Analysis of Rust Fungi and Anther Smuts Reveals Their Common Molecular Adaptation to a Phytoparasitic Lifestyle. Front Genet 2022; 13:863617. [PMID: 35464858 PMCID: PMC9023891 DOI: 10.3389/fgene.2022.863617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/25/2022] [Indexed: 11/28/2022] Open
Abstract
Convergent evolution between distantly related taxa often mirrors adaptation to similar environments. Rust fungi and anther smuts, which belong to different classes in Pucciniomycotina, have independently evolved a phytoparasitic lifestyle, representing an example of convergent evolution in the fungal kingdom. To investigate their adaptations and the genetic bases underlying their phytoparasitic lifestyles, we performed genome-wide convergence analysis of amino acid substitutions, evolutionary rates, and gene gains and losses. Convergent substitutions were detected in ATPeV0D and RP-S27Ae, two genes important for the generation of turgor pressure and ribosomal biosynthesis, respectively. A total of 51 positively selected genes were identified, including eight genes associated with translation and three genes related to the secretion pathway. In addition, rust fungi and anther smuts contained more proteins associated with oligopeptide transporters and vacuolar proteases than did other fungi. For rust fungi and anther smuts, these forms of convergence suggest four adaptive mechanisms for a phytoparasitic lifestyle: 1) reducing the metabolic demand for hyphal growth and penetration at the pre-penetration stage, 2) maintaining the efficiency of protein synthesis during colonization, 3) ensuring the normal secretion of rapidly evolving secreted proteins, and 4) improving the capacity for oligopeptide metabolism. Our results are the first to shed light on the genetic convergence mechanisms and molecular adaptation underlying phytoparasitic lifestyles in fungi.
Collapse
Affiliation(s)
| | | | - Zhimin Cao
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Wang Y, Huang C, Zeng W, Zhang T, Zhong C, Deng S, Tang T. Epigenetic and transcriptional responses underlying mangrove adaptation to UV-B. iScience 2021; 24:103148. [PMID: 34646986 PMCID: PMC8496181 DOI: 10.1016/j.isci.2021.103148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 12/02/2022] Open
Abstract
Tropical plants have adapted to strong solar ultraviolet (UV) radiation. Here we compare molecular responses of two tropical mangroves Avecennia marina and Rhizophora apiculata to high-dose UV-B. Whole-genome bisulfate sequencing indicates that high UV-B induced comparable hyper- or hypo-methylation in three sequence contexts (CG, CHG, and CHH, where H refers to A, T, or C) in A. marina but mainly CHG hypomethylation in R. apiculata. RNA and small RNA sequencing reveals UV-B induced relaxation of transposable element (TE) silencing together with up-regulation of TE-adjacent genes in R. apiculata but not in A. marina. Despite conserved upregulation of flavonoid biosynthesis and downregulation of photosynthesis genes caused by high UV-B, A. marina specifically upregulated ABC transporter and ubiquinone biosynthesis genes that are known to be protective against UV-B-induced damage. Our results point to divergent responses underlying plant UV-B adaptation at both the epigenetic and transcriptional level.
Collapse
Affiliation(s)
- Yushuai Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, People’s Republic of China
| | - Chenglong Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, People’s Republic of China
| | - Weishun Zeng
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, People’s Republic of China
| | - Tianyuan Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, People’s Republic of China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou 571100, Hainan, People’s Republic of China
| | - Shulin Deng
- CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People’s Republic of China
- Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People’s Republic of China
| | - Tian Tang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, People’s Republic of China
| |
Collapse
|
7
|
Wang Y, Dai A, Chen Y, Tang T. Gene Body Methylation Confers Transcription Robustness in Mangroves During Long-Term Stress Adaptation. FRONTIERS IN PLANT SCIENCE 2021; 12:733846. [PMID: 34630483 PMCID: PMC8493031 DOI: 10.3389/fpls.2021.733846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/02/2021] [Indexed: 05/23/2023]
Abstract
Whether induced epigenetic changes contribute to long-term adaptation remains controversial. Recent studies indicate that environmentally cued changes in gene body methylation (gbM) can facilitate acclimatization. However, such changes are often associated with genetic variation and their contribution to long-term stress adaptation remains unclear. Using whole-genome bisulfite sequencing, we examined evolutionary gains and losses of gbM in mangroves that adapted to extreme intertidal environments. We treated mangrove seedlings with salt stress, and investigated expression changes in relation with stress-induced or evolutionarily-acquired gbM changes. Evolution and function of gbM was compared with that of genetic variation. Mangroves gained much more gbM than their terrestrial relatives, mainly through convergent evolution. Genes that convergently gained gbM during evolution are more likely to become methylated in response to salt stress in species where they are normally not marked. Stress-induced and evolutionarily convergent gains of gbM both correlate with reduction in expression variation, conferring genome-wide expression robustness under salt stress. Moreover, convergent gbM evolution is uncoupled with convergent sequence evolution. Our findings suggest that transgenerational inheritance of acquired gbM helps environmental canalization of gene expression, facilitating long-term stress adaptation of mangroves in the face of a severe reduction in genetic diversity.
