1
|
Cai Q, Codjia JEI, Buyck B, Cui YY, Ryberg M, Yorou NS, Yang ZL. The evolution of ectomycorrhizal symbiosis and host-plant switches are the main drivers for diversification of Amanitaceae (Agaricales, Basidiomycota). BMC Biol 2024; 22:230. [PMID: 39390520 PMCID: PMC11465788 DOI: 10.1186/s12915-024-02031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Evolutionary radiation is widely recognized as a mode of species diversification, but the drivers of the rapid diversification of fungi remain largely unknown. Here, we used Amanitaceae, one of the most diverse families of macro-fungi, to investigate the mechanism underlying its diversification. RESULTS The ancestral state of the nutritional modes was assessed based on phylogenies obtained from fragments of 36 single-copy genes and stable isotope analyses of carbon and nitrogen. Moreover, a number of time-, trait-, and paleotemperature-dependent models were employed to investigate if the acquisition of ectomycorrhizal (ECM) symbiosis and climate changes promoted the diversification of Amanitaceae. The results indicate that the evolution of ECM symbiosis has a single evolutionary origin in Amanitaceae. The earliest increase in diversification coincided with the acquisition of the ECM symbiosis with angiosperms in the middle Cretaceous. The recent explosive diversification was primarily triggered by the host-plant switches from angiosperms to the mixed forests dominated by Fagaceae, Salicaceae, and Pinaceae or to Pinaceae. CONCLUSIONS Our study provides a good example of integrating phylogeny, nutritional mode evolution, and ecological analyses for deciphering the mechanisms underlying fungal evolutionary diversification. This study also provides new insights into how the transition to ECM symbiosis has driven the diversification of fungi.
Collapse
Affiliation(s)
- Qing Cai
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, 650201, China
| | - Jean Evans I Codjia
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Research Unit Tropical Mycology and Plants-Soil Fungi Interactions, Faculty of Agronomy, University of Parakou, Parakou, BP 123, Benin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Bart Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 39, 57 rue Cuvier, Paris, 75005, France
| | - Yang-Yang Cui
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, 650201, China
| | - Martin Ryberg
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Nourou S Yorou
- Research Unit Tropical Mycology and Plants-Soil Fungi Interactions, Faculty of Agronomy, University of Parakou, Parakou, BP 123, Benin
| | - Zhu L Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, 650201, China.
| |
Collapse
|
2
|
Ángeles-Argáiz RE, Aguirre-Beltrán LFL, Hernández-Oaxaca D, Quintero-Corrales C, Trujillo-Roldán MA, Castillo-Ramírez S, Garibay-Orijel R. Assembly collapsing versus heterozygosity oversizing: detection of homokaryotic and heterokaryotic Laccaria trichodermophora strains by hybrid genome assembly. Microb Genom 2024; 10:001218. [PMID: 38529901 PMCID: PMC10995626 DOI: 10.1099/mgen.0.001218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/01/2024] [Indexed: 03/27/2024] Open
Abstract
Genome assembly and annotation using short-paired reads is challenging for eukaryotic organisms due to their large size, variable ploidy and large number of repetitive elements. However, the use of single-molecule long reads improves assembly quality (completeness and contiguity), but haplotype duplications still pose assembly challenges. To address the effect of read length on genome assembly quality, gene prediction and annotation, we compared genome assemblers and sequencing technologies with four strains of the ectomycorrhizal fungus Laccaria trichodermophora. By analysing the predicted repertoire of carbohydrate enzymes, we investigated the effects of assembly quality on functional inferences. Libraries were generated using three different sequencing platforms (Illumina Next-Seq, Mi-Seq and PacBio Sequel), and genomes were assembled using single and hybrid assemblies/libraries. Long reads or hybrid assemby resolved the collapsing of repeated regions, but the nuclear heterozygous versions remained unresolved. In dikaryotic fungi, each cell includes two nuclei and each nucleus has differences not only in allelic gene version but also in gene composition and synteny. These heterokaryotic cells produce fragmentation and size overestimation of the genome assembly of each nucleus. Hybrid assembly revealed a wider functional diversity of genomes. Here, several predicted oxidizing activities on glycosyl residues of oligosaccharides and several chitooligosaccharide acetylase activities would have passed unnoticed in short-read assemblies. Also, the size and fragmentation of the genome assembly, in combination with heterozygosity analysis, allowed us to distinguish homokaryotic and heterokaryotic strains isolated from L. trichodermophora fruit bodies.
