1
|
Siddiq MA, Duveau F, Wittkopp PJ. Plasticity and environment-specific relationships between gene expression and fitness in Saccharomyces cerevisiae. Nat Ecol Evol 2024; 8:2184-2194. [PMID: 39537896 PMCID: PMC11618099 DOI: 10.1038/s41559-024-02582-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The environment influences how an organism's genotype determines its phenotype and how this phenotype affects its fitness. Here, to better understand this dual role of environment in the production and selection of phenotypic variation, we determined genotype-phenotype-fitness relationships for mutant strains of Saccharomyces cerevisiae in four environments. Specifically, we measured how promoter mutations of the metabolic gene TDH3 modified expression level and affected growth for four different carbon sources. In each environment, we observed a clear relationship between TDH3 expression level and fitness, but this relationship differed among environments. Mutations with similar effects on expression in different environments often had different effects on fitness and vice versa. Such environment-specific relationships between phenotype and fitness can shape the evolution of phenotypic plasticity. We also found that mutations disrupting binding sites for transcription factors had more variable effects on expression among environments than those disrupting the TATA box, which is part of the core promoter. However, mutations with the most environmentally variable effects on fitness were located in the TATA box, because of both the lack of plasticity of TATA box mutations and environment-specific fitness functions. This observation suggests that mutations affecting different molecular mechanisms contribute unequally to regulatory sequence evolution in changing environments.
Collapse
Affiliation(s)
- Mohammad A Siddiq
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Fabien Duveau
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon, Université de Lyon, Lyon, France
| | - Patricia J Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Siddiq MA, Duveau F, Wittkopp PJ. Plasticity and environment-specific relationships between gene expression and fitness in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589130. [PMID: 38659876 PMCID: PMC11042213 DOI: 10.1101/2024.04.12.589130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Phenotypic evolution is shaped by interactions between organisms and their environments. The environment influences how an organism's genotype determines its phenotype and how this phenotype affects its fitness. To better understand this dual role of the environment in the production and selection of phenotypic variation, we empirically determined and compared the genotype-phenotype-fitness relationship for mutant strains of the budding yeast Saccharomyces cerevisiae in four environments. Specifically, we measured how mutations in the promoter of the metabolic gene TDH3 modified its expression level and affected its growth on media with four different carbon sources. In each environment, we observed a clear relationship between TDH3 expression level and fitness, but this relationship differed among environments. Genetic variants with similar effects on TDH3 expression in different environments often had different effects on fitness and vice versa. Such environment-specific relationships between phenotype and fitness can shape the evolution of phenotypic plasticity. The set of mutants we examined also allowed us to compare the effects of mutations disrupting binding sites for key transcriptional regulators and the TATA box, which is part of the core promoter sequence. Mutations disrupting the binding sites for the transcription factors had more variable effects on expression among environments than mutations disrupting the TATA box, yet mutations with the most environmentally variable effects on fitness were located in the TATA box. This observation suggests that mutations affecting different molecular mechanisms are likely to contribute unequally to regulatory sequence evolution in changing environments.
Collapse
Affiliation(s)
- Mohammad A. Siddiq
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan
- Authors contributed equally to this work
| | - Fabien Duveau
- Department of Ecology and Evolutionary Biology, University of Michigan
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon, Université de Lyon, France
- Authors contributed equally to this work
| | - Patricia J. Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan
- Department of Ecology and Evolutionary Biology, University of Michigan
| |
Collapse
|
3
|
Vande Zande P, Siddiq MA, Hodgins-Davis A, Kim L, Wittkopp PJ. Active compensation for changes in TDH3 expression mediated by direct regulators of TDH3 in Saccharomyces cerevisiae. PLoS Genet 2023; 19:e1011078. [PMID: 38091349 PMCID: PMC10752532 DOI: 10.1371/journal.pgen.1011078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/27/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Genetic networks are surprisingly robust to perturbations caused by new mutations. This robustness is conferred in part by compensation for loss of a gene's activity by genes with overlapping functions, such as paralogs. Compensation occurs passively when the normal activity of one paralog can compensate for the loss of the other, or actively when a change in one paralog's expression, localization, or activity is required to compensate for loss of the other. The mechanisms of active compensation remain poorly understood in most cases. Here we investigate active compensation for the loss or reduction in expression of the Saccharomyces cerevisiae gene TDH3 by its paralog TDH2. TDH2 is upregulated in a dose-dependent manner in response to reductions in TDH3 by a mechanism requiring the shared transcriptional regulators Gcr1p and Rap1p. TDH1, a second and more distantly related paralog of TDH3, has diverged in its regulation and is upregulated by another mechanism. Other glycolytic genes regulated by Rap1p and Gcr1p show changes in expression similar to TDH2, suggesting that the active compensation by TDH3 paralogs is part of a broader homeostatic response mediated by shared transcriptional regulators.
