1
|
Mayorova TD, Koch TL, Kachar B, Jung JH, Reese TS, Smith CL. Placozoan secretory cell types implicated in feeding, innate immunity and regulation of behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613768. [PMID: 39372748 PMCID: PMC11452194 DOI: 10.1101/2024.09.18.613768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Placozoa are millimeter-sized, flat, irregularly shaped ciliated animals that crawl on surfaces in warm oceans feeding on biofilms, which they digest externally. They stand out from other animals due to their simple body plans. They lack organs, body cavities, muscles and a nervous system and have only seven broadly defined morphological cell types, each with a unique distribution. Analyses of single cell transcriptomes of four species of placozoans revealed greater diversity of secretory cell types than evident from morphological studies, but the locations of many of these new cell types were unknown and it was unclear which morphological cell types they represent. Furthermore, there were contradictions between the conclusions of previous studies and the single cell RNAseq studies. To address these issues, we used mRNA probes for genes encoding secretory products expressed in different metacells in Trichoplax adhaerens to localize cells in whole mounts and in dissociated cell cultures, where their morphological features could be visualized and identified. The nature and functions of their secretory granules were further investigated with electron microscopic techniques and by imaging secretion in live animals during feeding episodes. We found that two cell types participate in disintegrating prey, one resembling a lytic cell type in mammals and another combining features of zymogen gland cells and enterocytes. We identified secretory epithelial cells expressing glycoproteins or short peptides implicated in defense. We located seven peptidergic cell types and two types of mucocytes. Our findings reveal mechanisms that placozoans use to feed and protect themselves from pathogens and clues about neuropeptidergic signaling. We compare placozoan secretory cell types with cell types in other animal phyla to gain insight about general evolutionary trends in cell type diversification, as well as pathways leading to the emergence of synapomorphies.
Collapse
Affiliation(s)
- Tatiana D. Mayorova
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Thomas Lund Koch
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Bechara Kachar
- Section on Structural Cell Biology, Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States of America
| | - Jae Hoon Jung
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Thomas S. Reese
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Carolyn L. Smith
- Light Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
2
|
Schultz DT, Haddock SHD, Bredeson JV, Green RE, Simakov O, Rokhsar DS. Ancient gene linkages support ctenophores as sister to other animals. Nature 2023; 618:110-117. [PMID: 37198475 PMCID: PMC10232365 DOI: 10.1038/s41586-023-05936-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 03/09/2023] [Indexed: 05/19/2023]
Abstract
A central question in evolutionary biology is whether sponges or ctenophores (comb jellies) are the sister group to all other animals. These alternative phylogenetic hypotheses imply different scenarios for the evolution of complex neural systems and other animal-specific traits1-6. Conventional phylogenetic approaches based on morphological characters and increasingly extensive gene sequence collections have not been able to definitively answer this question7-11. Here we develop chromosome-scale gene linkage, also known as synteny, as a phylogenetic character for resolving this question12. We report new chromosome-scale genomes for a ctenophore and two marine sponges, and for three unicellular relatives of animals (a choanoflagellate, a filasterean amoeba and an ichthyosporean) that serve as outgroups for phylogenetic analysis. We find ancient syntenies that are conserved between animals and their close unicellular relatives. Ctenophores and unicellular eukaryotes share ancestral metazoan patterns, whereas sponges, bilaterians, and cnidarians share derived chromosomal rearrangements. Conserved syntenic characters unite sponges with bilaterians, cnidarians, and placozoans in a monophyletic clade to the exclusion of ctenophores, placing ctenophores as the sister group to all other animals. The patterns of synteny shared by sponges, bilaterians, and cnidarians are the result of rare and irreversible chromosome fusion-and-mixing events that provide robust and unambiguous phylogenetic support for the ctenophore-sister hypothesis. These findings provide a new framework for resolving deep, recalcitrant phylogenetic problems and have implications for our understanding of animal evolution.
Collapse
Affiliation(s)
- Darrin T Schultz
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.