Collapse
Affiliation(s)
- Rodolfo Enrique Ángeles-Argáiz
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Circuito de los Posgrados s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
- Red de Manejo Biotecnológico de Recursos, Instituto de Ecología A. C. Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz, México, C.P. 91612, Mexico
| | - Luis Fernando Lozano Aguirre-Beltrán
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México, C.P. 62210, Mexico
| | - Diana Hernández-Oaxaca
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México, C.P. 62210, Mexico
- Red de Biodiversidad y Sistemática, Instituto de Ecología A. C. Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz, México, C.P. 91073, Mexico
| | - Christian Quintero-Corrales
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Circuito de los Posgrados s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
| | - Mauricio A. Trujillo-Roldán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, Ensenada, Baja California, Mexico, C.P. 22860, Mexico
| | - Santiago Castillo-Ramírez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México, C.P. 62210, Mexico
| | - Roberto Garibay-Orijel
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
| |
Collapse
|
3
|
Manley BF, Lotharukpong JS, Barrera-Redondo J, Llewellyn T, Yildirir G, Sperschneider J, Corradi N, Paszkowski U, Miska EA, Dallaire A. A highly contiguous genome assembly reveals sources of genomic novelty in the symbiotic fungus Rhizophagus irregularis. G3 (BETHESDA, MD.) 2023; 13:jkad077. [PMID: 36999556 PMCID: PMC10234402 DOI: 10.1093/g3journal/jkad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/17/2023] [Indexed: 06/02/2023]
Abstract
The root systems of most plant species are aided by the soil-foraging capacities of symbiotic arbuscular mycorrhizal (AM) fungi of the Glomeromycotina subphylum. Despite recent advances in our knowledge of the ecology and molecular biology of this mutualistic symbiosis, our understanding of the AM fungi genome biology is just emerging. Presented here is a close to T2T genome assembly of the model AM fungus Rhizophagus irregularis DAOM197198, achieved through Nanopore long-read DNA sequencing and Hi-C data. This haploid genome assembly of R. irregularis, alongside short- and long-read RNA-Sequencing data, was used to produce a comprehensive annotation catalog of gene models, repetitive elements, small RNA loci, and DNA cytosine methylome. A phylostratigraphic gene age inference framework revealed that the birth of genes associated with nutrient transporter activity and transmembrane ion transport systems predates the emergence of Glomeromycotina. While nutrient cycling in AM fungi relies on genes that existed in ancestor lineages, a burst of Glomeromycotina-restricted genetic innovation is also detected. Analysis of the chromosomal distribution of genetic and epigenetic features highlights evolutionarily young genomic regions that produce abundant small RNAs, suggesting active RNA-based monitoring of genetic sequences surrounding recently evolved genes. This chromosome-scale view of the genome of an AM fungus genome reveals previously unexplored sources of genomic novelty in an organism evolving under an obligate symbiotic life cycle.
Collapse
Affiliation(s)
- Bethan F Manley
- SPUN|Society for the Protection of Underground Networks, 3500 South DuPont Highway, Suite EI-101, Dover, DE 19901, USA
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Jaruwatana S Lotharukpong
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, Tübingen 72076, Germany
| | - Josué Barrera-Redondo
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, Tübingen 72076, Germany
| | - Theo Llewellyn
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Gokalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Jana Sperschneider
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Uta Paszkowski
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB3 0LE, UK
| | - Eric A Miska
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Alexandra Dallaire
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond TW9 3DS, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
4
|
Müller M, Kües U, Budde KB, Gailing O. Applying molecular and genetic methods to trees and their fungal communities. Appl Microbiol Biotechnol 2023; 107:2783-2830. [PMID: 36988668 PMCID: PMC10106355 DOI: 10.1007/s00253-023-12480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Forests provide invaluable economic, ecological, and social services. At the same time, they are exposed to several threats, such as fragmentation, changing climatic conditions, or increasingly destructive pests and pathogens. Trees, the inherent species of forests, cannot be viewed as isolated organisms. Manifold (micro)organisms are associated with trees playing a pivotal role in forest ecosystems. Of these organisms, fungi may have the greatest impact on the life of trees. A multitude of molecular and genetic methods are now available to investigate tree species and their associated organisms. Due to their smaller genome sizes compared to tree species, whole genomes of different fungi are routinely compared. Such studies have only recently started in forest tree species. Here, we summarize the application of molecular and genetic methods in forest conservation genetics, tree breeding, and association genetics as well as for the investigation of fungal communities and their interrelated ecological functions. These techniques provide valuable insights into the molecular basis of adaptive traits, the impacts of forest management, and changing environmental conditions on tree species and fungal communities and can enhance tree-breeding cycles due to reduced time for field testing. It becomes clear that there are multifaceted interactions among microbial species as well as between these organisms and trees. We demonstrate the versatility of the different approaches based on case studies on trees and fungi. KEY POINTS: • Current knowledge of genetic methods applied to forest trees and associated fungi. • Genomic methods are essential in conservation, breeding, management, and research. • Important role of phytobiomes for trees and their ecosystems.