Collapse
Affiliation(s)
- Yushuai Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Aimei Dai
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yiping Chen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tian Tang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Comparative genomics provides insights into the aquatic adaptations of mammals. Proc Natl Acad Sci U S A 2021; 118:2106080118. [PMID: 34503999 PMCID: PMC8449357 DOI: 10.1073/pnas.2106080118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/30/2022] Open
Abstract
Divergent lineages can respond to common environmental factors through convergent processes involving shared genomic components or pathways, but the molecular mechanisms are poorly understood. Here, we provide genomic resources and insights into the evolution of mammalian lineages adapting to aquatic life. Our data suggest convergent evolution, for example, in association with thermoregulation through genes associated with a surface heat barrier (NFIA) and internal heat exchange (SEMA3E). Combined with the support of previous reports showing that the UCP1 locus has been lost in many marine mammals independently, our results suggest that the thermostatic strategy of marine mammals shifted from enhancing heat production to limiting heat loss. The ancestors of marine mammals once roamed the land and independently committed to an aquatic lifestyle. These macroevolutionary transitions have intrigued scientists for centuries. Here, we generated high-quality genome assemblies of 17 marine mammals (11 cetaceans and six pinnipeds), including eight assemblies at the chromosome level. Incorporating previously published data, we reconstructed the marine mammal phylogeny and population histories and identified numerous idiosyncratic and convergent genomic variations that possibly contributed to the transition from land to water in marine mammal lineages. Genes associated with the formation of blubber (NFIA), vascular development (SEMA3E), and heat production by brown adipose tissue (UCP1) had unique changes that may contribute to marine mammal thermoregulation. We also observed many lineage-specific changes in the marine mammals, including genes associated with deep diving and navigation. Our study advances understanding of the timing, pattern, and molecular changes associated with the evolution of mammalian lineages adapting to aquatic life.
Collapse
|
9
|
Wu B, Feng C, Zhu C, Xu W, Yuan Y, Hu M, Yuan K, Li Y, Ren Y, Zhou Y, Jiang H, Qiu Q, Wang W, He S, Wang K. The Genomes of Two Billfishes Provide Insights into the Evolution of Endothermy in Teleosts. Mol Biol Evol 2021; 38:2413-2427. [PMID: 33533895 PMCID: PMC8136490 DOI: 10.1093/molbev/msab035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Endothermy is a typical convergent phenomenon which has evolved independently at least eight times in vertebrates, and is of significant advantage to organisms in extending their niches. However, how vertebrates other than mammals or birds, especially teleosts, achieve endothermy has not previously been fully understood. In this study, we sequenced the genomes of two billfishes (swordfish and sailfish), members of a representative lineage of endothermic teleosts. Convergent amino acid replacements were observed in proteins related to heat production and the visual system in two endothermic teleost lineages, billfishes and tunas. The billfish-specific genetic innovations were found to be associated with heat exchange, thermoregulation, and the specialized morphology, including elongated bill, enlarged dorsal fin in sailfish and loss of the pelvic fin in swordfish.