- Department of Biomolecular Engineering and Bioinformatics, University of California, Santa Cruz, CA, USA.
| | - Steven H D Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Jessen V Bredeson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Richard E Green
- Department of Biomolecular Engineering and Bioinformatics, University of California, Santa Cruz, CA, USA
| | - Oleg Simakov
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.
| | - Daniel S Rokhsar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
3
|
Burkhardt P, Colgren J, Medhus A, Digel L, Naumann B, Soto-Angel JJ, Nordmann EL, Sachkova MY, Kittelmann M. Syncytial nerve net in a ctenophore adds insights on the evolution of nervous systems. Science 2023; 380:293-297. [PMID: 37079688 DOI: 10.1126/science.ade5645] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
A fundamental breakthrough in neurobiology has been the formulation of the neuron doctrine by Santiago Ramón y Cajal, which stated that the nervous system is composed of discrete cells. Electron microscopy later confirmed the doctrine and allowed the identification of synaptic connections. In this work, we used volume electron microscopy and three-dimensional reconstructions to characterize the nerve net of a ctenophore, a marine invertebrate that belongs to one of the earliest-branching animal lineages. We found that neurons in the subepithelial nerve net have a continuous plasma membrane that forms a syncytium. Our findings suggest fundamental differences of nerve net architectures between ctenophores and cnidarians or bilaterians and offer an alternative perspective on neural network organization and neurotransmission.
Collapse
Affiliation(s)
- Pawel Burkhardt
- Michael Sars Centre, University of Bergen, 5008 Bergen, Norway
| | - Jeffrey Colgren
- Michael Sars Centre, University of Bergen, 5008 Bergen, Norway
| | - Astrid Medhus
- Michael Sars Centre, University of Bergen, 5008 Bergen, Norway
| | - Leonid Digel
- Michael Sars Centre, University of Bergen, 5008 Bergen, Norway
| | - Benjamin Naumann
- Institut für Biowissenschaften, Allgemeine und Spezielle Zoologie, Universität Rostock, 18055 Rostock, Germany
| | | | | | | | - Maike Kittelmann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
4
|
Kraus A, Garcia B, Ma J, Herrera KJ, Zwaka H, Harpaz R, Wong RY, Engert F, Salinas I. Olfactory detection of viruses shapes brain immunity and behavior in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533129. [PMID: 37034630 PMCID: PMC10081220 DOI: 10.1101/2023.03.17.533129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Olfactory sensory neurons (OSNs) are constantly exposed to pathogens, including viruses. However, serious brain infection via the olfactory route rarely occurs. When OSNs detect a virus, they coordinate local antiviral immune responses to stop virus progression to the brain. Despite effective immune control in the olfactory periphery, pathogen-triggered neuronal signals reach the CNS via the olfactory bulb (OB). We hypothesized that neuronal detection of a virus by OSNs initiates neuroimmune responses in the OB that prevent pathogen invasion. Using zebrafish ( Danio rerio ) as a model, we demonstrate viral-specific neuronal activation of OSNs projecting into the OB, indicating that OSNs are electrically activated by viruses. Further, behavioral changes are seen in both adult and larval zebrafish after viral exposure. By profiling the transcription of single cells in the OB after OSNs are exposed to virus, we found that both microglia and neurons enter a protective state. Microglia and macrophage populations in the OB respond within minutes of nasal viral delivery followed decreased expression of neuronal differentiation factors and enrichment of genes in the neuropeptide signaling pathway in neuronal clusters. Pituitary adenylate-cyclase-activating polypeptide ( pacap ), a known antimicrobial, was especially enriched in a neuronal cluster. We confirm that PACAP is antiviral in vitro and that PACAP expression increases in the OB 1 day post-viral treatment. Our work reveals how encounters with viruses in the olfactory periphery shape the vertebrate brain by inducing antimicrobial programs in neurons and by altering host behavior.
Collapse
|
5
|
Ortiz J, Bobkov YV, DeBiasse MB, Mitchell DG, Edgar A, Martindale MQ, Moss AG, Babonis LS, Ryan JF. Independent Innexin Radiation Shaped Signaling in Ctenophores. Mol Biol Evol 2023; 40:7026321. [PMID: 36740225 PMCID: PMC9949713 DOI: 10.1093/molbev/msad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/30/2022] [Accepted: 01/25/2023] [Indexed: 02/07/2023] Open
Abstract
Innexins facilitate cell-cell communication by forming gap junctions or nonjunctional hemichannels, which play important roles in metabolic, chemical, ionic, and electrical coupling. The lack of knowledge regarding the evolution and role of these channels in ctenophores (comb jellies), the likely sister group to the rest of animals, represents a substantial gap in our understanding of the evolution of intercellular communication in animals. Here, we identify and phylogenetically characterize the complete set of innexins of four ctenophores: Mnemiopsis leidyi, Hormiphora californensis, Pleurobrachia bachei, and Beroe ovata. Our phylogenetic analyses suggest that ctenophore innexins diversified independently from those of other animals and were established early in the emergence of ctenophores. We identified a four-innexin genomic cluster, which was present in the last common ancestor of these four species and has been largely maintained in these lineages. Evidence from correlated spatial and temporal gene expression of the M. leidyi innexin cluster suggests that this cluster has been maintained due to constraints related to gene regulation. We describe the basic electrophysiological properties of putative ctenophore hemichannels from muscle cells using intracellular recording techniques, showing substantial overlap with the properties of bilaterian innexin channels. Together, our results suggest that the last common ancestor of animals had gap junctional channels also capable of forming functional innexin hemichannels, and that innexin genes have independently evolved in major lineages throughout Metazoa.
Collapse
Affiliation(s)
| | | | - Melissa B DeBiasse
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL, USA,School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Dorothy G Mitchell
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL, USA,Department of Biology, University of Florida, Gainesville, FL, USA
| | - Allison Edgar
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL, USA,Department of Biology, University of Florida, Gainesville, FL, USA
| | - Anthony G Moss
- Biological Sciences Department, Auburn University, Auburn, AL, USA
| | - Leslie S Babonis
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL, USA,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
6
|
Colgren J, Burkhardt P. The premetazoan ancestry of the synaptic toolkit and appearance of first neurons. Essays Biochem 2022; 66:781-795. [PMID: 36205407 PMCID: PMC9750855 DOI: 10.1042/ebc20220042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
Neurons, especially when coupled with muscles, allow animals to interact with and navigate through their environment in ways unique to life on earth. Found in all major animal lineages except sponges and placozoans, nervous systems range widely in organization and complexity, with neurons possibly representing the most diverse cell-type. This diversity has led to much debate over the evolutionary origin of neurons as well as synapses, which allow for the directed transmission of information. The broad phylogenetic distribution of neurons and presence of many of the defining components outside of animals suggests an early origin of this cell type, potentially in the time between the first animal and the last common ancestor of extant animals. Here, we highlight the occurrence and function of key aspects of neurons outside of animals as well as recent findings from non-bilaterian animals in order to make predictions about when and how the first neuron(s) arose during animal evolution and their relationship to those found in extant lineages. With advancing technologies in single cell transcriptomics and proteomics as well as expanding functional techniques in non-bilaterian animals and the close relatives of animals, it is an exciting time to begin unraveling the complex evolutionary history of this fascinating animal cell type.
Collapse
Affiliation(s)
- Jeffrey Colgren
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| | - Pawel Burkhardt
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| |
Collapse
|
7
|
Hayakawa E, Guzman C, Horiguchi O, Kawano C, Shiraishi A, Mohri K, Lin MF, Nakamura R, Nakamura R, Kawai E, Komoto S, Jokura K, Shiba K, Shigenobu S, Satake H, Inaba K, Watanabe H. Mass spectrometry of short peptides reveals common features of metazoan peptidergic neurons. Nat Ecol Evol 2022; 6:1438-1448. [PMID: 35941202 PMCID: PMC9525235 DOI: 10.1038/s41559-022-01835-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
The evolutionary origins of neurons remain unknown. Although recent genome data of extant early-branching animals have shown that neural genes existed in the common ancestor of animals, the physiological and genetic properties of neurons in the early evolutionary phase are still unclear. Here, we performed a mass spectrometry-based comprehensive survey of short peptides from early-branching lineages Cnidaria, Porifera and Ctenophora. We identified a number of mature ctenophore neuropeptides that are expressed in neurons associated with sensory, muscular and digestive systems. The ctenophore peptides are stored in vesicles in cell bodies and neurites, suggesting volume transmission similar to that of cnidarian and bilaterian peptidergic systems. A comparison of genetic characteristics revealed that the peptide-expressing cells of Cnidaria and Ctenophora express the vast majority of genes that have pivotal roles in maturation, secretion and degradation of neuropeptides in Bilateria. Functional analysis of neuropeptides and prediction of receptors with machine learning demonstrated peptide regulation of a wide range of target effector cells, including cells of muscular systems. The striking parallels between the peptidergic neuronal properties of Cnidaria and Bilateria and those of Ctenophora, the most basal neuron-bearing animals, suggest a common evolutionary origin of metazoan peptidergic nervous systems.
Collapse
Affiliation(s)
- Eisuke Hayakawa
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Christine Guzman
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Osamu Horiguchi
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Chihiro Kawano
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Kurato Mohri
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Mei-Fang Lin
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ryotaro Nakamura
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ryo Nakamura
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Erina Kawai
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Shinya Komoto
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Imaging Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kei Jokura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Shuji Shigenobu
- Center for the Development of New Model Organisms, National Institute for Basic Biology, Okazaki, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
8
|
Multigenerational laboratory culture of pelagic ctenophores and CRISPR-Cas9 genome editing in the lobate Mnemiopsis leidyi. Nat Protoc 2022; 17:1868-1900. [PMID: 35697825 DOI: 10.1038/s41596-022-00702-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 03/23/2022] [Indexed: 11/08/2022]
Abstract
Despite long-standing experimental interest in ctenophores due to their unique biology, ecological influence and evolutionary status, previous work has largely been constrained by the periodic seasonal availability of wild-caught animals and difficulty in reliably closing the life cycle. To address this problem, we have developed straightforward protocols that can be easily implemented to establish long-term multigenerational cultures for biological experimentation in the laboratory. In this protocol, we describe the continuous culture of the Atlantic lobate ctenophore Mnemiopsis leidyi. A rapid 3-week egg-to-egg generation time makes Mnemiopsis suitable for a wide range of experimental genetic, cellular, embryological, physiological, developmental, ecological and evolutionary studies. We provide recommendations for general husbandry to close the life cycle of Mnemiopsis in the laboratory, including feeding requirements, light-induced spawning, collection of embryos and rearing of juveniles to adults. These protocols have been successfully applied to maintain long-term multigenerational cultures of several species of pelagic ctenophores, and can be utilized by laboratories lacking easy access to the ocean. We also provide protocols for targeted genome editing via microinjection with CRISPR-Cas9 that can be completed within ~2 weeks, including single-guide RNA synthesis, early embryo microinjection, phenotype assessment and sequence validation of genome edits. These protocols provide a foundation for using Mnemiopsis as a model organism for functional genomic analyses in ctenophores.
Collapse
|
9
|
Abstract
Ctenophores, also known as comb jellies, are a clade of fragile holopelagic, carnivorous marine invertebrates, that represent one of the most ancient extant groups of multicellular animals. Ctenophores show a remarkable ability to regenerate in the adult form, being capable of replacing all body parts (i.e., whole-body regeneration) after loss/amputation. With many favorable experimental features (optical clarity, stereotyped cell lineage, multiple cell types), a full genome sequence available and their early branching phylogenetic position, ctenophores are well placed to provide information about the evolution of regenerative ability throughout the Metazoa. Here, we provide a collection of detailed protocols for use of the lobate ctenophore Mnemiopsis leidyi to study whole-body regeneration, including specimen collection, husbandry, surgical manipulation, and imaging techniques.
Collapse
Affiliation(s)
- Julia Ramon-Mateu
- The Whitney Laboratory for Marine Bioscience, St. Augustine, FL, USA.
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Villefranche-sur-mer, France.
| | - Allison Edgar
- The Whitney Laboratory for Marine Bioscience, St. Augustine, FL, USA
| | - Dorothy Mitchell
- The Whitney Laboratory for Marine Bioscience, St. Augustine, FL, USA
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, St. Augustine, FL, USA.
| |
Collapse
|
10
|
Parry LA, Lerosey-Aubril R, Weaver JC, Ortega-Hernández J. Cambrian comb jellies from Utah illuminate the early evolution of nervous and sensory systems in ctenophores. iScience 2021; 24:102943. [PMID: 34522849 PMCID: PMC8426560 DOI: 10.1016/j.isci.2021.102943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/01/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Ctenophores are a group of predatory macroinvertebrates whose controversial phylogenetic position has prompted several competing hypotheses regarding the evolution of animal organ systems. Although ctenophores date back at least to the Cambrian, they have a poor fossil record due to their gelatinous bodies. Here, we describe two ctenophore species from the Cambrian of Utah, which illuminate the early evolution of nervous and sensory features in the phylum. Thalassostaphylos elegans has 16 comb rows, an oral skirt, and an apical organ with polar fields. Ctenorhabdotus campanelliformis has 24 comb rows, an oral skirt, an apical organ enclosed by a capsule and neurological tissues preserved as carbonaceous films. These are concentrated around the apical organ and ciliated furrows, which connect to a circumoral nerve ring via longitudinal axons. C. campanelliformis deviates from the neuroanatomy of living ctenophores and demonstrates a substantial complexity in the nervous system of Cambrian ctenophores. Two species of rare fossil ctenophores are described from the Cambrian of Utah Fossil ctenophores preserve remains of nervous tissue and sensory structures Neurological structures include an oral nerve ring and giant longitudinal axons Cambrian ctenophores had a more complex neuroanatomy than living species
Collapse
Affiliation(s)
- Luke A Parry
- Department of Earth Sciences, University of Oxford, 3 South Parks Road, Oxford, OX1 3AN, UK.,Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA
| | - Rudy Lerosey-Aubril
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA 02138, USA
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
11
|
Presnell JS, Browne WE. Krüppel-like factor gene function in the ctenophore Mnemiopsis leidyi assessed by CRISPR/Cas9-mediated genome editing. Development 2021; 148:272041. [PMID: 34373891 DOI: 10.1242/dev.199771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022]
Abstract
The Krüppel-like factor (Klf) gene family encodes transcription factors that play an important role in the regulation of stem cell proliferation, cell differentiation and development in bilaterians. Although Klf genes have been shown to specify functionally various cell types in non-bilaterian animals, their role in early-diverging animal lineages has not been assessed. Thus, the ancestral activity of these transcription factors in animal development is not well understood. The ctenophore Mnemiopsis leidyi has emerged as an important non-bilaterian model system for understanding early animal evolution. Here, we characterize the expression and functional role of Klf genes during M. leidyi embryogenesis. Zygotic Klf gene function was assessed with both CRISPR/Cas9-mediated genome editing and splice-blocking morpholino oligonucleotide knockdown approaches. Abrogation of zygotic Klf expression during M. leidyi embryogenesis resulted in abnormal development of several organs, including the pharynx, tentacle bulbs and apical organ. Our data suggest an ancient role for Klf genes in regulating endodermal patterning, possibly through regulation of cell proliferation.
Collapse
Affiliation(s)
- Jason S Presnell
- Department of Biology, University of Miami, Cox Science Center, 1301 Memorial Drive, Miami, FL 33146, USA
| | - William E Browne
- Department of Biology, University of Miami, Cox Science Center, 1301 Memorial Drive, Miami, FL 33146, USA
| |
Collapse
|
12
|
Edgar A, Mitchell DG, Martindale MQ. Whole-Body Regeneration in the Lobate Ctenophore Mnemiopsis leidyi. Genes (Basel) 2021; 12:genes12060867. [PMID: 34198839 PMCID: PMC8228598 DOI: 10.3390/genes12060867] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/28/2023] Open
Abstract
Ctenophores (a.k.a. comb jellies) are one of the earliest branching extant metazoan phyla. Adult regenerative ability varies greatly within the group, with platyctenes undergoing both sexual and asexual reproduction by fission while others in the genus Beroe having completely lost the ability to replace missing body parts. We focus on the unique regenerative aspects of the lobate ctenophore, Mnemiopsis leidyi, which has become a popular model for its rapid wound healing and tissue replacement, optical clarity, and sequenced genome. M. leidyi’s highly mosaic, stereotyped development has been leveraged to reveal the polar coordinate system that directs whole-body regeneration as well as lineage restriction of replacement cells in various regenerating organs. Several cell signaling pathways known to function in regeneration in other animals are absent from the ctenophore’s genome. Further research will either reveal ancient principles of the regenerative process common to all animals or reveal novel solutions to the stability of cell fates and whole-body regeneration.
Collapse
|
13
|
Kraus A, Buckley KM, Salinas I. Sensing the world and its dangers: An evolutionary perspective in neuroimmunology. eLife 2021; 10:66706. [PMID: 33900197 PMCID: PMC8075586 DOI: 10.7554/elife.66706] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Detecting danger is key to the survival and success of all species. Animal nervous and immune systems cooperate to optimize danger detection. Preceding studies have highlighted the benefits of bringing neurons into the defense game, including regulation of immune responses, wound healing, pathogen control, and survival. Here, we summarize the body of knowledge in neuroimmune communication and assert that neuronal participation in the immune response is deeply beneficial in each step of combating infection, from inception to resolution. Despite the documented tight association between the immune and nervous systems in mammals or invertebrate model organisms, interdependence of these two systems is largely unexplored across metazoans. This review brings a phylogenetic perspective of the nervous and immune systems in the context of danger detection and advocates for the use of non-model organisms to diversify the field of neuroimmunology. We identify key taxa that are ripe for investigation due to the emergence of key evolutionary innovations in their immune and nervous systems. This novel perspective will help define the primordial principles that govern neuroimmune communication across taxa.
Collapse
Affiliation(s)
- Aurora Kraus
- Department of Biology, University of New Mexico, Albuquerque, United States
| | | | - Irene Salinas
- Department of Biology, University of New Mexico, Albuquerque, United States
| |
Collapse
|
14
|
Ginsburg S, Jablonka E. Evolutionary transitions in learning and cognition. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190766. [PMID: 33550955 DOI: 10.1098/rstb.2019.0766] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We define a cognitive system as a system that can learn, and adopt an evolutionary-transition-oriented framework for analysing different types of neural cognition. This enables us to classify types of cognition and point to the continuities and discontinuities among them. The framework we use for studying evolutionary transitions in learning capacities focuses on qualitative changes in the integration, storage and use of neurally processed information. Although there are always grey areas around evolutionary transitions, we recognize five major neural transitions, the first two of which involve animals at the base of the phylogenetic tree: (i) the evolutionary transition from learning in non-neural animals to learning in the first neural animals; (ii) the transition to animals showing limited, elemental associative learning, entailing neural centralization and primary brain differentiation; (iii) the transition to animals capable of unlimited associative learning, which, on our account, constitutes sentience and entails hierarchical brain organization and dedicated memory and value networks; (iv) the transition to imaginative animals that can plan and learn through selection among virtual events; and (v) the transition to human symbol-based cognition and cultural learning. The focus on learning provides a unifying framework for experimental and theoretical studies of cognition in the living world. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
- Simona Ginsburg
- Natural Science Department, The Open University of Israel, 1 University Road, POB 808, Raanana 4353701, Israel
| | - Eva Jablonka
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, 6934525 Ramat Aviv, Israel.,CPNSS, London School of Economics, Houghton Street, London WC2A 2AE, UK
| |
Collapse
|
15
|
Salinas-Saavedra M, Martindale MQ. Par protein localization during the early development of Mnemiopsis leidyi suggests different modes of epithelial organization in the metazoa. eLife 2020; 9:54927. [PMID: 32716297 PMCID: PMC7441587 DOI: 10.7554/elife.54927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
In bilaterians and cnidarians, epithelial cell-polarity is regulated by the interactions between Par proteins, Wnt/PCP signaling pathway, and cell-cell adhesion. Par proteins are highly conserved across Metazoa, including ctenophores. But strikingly, ctenophore genomes lack components of the Wnt/PCP pathway and cell-cell adhesion complexes raising the question if ctenophore cells are polarized by mechanisms involving Par proteins. Here, by using immunohistochemistry and live-cell imaging of specific mRNAs, we describe for the first time the subcellular localization of selected Par proteins in blastomeres and epithelial cells during the embryogenesis of the ctenophore Mnemiopsis leidyi. We show that these proteins distribute differently compared to what has been described for other animals, even though they segregate in a host-specific fashion when expressed in cnidarian embryos. This differential localization might be related to the emergence of different junctional complexes during metazoan evolution.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- The Whitney Laboratory for Marine Bioscience, and the Department of Biology, University of Florida, St. Augustine, United States
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, and the Department of Biology, University of Florida, St. Augustine, United States
| |
Collapse
|
16
|
Moreland RT, Nguyen AD, Ryan JF, Baxevanis AD. The Mnemiopsis Genome Project Portal: integrating new gene expression resources and improving data visualization. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5834871. [PMID: 32386298 DOI: 10.1093/database/baaa029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/22/2020] [Indexed: 11/13/2022]
Abstract
Following the completion of the genome sequencing and gene prediction of Mnemiopsis leidyi, a lobate ctenophore that is native to the coastal waters of the western Atlantic Ocean, we developed and implemented the Mnemiopsis Genome Project Portal (MGP Portal), a comprehensive Web-based data portal for navigating the genome sequence and gene annotations. In the years following the first release of the MGP Portal, it has become evident that the inclusion of data from significant published studies on Mnemiopsis has been critical to its adoption as the centralized resource for this emerging model organism. With this most recent update, the Portal has significantly expanded to include in situ images, temporal developmental expression profiles and single-cell expression data. Recent enhancements also include implementations of an updated BLAST interface, new graphical visualization tools and updates to gene pages that integrate all new data types. Database URL: https://research.nhgri.nih.gov/mnemiopsis/.
Collapse
Affiliation(s)
- R Travis Moreland
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anh-Dao Nguyen
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA.,Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Andreas D Baxevanis
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
17
|
Brückner A, Parker J. Molecular evolution of gland cell types and chemical interactions in animals. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb211938. [PMID: 32034048 DOI: 10.1242/jeb.211938] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Across the Metazoa, the emergence of new ecological interactions has been enabled by the repeated evolution of exocrine glands. Specialized glands have arisen recurrently and with great frequency, even in single genera or species, transforming how animals interact with their environment through trophic resource exploitation, pheromonal communication, chemical defense and parental care. The widespread convergent evolution of animal glands implies that exocrine secretory cells are a hotspot of metazoan cell type innovation. Each evolutionary origin of a novel gland involves a process of 'gland cell type assembly': the stitching together of unique biosynthesis pathways; coordinated changes in secretory systems to enable efficient chemical release; and transcriptional deployment of these machineries into cells constituting the gland. This molecular evolutionary process influences what types of compound a given species is capable of secreting, and, consequently, the kinds of ecological interactions that species can display. Here, we discuss what is known about the evolutionary assembly of gland cell types and propose a framework for how it may happen. We posit the existence of 'terminal selector' transcription factors that program gland function via regulatory recruitment of biosynthetic enzymes and secretory proteins. We suggest ancestral enzymes are initially co-opted into the novel gland, fostering pleiotropic conflict that drives enzyme duplication. This process has yielded the observed pattern of modular, gland-specific biosynthesis pathways optimized for manufacturing specific secretions. We anticipate that single-cell technologies and gene editing methods applicable in diverse species will transform the study of animal chemical interactions, revealing how gland cell types are assembled and functionally configured at a molecular level.
Collapse
Affiliation(s)
- Adrian Brückner
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|