Collapse
Affiliation(s)
- Pétra Vande Zande
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mohammad A. Siddiq
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrea Hodgins-Davis
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lisa Kim
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Patricia J. Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
4
|
Wittkopp PJ. Contributions of mutation and selection to regulatory variation: lessons from the Saccharomyces cerevisiae TDH3 gene. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220057. [PMID: 37004723 PMCID: PMC10067266 DOI: 10.1098/rstb.2022.0057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/16/2023] [Indexed: 04/04/2023] Open
Abstract
Heritable variation in gene expression is common within and among species and contributes to phenotypic diversity. Mutations affecting either cis- or trans-regulatory sequences controlling gene expression give rise to variation in gene expression, and natural selection acting on this variation causes some regulatory variants to persist in a population for longer than others. To understand how mutation and selection interact to produce the patterns of regulatory variation we see within and among species, my colleagues and I have been systematically determining the effects of new mutations on expression of the TDH3 gene in Saccharomyces cerevisiae and comparing them to the effects of polymorphisms segregating within this species. We have also investigated the molecular mechanisms by which regulatory variants act. Over the past decade, this work has revealed properties of cis- and trans-regulatory mutations including their relative frequency, effects, dominance, pleiotropy and fitness consequences. Comparing these mutational effects to the effects of polymorphisms in natural populations, we have inferred selection acting on expression level, expression noise and phenotypic plasticity. Here, I summarize this body of work and synthesize its findings to make inferences not readily discernible from the individual studies alone. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.
Collapse
Affiliation(s)
- Patricia J. Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Cui D, Liu L, Sun L, Lin X, Lin L, Zhang C. Genome-wide analysis reveals Hsf1 maintains high transcript abundance of target genes controlled by strong constitutive promoter in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:72. [PMID: 37118827 PMCID: PMC10141939 DOI: 10.1186/s13068-023-02322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/16/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND In synthetic biology, the strength of promoter elements is the basis for precise regulation of target gene transcription levels, which in turn increases the yield of the target product. However, the results of many researches proved that excessive transcription levels of target genes actually reduced the yield of the target product. This phenomenon has been found in studies using different microorganisms as chassis cells, thus, it becomes a bottleneck problem to improve the yield of the target product. RESULTS In this study, promoters PGK1p and TDH3p with different strengths were used to regulate the transcription level of alcohol acetyl transferase encoding gene ATF1. The results demonstrated that the strong promoter TDH3p decreased the production of ethyl acetate. The results of Real-time PCR proved that the transcription level of ATF1 decreased rapidly under the control of TDH3p, and the unfolded protein reaction was activated, which may be the reason for the abnormal production caused by the strong promoter. RNA-sequencing analysis showed that the overexpression of differential gene HSP30 increased the transcriptional abundance of ATF1 gene and production of ethyl acetate. Interestingly, deletion of the heat shock protein family (e.g., Hsp26, Hsp78, Hsp82) decreased the production of ethyl acetate, suggesting that the Hsp family was also involved in the regulation of ATF1 gene transcription. Furthermore, the results proved that the Hsf1, an upstream transcription factor of Hsps, had a positive effect on alleviating the unfolded protein response and that overexpression of Hsf1 reprogramed the pattern of ATF1 gene transcript levels. The combined overexpression of Hsf1 and Hsps further increased the production of ethyl acetate. In addition, kinase Rim15 may be involved in this regulatory pathway. Finally, the regulation effect of Hsf1 on recombinant strains constructed by other promoters was verified, which confirmed the universality of the strategy. CONCLUSIONS Our results elucidated the mechanism by which Rim15-Hsf1-Hsps pathway reconstructed the repression of high transcription level stress and increased the production of target products, thereby providing new insights and application strategies for the construction of recombinant strains in synthetic biology.
Collapse
Affiliation(s)
- Danyao Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Ling Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Lijing Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Xue Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Liangcai Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Cuiying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
6
|
Pompei S, Cosentino Lagomarsino M. A fitness trade-off explains the early fate of yeast aneuploids with chromosome gains. Proc Natl Acad Sci U S A 2023; 120:e2211687120. [PMID: 37018197 PMCID: PMC10104565 DOI: 10.1073/pnas.2211687120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/19/2023] [Indexed: 04/06/2023] Open
Abstract
The early development of aneuploidy from an accidental chromosome missegregation shows contrasting effects. On the one hand, it is associated with significant cellular stress and decreased fitness. On the other hand, it often carries a beneficial effect and provides a quick (but typically transient) solution to external stress. These apparently controversial trends emerge in several experimental contexts, particularly in the presence of duplicated chromosomes. However, we lack a mathematical evolutionary modeling framework that comprehensively captures these trends from the mutational dynamics and the trade-offs involved in the early stages of aneuploidy. Here, focusing on chromosome gains, we address this point by introducing a fitness model where a fitness cost of chromosome duplications is contrasted by a fitness advantage from the dosage of specific genes. The model successfully captures the experimentally measured probability of emergence of extra chromosomes in a laboratory evolution setup. Additionally, using phenotypic data collected in rich media, we explored the fitness landscape, finding evidence supporting the existence of a per-gene cost of extra chromosomes. Finally, we show that the substitution dynamics of our model, evaluated in the empirical fitness landscape, explains the relative abundance of duplicated chromosomes observed in yeast population genomics data. These findings lay a firm framework for the understanding of the establishment of newly duplicated chromosomes, providing testable quantitative predictions for future observations.
Collapse
Affiliation(s)
- Simone Pompei
- IFOM ETS (Ente del Terzo Settore) - The AIRC (Associazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology, Milano20139, Italy
| | - Marco Cosentino Lagomarsino
- IFOM ETS (Ente del Terzo Settore) - The AIRC (Associazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology, Milano20139, Italy
- Dipartimento di Fisica, Università degli Studi di Milano, Milano20133, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) sezione di Milano, Milano20133, Italy
| |
Collapse
|
7
|
Zande PV, Wittkopp PJ. Active compensation for changes in TDH3 expression mediated by direct regulators of TDH3 in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523977. [PMID: 36711763 PMCID: PMC9882118 DOI: 10.1101/2023.01.13.523977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Genetic networks are surprisingly robust to perturbations caused by new mutations. This robustness is conferred in part by compensation for loss of a gene's activity by genes with overlapping functions, such as paralogs. Compensation occurs passively when the normal activity of one paralog can compensate for the loss of the other, or actively when a change in one paralog's expression, localization, or activity is required to compensate for loss of the other. The mechanisms of active compensation remain poorly understood in most cases. Here we investigate active compensation for the loss or reduction in expression of the Saccharomyces cerevisiae gene TDH3 by its paralogs TDH1 and TDH2. TDH1 and TDH2 are upregulated in a dose-dependent manner in response to reductions in TDH3 by a mechanism requiring the shared transcriptional regulators Gcr1p and Rap1p. Other glycolytic genes regulated by Rap1p and Gcr1p show changes in expression similar to TDH2, suggesting that the active compensation by TDH3 paralogs is part of a broader homeostatic response mediated by shared transcriptional regulators.
Collapse
Affiliation(s)
- Pétra Vande Zande
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Current address: Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Patricia J Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Mechanisms of regulatory evolution in yeast. Curr Opin Genet Dev 2022; 77:101998. [PMID: 36220001 PMCID: PMC10117219 DOI: 10.1016/j.gde.2022.101998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
Studies of regulatory variation in yeast - at the level of new mutations, polymorphisms within a species, and divergence between species - have provided great insight into the molecular and evolutionary processes responsible for the evolution of gene expression in eukaryotes. The increasing ease with which yeast genomes can be manipulated and expression quantified in a high-throughput manner has recently accelerated mechanistic studies of cis- and trans-regulatory variation at multiple evolutionary timescales. These studies have, for example, identified differences in the properties of cis- and trans-acting mutations that affect their evolutionary fate, experimentally characterized the molecular mechanisms through which cis- and trans-regulatory variants act, and illustrated how regulatory networks can diverge between species with or without changes in gene expression.
Collapse
|
9
|
Srivastava M, Payne JL. On the incongruence of genotype-phenotype and fitness landscapes. PLoS Comput Biol 2022; 18:e1010524. [PMID: 36121840 PMCID: PMC9521842 DOI: 10.1371/journal.pcbi.1010524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/29/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
The mapping from genotype to phenotype to fitness typically involves multiple nonlinearities that can transform the effects of mutations. For example, mutations may contribute additively to a phenotype, but their effects on fitness may combine non-additively because selection favors a low or intermediate value of that phenotype. This can cause incongruence between the topographical properties of a fitness landscape and its underlying genotype-phenotype landscape. Yet, genotype-phenotype landscapes are often used as a proxy for fitness landscapes to study the dynamics and predictability of evolution. Here, we use theoretical models and empirical data on transcription factor-DNA interactions to systematically study the incongruence of genotype-phenotype and fitness landscapes when selection favors a low or intermediate phenotypic value. Using the theoretical models, we prove a number of fundamental results. For example, selection for low or intermediate phenotypic values does not change simple sign epistasis into reciprocal sign epistasis, implying that genotype-phenotype landscapes with only simple sign epistasis motifs will always give rise to single-peaked fitness landscapes under such selection. More broadly, we show that such selection tends to create fitness landscapes that are more rugged than the underlying genotype-phenotype landscape, but this increased ruggedness typically does not frustrate adaptive evolution because the local adaptive peaks in the fitness landscape tend to be nearly as tall as the global peak. Many of these results carry forward to the empirical genotype-phenotype landscapes, which may help to explain why low- and intermediate-affinity transcription factor-DNA interactions are so prevalent in eukaryotic gene regulation.
Collapse
Affiliation(s)
- Malvika Srivastava
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joshua L. Payne
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
10
|
Vande Zande P, Hill MS, Wittkopp PJ. Pleiotropic effects of trans-regulatory mutations on fitness and gene expression. Science 2022; 377:105-109. [PMID: 35771906 DOI: 10.1126/science.abj7185] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Variation in gene expression arises from cis- and trans-regulatory mutations, which contribute differentially to expression divergence. We compare the impacts on gene expression and fitness resulting from cis- and trans-regulatory mutations in Saccharomyces cerevisiae, with a focus on the TDH3 gene. We use the effects of cis-regulatory mutations to infer effects of trans-regulatory mutations attributable to impacts beyond the focal gene, revealing a distribution of pleiotropic effects. Cis- and trans-regulatory mutations had different effects on gene expression with pleiotropic effects of trans-regulatory mutants affecting expression of genes both in parallel to and downstream of the focal gene. The more widespread and deleterious effects of trans-regulatory mutations we observed are consistent with their decreasing relative contribution to expression differences over evolutionary time.
Collapse
Affiliation(s)
- Pétra Vande Zande
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Mark S Hill
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Patricia J Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Perkins ML, Gandara L, Crocker J. A synthetic synthesis to explore animal evolution and development. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200517. [PMID: 35634925 PMCID: PMC9149795 DOI: 10.1098/rstb.2020.0517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Identifying the general principles by which genotypes are converted into phenotypes remains a challenge in the post-genomic era. We still lack a predictive understanding of how genes shape interactions among cells and tissues in response to signalling and environmental cues, and hence how regulatory networks generate the phenotypic variation required for adaptive evolution. Here, we discuss how techniques borrowed from synthetic biology may facilitate a systematic exploration of evolvability across biological scales. Synthetic approaches permit controlled manipulation of both endogenous and fully engineered systems, providing a flexible platform for investigating causal mechanisms in vivo. Combining synthetic approaches with multi-level phenotyping (phenomics) will supply a detailed, quantitative characterization of how internal and external stimuli shape the morphology and behaviour of living organisms. We advocate integrating high-throughput experimental data with mathematical and computational techniques from a variety of disciplines in order to pursue a comprehensive theory of evolution. This article is part of the theme issue ‘Genetic basis of adaptation and speciation: from loci to causative mutations’.
Collapse
Affiliation(s)
- Mindy Liu Perkins
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Lautaro Gandara
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Justin Crocker
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
12
|
Lalanne J, Parker DJ, Li G. Spurious regulatory connections dictate the expression-fitness landscape of translation factors. Mol Syst Biol 2021; 17:e10302. [PMID: 33900014 PMCID: PMC8073009 DOI: 10.15252/msb.202110302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
During steady-state cell growth, individual enzymatic fluxes can be directly inferred from growth rate by mass conservation, but the inverse problem remains unsolved. Perturbing the flux and expression of a single enzyme could have pleiotropic effects that may or may not dominate the impact on cell fitness. Here, we quantitatively dissect the molecular and global responses to varied expression of translation termination factors (peptide release factors, RFs) in the bacterium Bacillus subtilis. While endogenous RF expression maximizes proliferation, deviations in expression lead to unexpected distal regulatory responses that dictate fitness reduction. Molecularly, RF depletion causes expression imbalance at specific operons, which activates master regulators and detrimentally overrides the transcriptome. Through these spurious connections, RF abundances are thus entrenched by focal points within the regulatory network, in one case located at a single stop codon. Such regulatory entrenchment suggests that predictive bottom-up models of expression-fitness landscapes will require near-exhaustive characterization of parts.
Collapse
Affiliation(s)
- Jean‐Benoît Lalanne
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of PhysicsMassachusetts Institute of TechnologyCambridgeMAUSA
- Present address:
Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
| | - Darren J Parker
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMAUSA
- Present address:
Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Gene‐Wei Li
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMAUSA
| |
Collapse
|
13
|
Molecular and evolutionary processes generating variation in gene expression. Nat Rev Genet 2020; 22:203-215. [PMID: 33268840 DOI: 10.1038/s41576-020-00304-w] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 12/18/2022]
Abstract
Heritable variation in gene expression is common within and between species. This variation arises from mutations that alter the form or function of molecular gene regulatory networks that are then filtered by natural selection. High-throughput methods for introducing mutations and characterizing their cis- and trans-regulatory effects on gene expression (particularly, transcription) are revealing how different molecular mechanisms generate regulatory variation, and studies comparing these mutational effects with variation seen in the wild are teasing apart the role of neutral and non-neutral evolutionary processes. This integration of molecular and evolutionary biology allows us to understand how the variation in gene expression we see today came to be and to predict how it is most likely to evolve in the future.
Collapse
|
14
|
DNA variants affecting the expression of numerous genes in trans have diverse mechanisms of action and evolutionary histories. PLoS Genet 2019; 15:e1008375. [PMID: 31738765 PMCID: PMC6886874 DOI: 10.1371/journal.pgen.1008375] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/02/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
DNA variants that alter gene expression contribute to variation in many phenotypic traits. In particular, trans-acting variants, which are often located on different chromosomes from the genes they affect, are an important source of heritable gene expression variation. However, our knowledge about the identity and mechanism of causal trans-acting variants remains limited. Here, we developed a fine-mapping strategy called CRISPR-Swap and dissected three expression quantitative trait locus (eQTL) hotspots known to alter the expression of numerous genes in trans in the yeast Saccharomyces cerevisiae. Causal variants were identified by engineering recombinant alleles and quantifying the effects of these alleles on the expression of a green fluorescent protein-tagged gene affected by the given locus in trans. We validated the effect of each variant on the expression of multiple genes by RNA-sequencing. The three variants differed in their molecular mechanism, the type of genes they reside in, and their distribution in natural populations. While a missense leucine-to-serine variant at position 63 in the transcription factor Oaf1 (L63S) was almost exclusively present in the reference laboratory strain, the two other variants were frequent among S. cerevisiae isolates. A causal missense variant in the glucose receptor Rgt2 (V539I) occurred at a poorly conserved amino acid residue and its effect was strongly dependent on the concentration of glucose in the culture medium. A noncoding variant in the conserved fatty acid regulated (FAR) element of the OLE1 promoter influenced the expression of the fatty acid desaturase Ole1 in cis and, by modulating the level of this essential enzyme, other genes in trans. The OAF1 and OLE1 variants showed a non-additive genetic interaction, and affected cellular lipid metabolism. These results demonstrate that the molecular basis of trans-regulatory variation is diverse, highlighting the challenges in predicting which natural genetic variants affect gene expression. Differences in the DNA sequence of individual genomes contribute to differences in many traits, such as appearance, physiology, and the risk for common diseases. An important group of these DNA variants influences how individual genes across the genome are turned on or off. In this paper, we describe a strategy for identifying such “trans-acting” variants in different strains of baker’s yeast. We used this strategy to reveal three single DNA base changes that each influences the expression of dozens of genes. These three DNA variants were very different from each other. Two of them changed the protein sequence, one in a transcription factor and the other in a sugar sensor. The third changed the expression of an enzyme, a change that in turn caused other genes to alter their expression. One variant existed in only a few yeast isolates, while the other two existed in many isolates collected from around the world. This diversity of DNA variants that influence the expression of many other genes illustrates how difficult it is to predict which DNA variants in an individual’s genome will have effects on the organism.
Collapse
|
15
|
Xu H, Liu JJ, Liu Z, Li Y, Jin YS, Zhang J. Synchronization of stochastic expressions drives the clustering of functionally related genes. SCIENCE ADVANCES 2019; 5:eaax6525. [PMID: 31633028 PMCID: PMC6785257 DOI: 10.1126/sciadv.aax6525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/10/2019] [Indexed: 05/18/2023]
Abstract
Functionally related genes tend to be chromosomally clustered in eukaryotic genomes even after the exclusion of tandem duplicates, but the biological significance of this widespread phenomenon is unclear. We propose that stochastic expression fluctuations of neighboring genes resulting from chromatin dynamics are more or less synchronized such that their expression ratio is more stable than that for unlinked genes. Consequently, chromosomal clustering could be advantageous when the expression ratio of the clustered genes needs to stay constant, for example, because of the accumulation of toxic compounds when this ratio is altered. Evidence from manipulative experiments on the yeast GAL cluster, comprising three chromosomally adjacent genes encoding enzymes catalyzing consecutive reactions in galactose catabolism, unequivocally supports this hypothesis and elucidates how disorder in one biological phenomenon-gene expression noise-could prompt the emergence of order in another-genome organization.
Collapse
Affiliation(s)
- Haiqing Xu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jing-Jing Liu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhen Liu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ying Li
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Empirical measures of mutational effects define neutral models of regulatory evolution in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2019; 116:21085-21093. [PMID: 31570626 DOI: 10.1073/pnas.1902823116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding how phenotypes evolve requires disentangling the effects of mutation generating new variation from the effects of selection filtering it. Tests for selection frequently assume that mutation introduces phenotypic variation symmetrically around the population mean, yet few studies have tested this assumption by deeply sampling the distributions of mutational effects for particular traits. Here, we examine distributions of mutational effects for gene expression in the budding yeast Saccharomyces cerevisiae by measuring the effects of thousands of point mutations introduced randomly throughout the genome. We find that the distributions of mutational effects differ for the 10 genes surveyed and are inconsistent with normality. For example, all 10 distributions of mutational effects included more mutations with large effects than expected for normally distributed phenotypes. In addition, some genes also showed asymmetries in their distribution of mutational effects, with new mutations more likely to increase than decrease the gene's expression or vice versa. Neutral models of regulatory evolution that take these empirically determined distributions into account suggest that neutral processes may explain more expression variation within natural populations than currently appreciated.
Collapse
|
17
|
Metzger BPH, Wittkopp PJ. Compensatory trans-regulatory alleles minimizing variation in TDH3 expression are common within Saccharomyces cerevisiae. Evol Lett 2019; 3:448-461. [PMID: 31636938 PMCID: PMC6791293 DOI: 10.1002/evl3.137] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 11/06/2022] Open
Abstract
Heritable variation in gene expression is common within species. Much of this variation is due to genetic differences outside of the gene with altered expression and is trans-acting. This trans-regulatory variation is often polygenic, with individual variants typically having small effects, making the genetic architecture and evolution of trans-regulatory variation challenging to study. Consequently, key questions about trans-regulatory variation remain, including the variability of trans-regulatory variation within a species, how selection affects trans-regulatory variation, and how trans-regulatory variants are distributed throughout the genome and within a species. To address these questions, we isolated and measured trans-regulatory differences affecting TDH3 promoter activity among 56 strains of Saccharomyces cerevisiae, finding that trans-regulatory backgrounds varied approximately twofold in their effects on TDH3 promoter activity. Comparing this variation to neutral models of trans-regulatory evolution based on empirical measures of mutational effects revealed that despite this variability in the effects of trans-regulatory backgrounds, stabilizing selection has constrained trans-regulatory differences within this species. Using a powerful quantitative trait locus mapping method, we identified ∼100 trans-acting expression quantitative trait locus in each of three crosses to a common reference strain, indicating that regulatory variation is more polygenic than previous studies have suggested. Loci altering expression were located throughout the genome, and many loci were strain specific. This distribution and prevalence of alleles is consistent with recent theories about the genetic architecture of complex traits. In all mapping experiments, the nonreference strain alleles increased and decreased TDH3 promoter activity with similar frequencies, suggesting that stabilizing selection maintained many trans-acting variants with opposing effects. This variation may provide the raw material for compensatory evolution and larger scale regulatory rewiring observed in developmental systems drift among species.
Collapse
Affiliation(s)
- Brian P H Metzger
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan 48109.,Department of Ecology and Evolution University of Chicago Chicago Illinois 60637
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan 48109.,Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor Michigan 48109
| |
Collapse
|
18
|
Schmiedel JM, Carey LB, Lehner B. Empirical mean-noise fitness landscapes reveal the fitness impact of gene expression noise. Nat Commun 2019; 10:3180. [PMID: 31320634 PMCID: PMC6639414 DOI: 10.1038/s41467-019-11116-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/21/2019] [Indexed: 12/23/2022] Open
Abstract
The effects of cell-to-cell variation (noise) in gene expression have proven difficult to quantify because of the mechanistic coupling of noise to mean expression. To independently quantify the effects of changes in mean expression and noise we determine the fitness landscapes in mean-noise expression space for 33 genes in yeast. For most genes, short-lived (noise) deviations away from the expression optimum are nearly as detrimental as sustained (mean) deviations. Fitness landscapes can be classified by a combination of each gene’s sensitivity to protein shortage or surplus. We use this classification to explore evolutionary scenarios for gene expression and find that certain landscape topologies can break the mechanistic coupling of mean and noise, thus promoting independent optimization of both properties. These results demonstrate that noise is detrimental for many genes and reveal non-trivial consequences of mean-noise-fitness topologies for the evolution of gene expression systems. Quantifying the effects of noise in gene expression is difficult since noise and mean expression are coupled. Here the authors determine fitness landscapes in mean-noise expression space to uncouple these two parameters and show that changes in noise and mean expression are similarly detrimental to fitness.
Collapse
Affiliation(s)
- Jörn M Schmiedel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003, Barcelona, Spain.
| | - Lucas B Carey
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003, Barcelona, Spain.,Center for Quantitative Biology and Peking-Tsinghua Center for the Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain. .,ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
19
|
Duveau F, Hodgins-Davis A, Metzger BP, Yang B, Tryban S, Walker EA, Lybrook T, Wittkopp PJ. Fitness effects of altering gene expression noise in Saccharomyces cerevisiae. eLife 2018; 7:37272. [PMID: 30124429 PMCID: PMC6133559 DOI: 10.7554/elife.37272] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/17/2018] [Indexed: 01/22/2023] Open
Abstract
Gene expression noise is an evolvable property of biological systems that describes differences in expression among genetically identical cells in the same environment. Prior work has shown that expression noise is heritable and can be shaped by selection, but the impact of variation in expression noise on organismal fitness has proven difficult to measure. Here, we quantify the fitness effects of altering expression noise for the TDH3 gene in Saccharomyces cerevisiae. We show that increases in expression noise can be deleterious or beneficial depending on the difference between the average expression level of a genotype and the expression level maximizing fitness. We also show that a simple model relating single-cell expression levels to population growth produces patterns consistent with our empirical data. We use this model to explore a broad range of average expression levels and expression noise, providing additional insight into the fitness effects of variation in expression noise.
Collapse
Affiliation(s)
- Fabien Duveau
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States.,Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université Paris Diderot, Paris, France
| | - Andrea Hodgins-Davis
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States
| | - Brian Ph Metzger
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States.,Department of Ecology and Evolution, University of Chicago, Chicago, United States
| | - Bing Yang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Stephen Tryban
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States
| | - Elizabeth A Walker
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States
| | - Tricia Lybrook
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States.,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
20
|
Albert FW, Bloom JS, Siegel J, Day L, Kruglyak L. Genetics of trans-regulatory variation in gene expression. eLife 2018; 7:e35471. [PMID: 30014850 PMCID: PMC6072440 DOI: 10.7554/elife.35471] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 06/30/2018] [Indexed: 12/02/2022] Open
Abstract
Heritable variation in gene expression forms a crucial bridge between genomic variation and the biology of many traits. However, most expression quantitative trait loci (eQTLs) remain unidentified. We mapped eQTLs by transcriptome sequencing in 1012 yeast segregants. The resulting eQTLs accounted for over 70% of the heritability of mRNA levels, allowing comprehensive dissection of regulatory variation. Most genes had multiple eQTLs. Most expression variation arose from trans-acting eQTLs distant from their target genes. Nearly all trans-eQTLs clustered at 102 hotspot locations, some of which influenced the expression of thousands of genes. Fine-mapped hotspot regions were enriched for transcription factor genes. While most genes had a local eQTL, most of these had no detectable effects on the expression of other genes in trans. Hundreds of non-additive genetic interactions accounted for small fractions of expression variation. These results reveal the complexity of genetic influences on transcriptome variation in unprecedented depth and detail.
Collapse
Affiliation(s)
- Frank Wolfgang Albert
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaMinneapolisUnited States
| | - Joshua S Bloom
- Department of Human GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteLos AngelesUnited States
| | - Jake Siegel
- Department of Human GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteLos AngelesUnited States
| | - Laura Day
- Department of Human GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteLos AngelesUnited States
| | - Leonid Kruglyak
- Department of Human GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteLos AngelesUnited States
| |
Collapse
|
21
|
Effects of mutation and selection on plasticity of a promoter activity in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2017; 114:E11218-E11227. [PMID: 29259117 DOI: 10.1073/pnas.1713960115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Phenotypic plasticity is an evolvable property of biological systems that can arise from environment-specific regulation of gene expression. To better understand the evolutionary and molecular mechanisms that give rise to plasticity in gene expression, we quantified the effects of 235 single-nucleotide mutations in the Saccharomyces cerevisiae TDH3 promoter (PTDH3 ) on the activity of this promoter in media containing glucose, galactose, or glycerol as a carbon source. We found that the distributions of mutational effects differed among environments because many mutations altered the plastic response exhibited by the wild-type allele. Comparing the effects of these mutations with the effects of 30 PTDH3 polymorphisms on expression plasticity in the same environments provided evidence of natural selection acting to prevent the plastic response in PTDH3 activity between glucose and galactose from becoming larger. The largest changes in expression plasticity were observed between fermentable (glucose or galactose) and nonfermentable (glycerol) carbon sources and were caused by mutations located in the RAP1 and GCR1 transcription factor binding sites. Mutations altered expression plasticity most frequently between the two fermentable environments, with mutations causing significant changes in plasticity between glucose and galactose distributed throughout the promoter, suggesting they might affect chromatin structure. Taken together, these results provide insight into the molecular mechanisms underlying gene-by-environment interactions affecting gene expression as well as the evolutionary dynamics affecting natural variation in plasticity of gene expression.
Collapse
|