Collapse
Affiliation(s)
- Baosheng Wu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chenguang Feng
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China.,The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chenglong Zhu
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Wenjie Xu
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yuan Yuan
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Mingliang Hu
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ke Yuan
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yongxin Li
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yandong Ren
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yang Zhou
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haifeng Jiang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Qiu
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Wen Wang
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Shunping He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kun Wang
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
10
|
Birkeland S, Gustafsson ALS, Brysting AK, Brochmann C, Nowak MD. Multiple Genetic Trajectories to Extreme Abiotic Stress Adaptation in Arctic Brassicaceae. Mol Biol Evol 2021; 37:2052-2068. [PMID: 32167553 PMCID: PMC7306683 DOI: 10.1093/molbev/msaa068] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/23/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Extreme environments offer powerful opportunities to study how different organisms have adapted to similar selection pressures at the molecular level. Arctic plants have adapted to some of the coldest and driest biomes on Earth and typically possess suites of similar morphological and physiological adaptations to extremes in light and temperature. Here, we compare patterns of molecular evolution in three Brassicaceae species that have independently colonized the Arctic and present some of the first genetic evidence for plant adaptations to the Arctic environment. By testing for positive selection and identifying convergent substitutions in orthologous gene alignments for a total of 15 Brassicaceae species, we find that positive selection has been acting on different genes, but similar functional pathways in the three Arctic lineages. The positively selected gene sets identified in the three Arctic species showed convergent functional profiles associated with extreme abiotic stress characteristic of the Arctic. However, there was little evidence for independently fixed mutations at the same sites and for positive selection acting on the same genes. The three species appear to have evolved similar suites of adaptations by modifying different components in similar stress response pathways, implying that there could be many genetic trajectories for adaptation to the Arctic environment. By identifying candidate genes and functional pathways potentially involved in Arctic adaptation, our results provide a framework for future studies aimed at testing for the existence of a functional syndrome of Arctic adaptation in the Brassicaceae and perhaps flowering plants in general.
Collapse
Affiliation(s)
- Siri Birkeland
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | - Anne K Brysting
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
11
|
Friis G, Vizueta J, Smith EG, Nelson DR, Khraiwesh B, Qudeimat E, Salehi-Ashtiani K, Ortega A, Marshell A, Duarte CM, Burt JA. A high-quality genome assembly and annotation of the gray mangrove, Avicennia marina. G3 (BETHESDA, MD.) 2021; 11:jkaa025. [PMID: 33561229 PMCID: PMC8022769 DOI: 10.1093/g3journal/jkaa025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022]
Abstract
The gray mangrove [Avicennia marina (Forsk.) Vierh.] is the most widely distributed mangrove species, ranging throughout the Indo-West Pacific. It presents remarkable levels of geographic variation both in phenotypic traits and habitat, often occupying extreme environments at the edges of its distribution. However, subspecific evolutionary relationships and adaptive mechanisms remain understudied, especially across populations of the West Indian Ocean. High-quality genomic resources accounting for such variability are also sparse. Here we report the first chromosome-level assembly of the genome of A. marina. We used a previously release draft assembly and proximity ligation libraries Chicago and Dovetail HiC for scaffolding, producing a 456,526,188-bp long genome. The largest 32 scaffolds (22.4-10.5 Mb) accounted for 98% of the genome assembly, with the remaining 2% distributed among much shorter 3,759 scaffolds (62.4-1 kb). We annotated 45,032 protein-coding genes using tissue-specific RNA-seq data in combination with de novo gene prediction, from which 34,442 were associated to GO terms. Genome assembly and annotated set of genes yield a 96.7% and 95.1% completeness score, respectively, when compared with the eudicots BUSCO dataset. Furthermore, an FST survey based on resequencing data successfully identified a set of candidate genes potentially involved in local adaptation and revealed patterns of adaptive variability correlating with a temperature gradient in Arabian mangrove populations. Our A. marina genomic assembly provides a highly valuable resource for genome evolution analysis, as well as for identifying functional genes involved in adaptive processes and speciation.
Collapse
Affiliation(s)
- Guillermo Friis
- Center for Genomics and Systems Biology, New York University - Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Joel Vizueta
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona 08007, Spain
| | - Edward G Smith
- Center for Genomics and Systems Biology, New York University - Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - David R Nelson
- Center for Genomics and Systems Biology, New York University - Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Basel Khraiwesh
- Center for Genomics and Systems Biology, New York University - Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Enas Qudeimat
- Center for Genomics and Systems Biology, New York University - Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kourosh Salehi-Ashtiani
- Center for Genomics and Systems Biology, New York University - Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Alejandra Ortega
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alyssa Marshell
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - John A Burt
- Center for Genomics and Systems Biology, New York University - Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Wang Y, Dai A, Tang T. Weak Effect of Gypsy Retrotransposon Bursts on Sonneratia alba Salt Stress Gene Expression. FRONTIERS IN PLANT SCIENCE 2021; 12:830079. [PMID: 35111190 PMCID: PMC8801733 DOI: 10.3389/fpls.2021.830079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 05/07/2023]
Abstract
Transposable elements (TEs) are an important source of genetic diversity and can be co-opted for the regulation of host genes. However, to what extent the pervasive TE colonization of plant genomes has contributed to stress adaptation remains controversial. Plants inhabiting harsh environments in nature provide a unique opportunity to answer this question. We compared TE compositions and their evolutionary dynamics in the genomes of two mangrove species: the pioneer Sonneratia alba and its less salt-tolerant relative S. caseolaris. Age distribution, strength of purifying selection and the removal rate of LTR (long terminal repeat) retrotransposons were estimated. Phylogenetic analysis of LTR retrotransposons and their distribution in the genome of S. alba were surveyed. Small RNA sequencing and whole-genome bisulfite sequencing was conducted using leaves of S. alba. Expression pattern of LTR retrotransposons and their nearby genes were examined using RNA-seq data of S. alba under different salt treatments. S. alba possesses more TEs than S. caseolaris. Particularly, many more young Gypsy LTR retrotransposons have accumulated in S. alba than in S. caseolaris despite an increase in purifying selection against TE insertions. The top two most abundant Gypsy families in S. alba preferentially insert in gene-poor regions. They are under relaxed epigenetic repression, probably due to the presence of CHROMO domains in their 3'-ends. Although a considerable number of TEs in S. alba showed differential expression under salt stress, only four copies were significantly correlated with their nearby genes in expression levels. One such TE-gene pair involves Abscisic acid 8'-hydroxylase 3 functioning in abscisic acid catabolism. This study sheds light on the evolutionary dynamics and potential function of TEs in an extremophile. Our results suggest that the conclusion on co-option of TEs should be cautious even though activation of TEs by stress might be prevalent.
Collapse
|
13
|
Affiliation(s)
- Chung-I Wu
- School of Life Sciences, Sun Yat-Sen University, China
| | - Guo-Dong Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, China
| | - Shuhua Xu
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, China
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| |
Collapse
|
14
|
Zhang Z, Qu C, Yao R, Nie Y, Xu C, Miao J, Zhong B. The Parallel Molecular Adaptations to the Antarctic Cold Environment in Two Psychrophilic Green Algae. Genome Biol Evol 2020; 11:1897-1908. [PMID: 31106822 PMCID: PMC6628873 DOI: 10.1093/gbe/evz104] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2019] [Indexed: 01/02/2023] Open
Abstract
Psychrophilic green algae from independent phylogenetic lines thrive in the polar extreme environments, but the hypothesis that their psychrophilic characteristics appeared through parallel routes of molecular evolution remains untested. The recent surge of transcriptome data enables large-scale evolutionary analyses to investigate the genetic basis for the adaptations to the Antarctic extreme environment, and the identification of the selective forces that drive molecular evolution is the foundation to understand the strategies of cold adaptation. Here, we conducted transcriptome sequencing of two Antarctic psychrophilic green algae (Chlamydomonas sp. ICE-L and Tetrabaena socialis) and performed positive selection and convergent substitution analyses to investigate their molecular convergence and adaptive strategies against extreme cold conditions. Our results revealed considerable shared positively selected genes and significant evidence of molecular convergence in two Antarctic psychrophilic algae. Significant evidence of positive selection and convergent substitution were detected in genes associated with photosynthetic machinery, multiple antioxidant systems, and several crucial translation elements in Antarctic psychrophilic algae. Our study reveals that the psychrophilic algae possess more stable photosynthetic apparatus and multiple protective mechanisms and provides new clues of parallel adaptive evolution in Antarctic psychrophilic green algae.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Changfeng Qu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ru Yao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Yuan Nie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Chenjie Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Jinlai Miao
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bojian Zhong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, China
| |
Collapse
|
15
|
Lamichhaney S, Card DC, Grayson P, Tonini JFR, Bravo GA, Näpflin K, Termignoni-Garcia F, Torres C, Burbrink F, Clarke JA, Sackton TB, Edwards SV. Integrating natural history collections and comparative genomics to study the genetic architecture of convergent evolution. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180248. [PMID: 31154982 PMCID: PMC6560268 DOI: 10.1098/rstb.2018.0248] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
Evolutionary convergence has been long considered primary evidence of adaptation driven by natural selection and provides opportunities to explore evolutionary repeatability and predictability. In recent years, there has been increased interest in exploring the genetic mechanisms underlying convergent evolution, in part, owing to the advent of genomic techniques. However, the current 'genomics gold rush' in studies of convergence has overshadowed the reality that most trait classifications are quite broadly defined, resulting in incomplete or potentially biased interpretations of results. Genomic studies of convergence would be greatly improved by integrating deep 'vertical', natural history knowledge with 'horizontal' knowledge focusing on the breadth of taxonomic diversity. Natural history collections have and continue to be best positioned for increasing our comprehensive understanding of phenotypic diversity, with modern practices of digitization and databasing of morphological traits providing exciting improvements in our ability to evaluate the degree of morphological convergence. Combining more detailed phenotypic data with the well-established field of genomics will enable scientists to make progress on an important goal in biology: to understand the degree to which genetic or molecular convergence is associated with phenotypic convergence. Although the fields of comparative biology or comparative genomics alone can separately reveal important insights into convergent evolution, here we suggest that the synergistic and complementary roles of natural history collection-derived phenomic data and comparative genomics methods can be particularly powerful in together elucidating the genomic basis of convergent evolution among higher taxa. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.
Collapse
Affiliation(s)
- Sangeet Lamichhaney
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Daren C. Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
- Department of Biology, University of Texas Arlington, Arlington, TX 76019, USA
| | - Phil Grayson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - João F. R. Tonini
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Gustavo A. Bravo
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Kathrin Näpflin
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Flavia Termignoni-Garcia
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher Torres
- Department of Biology, The University of Texas at Austin, Austin, MA 78712, USA
- Department of Geological Sciences, The University of Texas at Austin, Austin, MA 78712, USA
| | - Frank Burbrink
- Department of Herpetology, The American Museum of Natural History, New York, NY 10024, USA
| | - Julia A. Clarke
- Department of Biology, The University of Texas at Austin, Austin, MA 78712, USA
- Department of Geological Sciences, The University of Texas at Austin, Austin, MA 78712, USA
| | | | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
16
|
Sackton TB, Grayson P, Cloutier A, Hu Z, Liu JS, Wheeler NE, Gardner PP, Clarke JA, Baker AJ, Clamp M, Edwards SV. Convergent regulatory evolution and loss of flight in paleognathous birds. Science 2019; 364:74-78. [DOI: 10.1126/science.aat7244] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 02/27/2019] [Indexed: 01/05/2023]
Abstract
A core question in evolutionary biology is whether convergent phenotypic evolution is driven by convergent molecular changes in proteins or regulatory regions. We combined phylogenomic, developmental, and epigenomic analysis of 11 new genomes of paleognathous birds, including an extinct moa, to show that convergent evolution of regulatory regions, more so than protein-coding genes, is prevalent among developmental pathways associated with independent losses of flight. A Bayesian analysis of 284,001 conserved noncoding elements, 60,665 of which are corroborated as enhancers by open chromatin states during development, identified 2355 independent accelerations along lineages of flightless paleognaths, with functional consequences for driving gene expression in the developing forelimb. Our results suggest that the genomic landscape associated with morphological convergence in ratites has a substantial shared regulatory component.
Collapse
|
17
|
Genome of Crucihimalaya himalaica, a close relative of Arabidopsis, shows ecological adaptation to high altitude. Proc Natl Acad Sci U S A 2019; 116:7137-7146. [PMID: 30894495 PMCID: PMC6452661 DOI: 10.1073/pnas.1817580116] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Crucihimalaya himalaica, a close relative of Arabidopsis and Capsella, grows on the Qinghai-Tibet Plateau (QTP) about 4,000 m above sea level and represents an attractive model system for studying speciation and ecological adaptation in extreme environments. We assembled a draft genome sequence of 234.72 Mb encoding 27,019 genes and investigated its origin and adaptive evolutionary mechanisms. Phylogenomic analyses based on 4,586 single-copy genes revealed that C. himalaica is most closely related to Capsella (estimated divergence 8.8 to 12.2 Mya), whereas both species form a sister clade to Arabidopsis thaliana and Arabidopsis lyrata, from which they diverged between 12.7 and 17.2 Mya. LTR retrotransposons in C. himalaica proliferated shortly after the dramatic uplift and climatic change of the Himalayas from the Late Pliocene to Pleistocene. Compared with closely related species, C. himalaica showed significant contraction and pseudogenization in gene families associated with disease resistance and also significant expansion in gene families associated with ubiquitin-mediated proteolysis and DNA repair. We identified hundreds of genes involved in DNA repair, ubiquitin-mediated proteolysis, and reproductive processes with signs of positive selection. Gene families showing dramatic changes in size and genes showing signs of positive selection are likely candidates for C. himalaica's adaptation to intense radiation, low temperature, and pathogen-depauperate environments in the QTP. Loss of function at the S-locus, the reason for the transition to self-fertilization of C. himalaica, might have enabled its QTP occupation. Overall, the genome sequence of C. himalaica provides insights into the mechanisms of plant adaptation to extreme environments.
Collapse
|
18
|
Hao Y, Qu Y, Song G, Lei F. Genomic Insights into the Adaptive Convergent Evolution. Curr Genomics 2019; 20:81-89. [PMID: 31555059 PMCID: PMC6728901 DOI: 10.2174/1389202920666190313162702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/10/2019] [Accepted: 03/07/2019] [Indexed: 11/22/2022] Open
Abstract
Adaptive convergent evolution, which refers to the same or similar phenotypes produced by species from independent lineages under similar selective pressures, has been widely examined for a long time. Accumulating studies on the adaptive convergent evolution have been reported from many different perspectives (cellular, anatomical, morphological, physiological, biochemical, and behavioral). Recent advances in the genomic technologies have demonstrated that adaptive convergence can arise from specific genetic mechanisms in different hierarchies, ranging from the same nucleotide or amino acid substitutions to the biological functions or pathways. Among these genetic mechanisms, the same amino acid changes in protein-coding genes play an important role in adaptive phenotypic convergence. Methods for detecting adaptive convergence at the protein sequence level have been constantly debated and developed. Here, we review recent progress on using genomic approaches to evaluate the genetic mechanisms of adaptive convergent evolution, summarize the research methods for identifying adaptive amino acid convergence, and discuss the future perspectives for researching adaptive convergent evolu-tion.
Collapse
Affiliation(s)
| | | | | | - Fumin Lei
- Address correspondence to this author at the Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, P.O. Box: 100101, Beijing, China; Fax: +86-10-64807159; E-mail:
| |
Collapse
|
19
|
Lu GA, Zhao Y, Yang H, Lan A, Shi S, Liufu Z, Huang Y, Tang T, Xu J, Shen X, Wu CI. Death of new microRNA genes in Drosophila via gradual loss of fitness advantages. Genome Res 2018; 28:1309-1318. [PMID: 30049791 PMCID: PMC6120634 DOI: 10.1101/gr.233809.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/20/2018] [Indexed: 01/23/2023]
Abstract
The prevalence of de novo coding genes is controversial due to length and coding constraints. Noncoding genes, especially small ones, are freer to evolve de novo by comparison. The best examples are microRNAs (miRNAs), a large class of regulatory molecules ∼22 nt in length. Here, we study six de novo miRNAs in Drosophila, which, like most new genes, are testis-specific. We ask how and why de novo genes die because gene death must be sufficiently frequent to balance the many new births. By knocking out each miRNA gene, we analyzed their contributions to the nine components of male fitness (sperm production, length, and competitiveness, among others). To our surprise, the knockout mutants often perform better than the wild type in some components, and slightly worse in others. When two of the younger miRNAs are assayed in long-term laboratory populations, their total fitness contributions are found to be essentially zero. These results collectively suggest that adaptive de novo genes die regularly, not due to the loss of functionality, but due to the canceling out of positive and negative fitness effects, which may be characterized as "quasi-neutrality." Since de novo genes often emerge adaptively and become lost later, they reveal ongoing period-specific adaptations, reminiscent of the "Red-Queen" metaphor for long-term evolution.
Collapse
Affiliation(s)
- Guang-An Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yixin Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Hao Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Ao Lan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Zhongqi Liufu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yumei Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Tian Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
| | - Xu Shen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
20
|
Affiliation(s)
- Haijun Wen
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou
| | - Hurng-Yi Wang
- Graduate Institute of Clinical Medicine and Hepatitis Research Center, Taiwan University and Hospital, Taipei
| | - Xionglei He
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou
- Department of Ecology and Evolution, University of Chicago, Chicago
| |
Collapse
|
21
|
Yu T, Hinsinger DD, Strijk JS, Wee AKS. The first complete chloroplast genome of a major mangrove species Sonneratia alba Sm. and its implications on conservation efforts. MITOCHONDRIAL DNA PART B-RESOURCES 2018; 3:500-502. [PMID: 33474220 PMCID: PMC7799946 DOI: 10.1080/23802359.2018.1463828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sonneratia alba Sm. is one of the most widely distributed mangrove species worldwide. In this study, the whole chloroplast genome of S. alba was assembled for the first time not only in Sonneratia, but also for a member of the mangrove plant community. The total chloroplast genome was 153,061 bp in length, with a large single copy (LSC) region of 87,226 bp and a small single copy (SSC) region of 18,033 bp, separated by two inverted repeats (IRs) regions of 23,901 bp. The overall GC content was 37.3%, and 43.1%, 35.4%, and 31.1% in the IRs, LSC, and SSC regions, respectively. It contained 106 genes, including 79 coding genes, 24 tRNA genes, and four rRNA genes. A phylogenetic analysis confirmed that S. alba was clustered with Trapa maximowiczii within the family Lythraceae.
Collapse
Affiliation(s)
- Tianhui Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Damien Daniel Hinsinger
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Biodiversity Genomics Team, Plant Ecophysiology and Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Joeri Sergej Strijk
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Biodiversity Genomics Team, Plant Ecophysiology and Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Alison Kim Shan Wee
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Ecological Genomics Team, Plant Ecophysiology and Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
22
|
Xu S, He Z, Zhang Z, Guo Z, Guo W, Lyu H, Li J, Yang M, Du Z, Huang Y, Zhou R, Zhong C, Boufford DE, Lerdau M, Wu CI, Duke NC, Shi S. The origin, diversification and adaptation of a major mangrove clade (Rhizophoreae) revealed by whole-genome sequencing. Natl Sci Rev 2017; 4:721-734. [PMID: 31258950 DOI: 10.1093/nsr/nwx065] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mangroves invade some very marginal habitats for woody plants-at the interface between land and sea. Since mangroves anchor tropical coastal communities globally, their origin, diversification and adaptation are of scientific significance, particularly at a time of global climate change. In this study, a combination of single-molecule long reads and the more conventional short reads are generated from Rhizophora apiculata for the de novo assembly of its genome to a near chromosome level. The longest scaffold, N50 and N90 for the R. apiculata genome, are 13.3 Mb, 5.4 Mb and 1.0 Mb, respectively. Short reads for the genomes and transcriptomes of eight related species are also generated. We find that the ancestor of Rhizophoreae experienced a whole-genome duplication ~70 Myrs ago, which is followed rather quickly by colonization and species diversification. Mangroves exhibit pan-exome modifications of amino acid (AA) usage as well as unusual AA substitutions among closely related species. The usage and substitution of AAs, unique among plants surveyed, is correlated with the rapid evolution of proteins in mangroves. A small subset of these substitutions is associated with mangroves' highly specialized traits (vivipary and red bark) thought to be adaptive in the intertidal habitats. Despite the many adaptive features, mangroves are among the least genetically diverse plants, likely the result of continual habitat turnovers caused by repeated rises and falls of sea level in the geologically recent past. Mangrove genomes thus inform about their past evolutionary success as well as portend a possibly difficult future.
Collapse
Affiliation(s)
- Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhang Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wuxia Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haomin Lyu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jianfang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ming Yang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhenglin Du
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yelin Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cairong Zhong
- Hainan Dongzhai Harbor National Nature Reserve, Haikou 571129, China
| | | | - Manuel Lerdau
- Departments of Environmental Sciences and of Biology, University of Virginia, Charlottesville, VA 22904-4123, USA
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.,Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Norman C Duke
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD 4815, Australia
| | | | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|