Collapse
Affiliation(s)
- Markus Müller
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany.
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Katharina B Budde
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
5
|
Li Q, Luo Y, Sha A, Xiao W, Xiong Z, Chen X, He J, Peng L, Zou L. Analysis of synonymous codon usage patterns in mitochondrial genomes of nine Amanita species. Front Microbiol 2023; 14:1134228. [PMID: 36970689 PMCID: PMC10030801 DOI: 10.3389/fmicb.2023.1134228] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
IntroductionCodon basis is a common and complex natural phenomenon observed in many kinds of organisms.MethodsIn the present study, we analyzed the base bias of 12 mitochondrial core protein-coding genes (PCGs) shared by nine Amanita species.ResultsThe results showed that the codons of all Amanita species tended to end in A/T, demonstrating the preference of mitochondrial codons of Amanita species for a preference for this codon. In addition, we detected the correlation between codon base composition and the codon adaptation index (CAI), codon bias index (CBI), and frequency of optimal codons (FOP) indices, indicating the influence of base composition on codon bias. The average effective number of codons (ENC) of mitochondrial core PCGs of Amanita is 30.81, which is <35, demonstrating the strong codon preference of mitochondrial core PCGs of Amanita. The neutrality plot analysis and PR2-Bias plot analysis further demonstrated that natural selection plays an important role in Amanita codon bias. In addition, we obtained 5–10 optimal codons (ΔRSCU > 0.08 and RSCU > 1) in nine Amanita species, and GCA and AUU were the most widely used optimal codons. Based on the combined mitochondrial sequence and RSCU value, we deduced the genetic relationship between different Amanita species and found large variations between them.DiscussionThis study promoted the understanding of synonymous codon usage characteristics and evolution of this important fungal group.
Collapse
|
6
|
Caballero JRI, Lalande BM, Hanna JW, Klopfenstein NB, Kim MS, Stewart JE. Genomic Comparisons of Two Armillaria Species with Different Ecological Behaviors and Their Associated Soil Microbial Communities. MICROBIAL ECOLOGY 2023; 85:708-729. [PMID: 35312808 DOI: 10.1007/s00248-022-01989-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Armillaria species show considerable variation in ecological roles and virulence, from mycorrhizae and saprophytes to important root pathogens of trees and horticultural crops. We studied two Armillaria species that can be found in coniferous forests of northwestern USA and southwestern Canada. Armillaria altimontana not only is considered as a weak, opportunistic pathogen of coniferous trees, but it also appears to exhibit in situ biological control against A. solidipes, formerly North American A. ostoyae, which is considered a virulent pathogen of coniferous trees. Here, we describe their genome assemblies and present a functional annotation of the predicted genes and proteins for the two Armillaria species that exhibit contrasting ecological roles. In addition, the soil microbial communities were examined in association with the two Armillaria species within a 45-year-old plantation of western white pine (Pinus monticola) in northern Idaho, USA, where A. altimontana was associated with improved tree growth and survival, while A. solidipes was associated with reduced growth and survival. The results from this study reveal a high similarity between the genomes of the beneficial/non-pathogenic A. altimontana and pathogenic A. solidipes; however, many relatively small differences in gene content were identified that could contribute to differences in ecological lifestyles and interactions with woody hosts and soil microbial communities.
Collapse
Affiliation(s)
| | - Bradley M Lalande
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
- Forest Health Protection, USDA Forest Service, Gunnison, CO, 81230, USA
| | - John W Hanna
- Rocky Mountain Research Station, USDA Forest Service, Moscow, ID, 83843, USA
| | - Ned B Klopfenstein
- Rocky Mountain Research Station, USDA Forest Service, Moscow, ID, 83843, USA.
| | - Mee-Sook Kim
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR, 97331, USA.
| | - Jane E Stewart
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
7
|
Wan JN, Li Y, Guo T, Ji GY, Luo SZ, Ji KP, Cao Y, Tan Q, Bao DP, Yang RH. Whole-Genome and Transcriptome Sequencing of Phlebopus portentosus Reveals Its Associated Ectomycorrhizal Niche and Conserved Pathways Involved in Fruiting Body Development. Front Microbiol 2021; 12:732458. [PMID: 34659161 PMCID: PMC8511702 DOI: 10.3389/fmicb.2021.732458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/03/2021] [Indexed: 02/03/2023] Open
Abstract
Phlebopus portentosus (Berk. and Broome) Boedijin, a widely consumed mushroom in China and Thailand, is the first species in the order Boletaceae to have been industrially cultivated on a large scale. However, to date, the lignocellulose degradation system and molecular basis of fruiting body development in P. portentosus have remained cryptic. In the present study, genome and transcriptome sequencing of P. portentosus was performed during the mycelium (S), primordium (P), and fruiting body (F) stages. A genome of 32.74 Mb with a 48.92% GC content across 62 scaffolds was obtained. A total of 9,464 putative genes were predicted from the genome, of which the number of genes related to plant cell wall-degrading enzymes was much lower than that of some saprophytic mushrooms with specific ectomycorrhizal niches. Principal component analysis of RNA-Seq data revealed that the gene expression profiles at all three stages were different. The low expression of plant cell wall-degrading genes also confirmed the limited ability to degrade lignocellulose. The expression profiles also revealed that some conserved and specific pathways were enriched in the different developmental stages of P. portentosus. Starch and sucrose metabolic pathways were enriched in the mycelium stage, while DNA replication, the proteasome and MAPK signaling pathways may be associated with maturation. These results provide a new perspective for understanding the key pathways and hub genes involved in P. portentosus development.
Collapse
Affiliation(s)
- Jia-Ning Wan
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Key Laboratory of Edible Fungal Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan Li
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Key Laboratory of Edible Fungal Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ting Guo
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Key Laboratory of Edible Fungal Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Guang-Yan Ji
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Shun-Zhen Luo
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Kai-Ping Ji
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Yang Cao
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Qi Tan
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Key Laboratory of Edible Fungal Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Da-Peng Bao
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Key Laboratory of Edible Fungal Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Rui-Heng Yang
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Key Laboratory of Edible Fungal Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
8
|
Wang YW, Hess J, Slot JC, Pringle A. De Novo Gene Birth, Horizontal Gene Transfer, and Gene Duplication as Sources of New Gene Families Associated with the Origin of Symbiosis in Amanita. Genome Biol Evol 2021; 12:2168-2182. [PMID: 32926145 PMCID: PMC7674699 DOI: 10.1093/gbe/evaa193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/24/2022] Open
Abstract
By introducing novel capacities and functions, new genes and gene families may play a crucial role in ecological transitions. Mechanisms generating new gene families include de novo gene birth, horizontal gene transfer, and neofunctionalization following a duplication event. The ectomycorrhizal (ECM) symbiosis is a ubiquitous mutualism and the association has evolved repeatedly and independently many times among the fungi, but the evolutionary dynamics enabling its emergence remain elusive. We developed a phylogenetic workflow to first understand if gene families unique to ECM Amanita fungi and absent from closely related asymbiotic species are functionally relevant to the symbiosis, and then to systematically infer their origins. We identified 109 gene families unique to ECM Amanita species. Genes belonging to unique gene families are under strong purifying selection and are upregulated during symbiosis, compared with genes of conserved or orphan gene families. The origins of seven of the unique gene families are strongly supported as either de novo gene birth (two gene families), horizontal gene transfer (four), or gene duplication (one). An additional 34 families appear new because of their selective retention within symbiotic species. Among the 109 unique gene families, the most upregulated gene in symbiotic cultures encodes a 1-aminocyclopropane-1-carboxylate deaminase, an enzyme capable of downregulating the synthesis of the plant hormone ethylene, a common negative regulator of plant-microbial mutualisms.
Collapse
Affiliation(s)
- Yen-Wen Wang
- Departments of Botany and Bacteriology, University of Wisconsin-Madison
| | - Jaqueline Hess
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University
| | - Anne Pringle
- Departments of Botany and Bacteriology, University of Wisconsin-Madison
| |
Collapse
|
9
|
Wang D, Jacquemyn H, Gomes SIF, Vos RA, Merckx VSFT. Symbiont switching and trophic mode shifts in Orchidaceae. THE NEW PHYTOLOGIST 2021; 231:791-800. [PMID: 33932029 PMCID: PMC8252101 DOI: 10.1111/nph.17414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/09/2021] [Indexed: 05/15/2023]
Abstract
Mycorrhizal fungi are central to the biology of land plants. However, to what extent mycorrhizal shifts - broad evolutionary transitions in root-associated fungal symbionts - are related to changes in plant trophic modes remains poorly understood. We built a comprehensive DNA dataset of Orchidaceae fungal symbionts and a dated plant molecular phylogeny to test the hypothesis that shifts in orchid trophic modes follow a stepwise pattern, from autotrophy over partial mycoheterotrophy (mixotrophy) to full mycoheterotrophy, and that these shifts are accompanied by switches in fungal symbionts. We estimate that at least 17 independent shifts from autotrophy towards full mycoheterotrophy occurred in orchids, mostly through an intermediate state of partial mycoheterotrophy. A wide range of fungal partners was inferred to occur in the roots of the common ancestor of this family, including 'rhizoctonias', ectomycorrhizal, and wood- or litter-decaying saprotrophic fungi. Phylogenetic hypothesis tests further show that associations with ectomycorrhizal or saprotrophic fungi were most likely a prerequisite for evolutionary shifts towards full mycoheterotrophy. We show that shifts in trophic mode often coincided with switches in fungal symbionts, suggesting that the loss of photosynthesis selects for different fungal communities in orchids. We conclude that changes in symbiotic associations and ecophysiological traits are tightly correlated throughout the diversification of orchids.
Collapse
Affiliation(s)
- Deyi Wang
- Naturalis Biodiversity CenterLeiden2332 AAthe Netherlands
- Institute of BiologyLeiden UniversityLeiden2333 BEthe Netherlands
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population BiologyKU LeuvenKasteelpark Arenberg 31, HeverleeLeuven3001Belgium
| | - Sofia I. F. Gomes
- Naturalis Biodiversity CenterLeiden2332 AAthe Netherlands
- Institute of BiologyLeiden UniversityLeiden2333 BEthe Netherlands
| | - Rutger A. Vos
- Naturalis Biodiversity CenterLeiden2332 AAthe Netherlands
- Institute of BiologyLeiden UniversityLeiden2333 BEthe Netherlands
| | - Vincent S. F. T. Merckx
- Naturalis Biodiversity CenterLeiden2332 AAthe Netherlands
- Department of Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdam1098 XHthe Netherlands
| |
Collapse
|
10
|
Conlon BH, Gostinčar C, Fricke J, Kreuzenbeck NB, Daniel JM, Schlosser MS, Peereboom N, Aanen DK, de Beer ZW, Beemelmanns C, Gunde-Cimerman N, Poulsen M. Genome reduction and relaxed selection is associated with the transition to symbiosis in the basidiomycete genus Podaxis. iScience 2021; 24:102680. [PMID: 34189441 PMCID: PMC8220239 DOI: 10.1016/j.isci.2021.102680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
Insights into the genomic consequences of symbiosis for basidiomycete fungi associated with social insects remain sparse. Capitalizing on viability of spores from centuries-old herbarium specimens of free-living, facultative, and specialist termite-associated Podaxis fungi, we obtained genomes of 10 specimens, including two type species described by Linnaeus >240 years ago. We document that the transition to termite association was accompanied by significant reductions in genome size and gene content, accelerated evolution in protein-coding genes, and reduced functional capacities for oxidative stress responses and lignin degradation. Functional testing confirmed that termite specialists perform worse under oxidative stress, while all lineages retained some capacity to cleave lignin. Mitochondrial genomes of termite associates were significantly larger; possibly driven by smaller population sizes or reduced competition, supported by apparent loss of certain biosynthetic gene clusters. Our findings point to relaxed selection that mirrors genome traits observed among obligate endosymbiotic bacteria of many insects.
Collapse
Affiliation(s)
- Benjamin H. Conlon
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janis Fricke
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoll-Institute, Chemical Biology, 07745 Jena, Germany
| | - Nina B. Kreuzenbeck
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoll-Institute, Chemical Biology, 07745 Jena, Germany
| | - Jan-Martin Daniel
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoll-Institute, Chemical Biology, 07745 Jena, Germany
| | - Malte S.L. Schlosser
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - Nils Peereboom
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - Duur K. Aanen
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, the Netherlands
| | - Z. Wilhelm de Beer
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoll-Institute, Chemical Biology, 07745 Jena, Germany
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
11
|
Lofgren LA, Nguyen NH, Vilgalys R, Ruytinx J, Liao HL, Branco S, Kuo A, LaButti K, Lipzen A, Andreopoulos W, Pangilinan J, Riley R, Hundley H, