1
|
Miloro F, Kis A, Havelda Z, Dalmadi Á. Barley AGO4 proteins show overlapping functionality with distinct small RNA-binding properties in heterologous complementation. PLANT CELL REPORTS 2024; 43:96. [PMID: 38480545 PMCID: PMC10937801 DOI: 10.1007/s00299-024-03177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
KEY MESSAGE Barley AGO4 proteins complement expressional changes of epigenetically regulated genes in Arabidopsis ago4-3 mutant and show a distinct affinity for the 5' terminal nucleotide of small RNAs, demonstrating functional conservation and divergence. The function of Argonaute 4 (AGO4) in Arabidopsis thaliana has been extensively characterized; however, its role in monocots, which have large genomes abundantly supplemented with transposable elements (TEs), remains elusive. The study of barley AGO4 proteins can provide insights into the conserved aspects of RNA-directed DNA methylation (RdDM) and could also have further applications in the field of epigenetics or crop improvement. Bioinformatic analysis of RNA sequencing data identified two active AGO4 genes in barley, HvAGO4a and HvAGO4b. These genes function similar to AtAGO4 in an Arabidopsis heterologous complementation system, primarily binding to 24-nucleotide long small RNAs (sRNAs) and triggering methylation at specific target loci. Like AtAGO4, HvAGO4B exhibits a preference for binding sRNAs with 5' adenine residue, while also accepting 5' guanine, uracil, and cytosine residues. In contrast, HvAGO4A selectively binds only sRNAs with a 5' adenine residue. The diverse binding capacity of barley AGO4 proteins is reflected in TE-derived sRNAs and in their varying abundance. Both barley AGO4 proteins effectively restore the levels of extrachromosomal DNA and transcript abundancy of the heat-activated ONSEN retrotransposon to those observed in wild-type Arabidopsis plants. Our study provides insight into the distinct binding specificities and involvement in TE regulation of barley AGO4 proteins in Arabidopsis by heterologous complementation.
Collapse
Affiliation(s)
- Fabio Miloro
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary
| | - András Kis
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
| | - Zoltán Havelda
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary
| | - Ágnes Dalmadi
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary.
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary.
| |
Collapse
|
2
|
Felgines L, Rymen B, Martins LM, Xu G, Matteoli C, Himber C, Zhou M, Eis J, Coruh C, Böhrer M, Kuhn L, Chicher J, Pandey V, Hammann P, Wohlschlegel J, Waltz F, Law JA, Blevins T. CLSY docking to Pol IV requires a conserved domain critical for small RNA biogenesis and transposon silencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.26.573199. [PMID: 38234754 PMCID: PMC10793415 DOI: 10.1101/2023.12.26.573199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Eukaryotes must balance the need for gene transcription by RNA polymerase II (Pol II) against the danger of mutations caused by transposable element (TE) proliferation. In plants, these gene expression and TE silencing activities are divided between different RNA polymerases. Specifically, RNA polymerase IV (Pol IV), which evolved from Pol II, transcribes TEs to generate small interfering RNAs (siRNAs) that guide DNA methylation and block TE transcription by Pol II. While the Pol IV complex is recruited to TEs via SNF2-like CLASSY (CLSY) proteins, how Pol IV partners with the CLSYs remains unknown. Here we identified a conserved CYC-YPMF motif that is specific to Pol IV and is positioned on the complex exterior. Furthermore, we found that this motif is essential for the co-purification of all four CLSYs with Pol IV, but that only one CLSY is present in any given Pol IV complex. These findings support a "one CLSY per Pol IV" model where the CYC-YPMF motif acts as a CLSY-docking site. Indeed, mutations in and around this motif phenocopy pol iv null mutants. Together, these findings provide structural and functional insights into a critical protein feature that distinguishes Pol IV from other RNA polymerases, allowing it to promote genome stability by targeting TEs for silencing.
Collapse
|
3
|
Serrano A, Moret M, Fernández-Parras I, Bombarely A, Luque F, Navarro F. RNA Polymerases IV and V Are Involved in Olive Fruit Development. Genes (Basel) 2023; 15:1. [PMID: 38275583 PMCID: PMC10815247 DOI: 10.3390/genes15010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Transcription is carried out in most eukaryotes by three multimeric complexes (RNA polymerases I, II and III). However, plants contain two additional RNA polymerases (IV and V), which have evolved from RNA polymerase II. RNA polymerases II, IV and V contain both common and specific subunits that may specialise some of their functions. In this study, we conducted a search for the genes that putatively code for the specific subunits of RNA polymerases IV and V, as well as those corresponding to RNA polymerase II in olive trees. Based on the homology with the genes of Arabidopsis thaliana, we identified 13 genes that putatively code for the specific subunits of polymerases IV and V, and 16 genes that code for the corresponding specific subunits of polymerase II in olives. The transcriptomic analysis by RNA-Seq revealed that the expression of the RNA polymerases IV and V genes was induced during the initial stages of fruit development. Given that RNA polymerases IV and V are involved in the transcription of long non-coding RNAs, we investigated their expression and observed relevant changes in the expression of this type of RNAs. Particularly, the expression of the intergenic and intronic long non-coding RNAs tended to increase in the early steps of fruit development, suggesting their potential role in this process. The positive correlation between the expression of RNA polymerases IV and V subunits and the expression of non-coding RNAs supports the hypothesis that RNA polymerases IV and V may play a role in fruit development through the synthesis of this type of RNAs.
Collapse
Affiliation(s)
- Alicia Serrano
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, 23071 Jaén, Spain; (A.S.); (M.M.); (I.F.-P.)
| | - Martín Moret
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, 23071 Jaén, Spain; (A.S.); (M.M.); (I.F.-P.)
| | - Isabel Fernández-Parras
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, 23071 Jaén, Spain; (A.S.); (M.M.); (I.F.-P.)
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC and Universitat Politécnica de Valencia, 46011 Valencia, Spain;
| | - Francisco Luque
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, 23071 Jaén, Spain; (A.S.); (M.M.); (I.F.-P.)
| | - Francisco Navarro
- Departamento de Biología Experimental, Universidad de Jaén, 23071 Jaén, Spain
| |
Collapse
|
4
|
Yang DL, Huang K, Deng D, Zeng Y, Wang Z, Zhang Y. DNA-dependent RNA polymerases in plants. THE PLANT CELL 2023; 35:3641-3661. [PMID: 37453082 PMCID: PMC10533338 DOI: 10.1093/plcell/koad195] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/09/2023] [Accepted: 05/29/2023] [Indexed: 07/18/2023]
Abstract
DNA-dependent RNA polymerases (Pols) transfer the genetic information stored in genomic DNA to RNA in all organisms. In eukaryotes, the typical products of nuclear Pol I, Pol II, and Pol III are ribosomal RNAs, mRNAs, and transfer RNAs, respectively. Intriguingly, plants possess two additional Pols, Pol IV and Pol V, which produce small RNAs and long noncoding RNAs, respectively, mainly for silencing transposable elements. The five plant Pols share some subunits, but their distinct functions stem from unique subunits that interact with specific regulatory factors in their transcription cycles. Here, we summarize recent advances in our understanding of plant nucleus-localized Pols, including their evolution, function, structures, and transcription cycles.
Collapse
Affiliation(s)
- Dong-Lei Yang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Huang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Deyin Deng
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou 311300, China
| | - Yuan Zeng
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhenxing Wang
- College of Horticulture, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
5
|
Hari Sundar G V, Swetha C, Basu D, Pachamuthu K, Raju S, Chakraborty T, Mosher RA, Shivaprasad PV. Plant polymerase IV sensitizes chromatin through histone modifications to preclude spread of silencing into protein-coding domains. Genome Res 2023; 33:715-728. [PMID: 37277199 PMCID: PMC10317121 DOI: 10.1101/gr.277353.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/16/2023] [Indexed: 06/07/2023]
Abstract
Across eukaryotes, gene regulation is manifested via chromatin states roughly distinguished as heterochromatin and euchromatin. The establishment, maintenance, and modulation of the chromatin states is mediated using several factors including chromatin modifiers. However, factors that avoid the intrusion of silencing signals into protein-coding genes are poorly understood. Here we show that a plant specific paralog of RNA polymerase (Pol) II, named Pol IV, is involved in avoidance of facultative heterochromatic marks in protein-coding genes, in addition to its well-established functions in silencing repeats and transposons. In its absence, H3K27 trimethylation (me3) mark intruded the protein-coding genes, more profoundly in genes embedded with repeats. In a subset of genes, spurious transcriptional activity resulted in small(s) RNA production, leading to post-transcriptional gene silencing. We show that such effects are significantly pronounced in rice, a plant with a larger genome with distributed heterochromatin compared with Arabidopsis Our results indicate the division of labor among plant-specific polymerases, not just in establishing effective silencing via sRNAs and DNA methylation but also in influencing chromatin boundaries.
Collapse
Affiliation(s)
- Vivek Hari Sundar G
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore 560065, India
| | - Chenna Swetha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore 560065, India
| | - Debjani Basu
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore 560065, India
| | - Kannan Pachamuthu
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore 560065, India
| | - Steffi Raju
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore 560065, India
| | - Tania Chakraborty
- School of Plant Sciences, The University of Arizona, Tucson, Arizona 85721, USA
| | - Rebecca A Mosher
- School of Plant Sciences, The University of Arizona, Tucson, Arizona 85721, USA
| | - P V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore 560065, India;
| |
Collapse
|
6
|
León-Ruiz J, Espinal-Centeno A, Blilou I, Scheres B, Arteaga-Vázquez M, Cruz-Ramírez A. RETINOBLASTOMA-RELATED interactions with key factors of the RNA-directed DNA methylation (RdDM) pathway and its influence on root development. PLANTA 2023; 257:105. [PMID: 37120771 DOI: 10.1007/s00425-023-04135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
MAIN CONCLUSION Our study presents evidence for a novel mechanism for RBR function in transcriptional gene silencing by interacting with key players of the RdDM pathway in Arabidopsis and several plant clades. Transposable elements and other repetitive elements are silenced by the RNA-directed DNA methylation pathway (RdDM). In RdDM, POLIV-derived transcripts are converted into double-stranded RNA (dsRNA) by the activity of RDR2 and subsequently processed into 24 nucleotide short interfering RNAs (24-nt siRNAs) by DCL3. 24-nt siRNAs serve as guides to direct AGO4-siRNA complexes to chromatin-bound POLV-derived transcripts generated from the template/target DNA. The interaction between POLV, AGO4, DMS3, DRD1, RDM1 and DRM2 promotes DRM2-mediated de novo DNA methylation. The Arabidopsis Retinoblastoma protein homolog (RBR) is a master regulator of the cell cycle, stem cell maintenance, and development. We in silico predicted and explored experimentally the protein-protein interactions (PPIs) between RBR and members of the RdDM pathway. We found that the largest subunits of POLIV and POLV (NRPD1 and NRPE1), the shared second largest subunit of POLIV and POLV (NRPD/E2), RDR1, RDR2, DCL3, DRM2, and SUVR2 contain canonical and non-canonical RBR binding motifs and several of them are conserved since algae and bryophytes. We validated experimentally PPIs between Arabidopsis RBR and several of the RdDM pathway proteins. Moreover, seedlings from loss-of-function mutants in RdDM and RBR show similar phenotypes in the root apical meristem. We show that RdDM and SUVR2 targets are up-regulated in the 35S:AmiGO-RBR background.
Collapse
Affiliation(s)
- Jesús León-Ruiz
- Laboratory of Molecular and Developmental Complexity at Laboratorio Nacional de Genómica Para la Biodiversidad, Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, (CINVESTAV-IPN), 36590, Irapuato, México
| | - Annie Espinal-Centeno
- Laboratory of Molecular and Developmental Complexity at Laboratorio Nacional de Genómica Para la Biodiversidad, Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, (CINVESTAV-IPN), 36590, Irapuato, México
| | - Ikram Blilou
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Ben Scheres
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Mario Arteaga-Vázquez
- Group of Epigenetics and Developmental Biology, Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, 91090, Xalapa, México.
| | - Alfredo Cruz-Ramírez
- Laboratory of Molecular and Developmental Complexity at Laboratorio Nacional de Genómica Para la Biodiversidad, Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, (CINVESTAV-IPN), 36590, Irapuato, México.
| |
Collapse
|
7
|
Marquardt S, Manavella PA. A ribose world: current status and future challenges of plant RNA biology. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2203-2207. [PMID: 37031364 PMCID: PMC10082927 DOI: 10.1093/jxb/erad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/06/2023]
|
8
|
Chakraborty T, Payne H, Mosher RA. Expansion and contraction of small RNA and methylation machinery throughout plant evolution. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102260. [PMID: 35849937 DOI: 10.1016/j.pbi.2022.102260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The revolution in sequencing has created a wealth of plant genomes that can be mined to understand the evolution of biological complexity. Complexity is often driven by gene duplication, which allows paralogs to specialize in an activity of the ancestral gene or acquire novel functions. Angiosperms encode a variety of gene silencing pathways that share related machinery for small RNA biosynthesis and function. Recent phylogenetic analysis of these gene families plots the expansion, specialization, and occasional contraction of this core machinery. This analysis reveals the ancient origin of RNA-directed DNA Methylation in early land plants, or possibly their algal ancestors, as well as ongoing duplications that evolve novel small RNA pathways.
Collapse
Affiliation(s)
- Tania Chakraborty
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036, USA
| | - Hayden Payne
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036, USA
| | - Rebecca A Mosher
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036, USA.
| |
Collapse
|
9
|
Chakraborty T, Trujillo JT, Kendall T, Mosher RA. A null allele of the pol IV second subunit impacts stature and reproductive development in Oryza sativa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:748-755. [PMID: 35635763 DOI: 10.1111/tpj.15848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
All eukaryotes possess three DNA-dependent RNA polymerases, Pols I-III, while land plants possess two additional polymerases, Pol IV and Pol V. Derived through duplication of Pol II subunits, Pol IV produces 24-nt short interfering RNAs that interact with Pol V transcripts to target de novo DNA methylation and silence transcription of transposons. Members of the grass family encode additional duplicated subunits of Pol IV and V, raising questions regarding the function of each paralog. In this study, we identify a null allele of the putative Pol IV second subunit, NRPD2, and demonstrate that NRPD2 is the sole subunit functioning with NRPD1 in small RNA production and CHH methylation in leaves. Homozygous nrpd2 mutants have neither gametophytic defects nor embryo lethality, although adult plants are dwarf and sterile.
Collapse
Affiliation(s)
- Tania Chakraborty
- School of Plant Sciences, University of Arizona, Tucson, Arizona, 85721, USA
| | - Joshua T Trujillo
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Timmy Kendall
- School of Plant Sciences, University of Arizona, Tucson, Arizona, 85721, USA
| | - Rebecca A Mosher
- School of Plant Sciences, University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
10
|
The effect of RNA polymerase V on 24-nt siRNA accumulation depends on DNA methylation contexts and histone modifications in rice. Proc Natl Acad Sci U S A 2021; 118:2100709118. [PMID: 34290143 DOI: 10.1073/pnas.2100709118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RNA-directed DNA methylation (RdDM) functions in de novo methylation in CG, CHG, and CHH contexts. Here, we performed map-based cloning of OsNRPE1, which encodes the largest subunit of RNA polymerase V (Pol V), a key regulator of gene silencing and reproductive development in rice. We found that rice Pol V is required for CHH methylation on RdDM loci by transcribing long noncoding RNAs. Pol V influences the accumulation of 24-nucleotide small interfering RNAs (24-nt siRNAs) in a locus-specific manner. Biosynthesis of 24-nt siRNAs on loci with high CHH methylation levels and low CG and CHG methylation levels tends to depend on Pol V. In contrast, low methylation levels in the CHH context and high methylation levels in CG and CHG contexts predisposes 24-nt siRNA accumulation to be independent of Pol V. H3K9me1 and H3K9me2 tend to be enriched on Pol V-independent 24-nt siRNA loci, whereas various active histone modifications are enriched on Pol V-dependent 24-nt siRNA loci. DNA methylation is required for 24-nt siRNAs biosynthesis on Pol V-dependent loci but not on Pol V-independent loci. Our results reveal the function of rice Pol V for long noncoding RNA production, DNA methylation, 24-nt siRNA accumulation, and reproductive development.
Collapse
|
11
|
Locus-specific paramutation in Zea mays is maintained by a PICKLE-like chromodomain helicase DNA-binding 3 protein controlling development and male gametophyte function. PLoS Genet 2020; 16:e1009243. [PMID: 33320854 PMCID: PMC7837471 DOI: 10.1371/journal.pgen.1009243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 01/26/2021] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Paramutations represent directed and meiotically-heritable changes in gene regulation leading to apparent violations of Mendelian inheritance. Although the mechanism and evolutionary importance of paramutation behaviors remain largely unknown, genetic screens in maize (Zea mays) identify five components affecting 24 nucleotide RNA biogenesis as required to maintain repression of a paramutant purple plant1 (pl1) allele. Currently, the RNA polymerase IV largest subunit represents the only component also specifying proper development. Here we identify a chromodomain helicase DNA-binding 3 (CHD3) protein orthologous to Arabidopsis (Arabidopsis thaliana) PICKLE as another component maintaining both pl1 paramutation and normal somatic development but without affecting overall small RNA biogenesis. In addition, genetic tests show this protein contributes to proper male gametophyte function. The similar mutant phenotypes documented in Arabidopsis and maize implicate some evolutionarily-conserved gene regulation while developmental defects associated with the two paramutation mutants are largely distinct. Our results show that a CHD3 protein responsible for normal plant ontogeny and sperm transmission also helps maintain meiotically-heritable epigenetic regulatory variation for specific alleles. This finding implicates an intersection of RNA polymerase IV function and nucleosome positioning in the paramutation process. Genes are switched “on” and “off” during normal development by regulating DNA accessibility within the chromosomes. How certain gene variants permanently maintain “off” states from one generation to the next remains unclear, but studies in multiple eukaryotes implicate roles for specific types of small RNAs, some of which define cytosine methylation patterns. In corn, these RNAs come from at least two RNA polymerase II-derived complexes sharing a common catalytic subunit (RPD1). Although RPD1 both controls the normal developmental switching of many genes and permanently maintains some of these “off” states across generations, how RPD1 function defines heritable DNA accessibility is unknown. We discovered that a protein (CHD3a) belonging to a group known to alter nucleosome positioning is also required to help maintain a heritable “off” state for one particular corn gene variant controlling both plant and flower color. We also found CHD3a necessary for normal plant development and sperm transmission consistent with the idea that proper nucleosome positioning defines evolutionarily-important gene expression patterns. Because both CHD3a and RPD1 maintain the heritable “off” state of a specific gene variant, their functions appear to be mechanistically linked.
Collapse
|
12
|
Rymen B, Ferrafiat L, Blevins T. Non-coding RNA polymerases that silence transposable elements and reprogram gene expression in plants. Transcription 2020; 11:172-191. [PMID: 33180661 PMCID: PMC7714444 DOI: 10.1080/21541264.2020.1825906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multisubunit RNA polymerase (Pol) complexes are the core machinery for gene expression in eukaryotes. The enzymes Pol I, Pol II and Pol III transcribe distinct subsets of nuclear genes. This family of nuclear RNA polymerases expanded in terrestrial plants by the duplication of Pol II subunit genes. Two Pol II-related enzymes, Pol IV and Pol V, are highly specialized in the production of regulatory, non-coding RNAs. Pol IV and Pol V are the central players of RNA-directed DNA methylation (RdDM), an RNA interference pathway that represses transposable elements (TEs) and selected genes. Genetic and biochemical analyses of Pol IV/V subunits are now revealing how these enzymes evolved from ancestral Pol II to sustain non-coding RNA biogenesis in silent chromatin. Intriguingly, Pol IV-RdDM regulates genes that influence flowering time, reproductive development, stress responses and plant–pathogen interactions. Pol IV target genes vary among closely related taxa, indicating that these regulatory circuits are often species-specific. Data from crops like maize, rice, tomato and Brassicarapa suggest that dynamic repositioning of TEs, accompanied by Pol IV targeting to TE-proximal genes, leads to the reprogramming of plant gene expression over short evolutionary timescales.
Collapse
Affiliation(s)
- Bart Rymen
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| | - Laura Ferrafiat
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| | - Todd Blevins
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| |
Collapse
|
13
|
Pecinka A, Chevalier C, Colas I, Kalantidis K, Varotto S, Krugman T, Michailidis C, Vallés MP, Muñoz A, Pradillo M. Chromatin dynamics during interphase and cell division: similarities and differences between model and crop plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5205-5222. [PMID: 31626285 DOI: 10.1093/jxb/erz457] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Genetic information in the cell nucleus controls organismal development and responses to the environment, and finally ensures its own transmission to the next generations. To achieve so many different tasks, the genetic information is associated with structural and regulatory proteins, which orchestrate nuclear functions in time and space. Furthermore, plant life strategies require chromatin plasticity to allow a rapid adaptation to abiotic and biotic stresses. Here, we summarize current knowledge on the organization of plant chromatin and dynamics of chromosomes during interphase and mitotic and meiotic cell divisions for model and crop plants differing as to genome size, ploidy, and amount of genomic resources available. The existing data indicate that chromatin changes accompany most (if not all) cellular processes and that there are both shared and unique themes in the chromatin structure and global chromosome dynamics among species. Ongoing efforts to understand the molecular mechanisms involved in chromatin organization and remodeling have, together with the latest genome editing tools, potential to unlock crop genomes for innovative breeding strategies and improvements of various traits.
Collapse
Affiliation(s)
- Ales Pecinka
- Institute of Experimental Botany, Czech Acad Sci, Centre of the Region Haná for Agricultural and Biotechnological Research, Olomouc, Czech Republic
| | | | - Isabelle Colas
- James Hutton Institute, Cell and Molecular Science, Pr Waugh's Lab, Invergowrie, Dundee, UK
| | - Kriton Kalantidis
- Department of Biology, University of Crete, and Institute of Molecular Biology Biotechnology, FoRTH, Heraklion, Greece
| | - Serena Varotto
- Department of Agronomy Animal Food Natural Resources and Environment (DAFNAE) University of Padova, Agripolis viale dell'Università, Legnaro (PD), Italy
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Christos Michailidis
- Institute of Experimental Botany, Czech Acad Sci, Praha 6 - Lysolaje, Czech Republic
| | - María-Pilar Vallés
- Department of Genetics and Plant Breeding, Estación Experimental Aula Dei (EEAD), Spanish National Research Council (CSIC), Zaragoza, Spain
| | - Aitor Muñoz
- Department of Plant Molecular Genetics, National Center of Biotechnology/Superior Council of Scientific Research, Autónoma University of Madrid, Madrid, Spain
| | - Mónica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
14
|
Chow HT, Chakraborty T, Mosher RA. RNA-directed DNA Methylation and sexual reproduction: expanding beyond the seed. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:11-17. [PMID: 31881293 DOI: 10.1016/j.pbi.2019.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 05/12/2023]
Abstract
Two trends are changing our understanding of RNA-directed DNA methylation. In model systems like Arabidopsis, tissue-specific analysis of DNA methylation is uncovering dynamic changes in methylation during sexual reproduction and unraveling the contribution of maternal and paternal epigenomes to the developing embryo. These studies indicate that RNA-directed DNA Methylation might be important for mediating balance between maternal and paternal contributions to the endosperm. At the same time, researchers are moving beyond Arabidopsis to illuminate the ancestral role of RdDM in non-flowering plants that lack an endosperm, suggesting that RdDM might play a broader role in sexual reproduction.
Collapse
Affiliation(s)
- Hiu Tung Chow
- The School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, United States
| | - Tania Chakraborty
- The School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, United States
| | - Rebecca A Mosher
- The School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
15
|
Grimanelli D, Ingouff M. DNA Methylation Readers in Plants. J Mol Biol 2020:S0022-2836(20)30027-9. [PMID: 31931004 DOI: 10.1016/j.jmb.2019.12.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 01/09/2023]
Abstract
In plants, DNA methylation occurs in distinct sequence contexts, including CG, CHG, and CHH. Thus, plants have developed a surprisingly diverse set of DNA methylation readers to cope with an extended repertoire of methylated sites. The Arabidopsis genome contains twelve Methyl-Binding Domain proteins (MBD), and nine SET and RING finger-associated (SRA) domain containing proteins belonging to the SUVH clade, in addition to three homologs of UHRF1, namely VIM1-3, all containing SRA domains. In this review, we will highlight several research questions that remain unresolved with respect to the function of plant DNA methylation readers, which can have both de novo demethylase and maintenance activity. We argue that maintenance of CG methylation in plants likely involved actors not found in their mammalian counterparts, and that new evidence suggests significant reprogramming of DNA methylation during plant reproduction as an important new development in the field.
Collapse
Affiliation(s)
- Daniel Grimanelli
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, 911 Avenue Agropolis, 34394, Montpellier, France.
| | - Mathieu Ingouff
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, 911 Avenue Agropolis, 34394, Montpellier, France.
| |
Collapse
|
16
|
Kenchanmane Raju SK, Ritter EJ, Niederhuth CE. Establishment, maintenance, and biological roles of non-CG methylation in plants. Essays Biochem 2019; 63:743-755. [PMID: 31652316 PMCID: PMC6923318 DOI: 10.1042/ebc20190032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022]
Abstract
Cytosine DNA methylation is prevalent throughout eukaryotes and prokaryotes. While most commonly thought of as being localized to dinucleotide CpG sites, non-CG sites can also be modified. Such non-CG methylation is widespread in plants, occurring at trinucleotide CHG and CHH (H = A, T, or C) sequence contexts. The prevalence of non-CG methylation in plants is due to the plant-specific CHROMOMETHYLASE (CMT) and RNA-directed DNA Methylation (RdDM) pathways. These pathways have evolved through multiple rounds of gene duplication and gene loss, generating epigenomic variation both within and between species. They regulate both transposable elements and genes, ensure genome integrity, and ultimately influence development and environmental responses. In these capacities, non-CG methylation influence and shape plant genomes.
Collapse
Affiliation(s)
| | | | - Chad E Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, U.S.A
- AgBioResearch, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
17
|
Aguilar-Cruz A, Grimanelli D, Haseloff J, Arteaga-Vázquez MA. DNA methylation in Marchantia polymorpha. THE NEW PHYTOLOGIST 2019; 223:575-581. [PMID: 30920664 DOI: 10.1111/nph.15818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Methylation of DNA is an epigenetic mechanism for the control of gene expression. Alterations in the regulatory pathways involved in the establishment, perpetuation and removal of DNA methylation can lead to severe developmental alterations. Our understanding of the mechanistic aspects and relevance of DNA methylation comes from remarkable studies in well-established angiosperm plant models including maize and Arabidopsis. The study of plant models positioned at basal lineages opens exciting opportunities to expand our knowledge on the function and evolution of the components of DNA methylation. In this Tansley Insight, we summarize current progress in our understanding of the molecular basis and relevance of DNA methylation in the liverwort Marchantia polymorpha.
Collapse
Affiliation(s)
- Adolfo Aguilar-Cruz
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Avenida de las Culturas Veracruzanas 101, Col. Emiliano Zapata, C.P. 91090, Xalapa, Veracruz, México
| | - Daniel Grimanelli
- Institut de Recherche pour le Développement (IRD), UMR232, Université de Montpellier, Montpellier, 34394, France
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Mario Alberto Arteaga-Vázquez
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Avenida de las Culturas Veracruzanas 101, Col. Emiliano Zapata, C.P. 91090, Xalapa, Veracruz, México
| |
Collapse
|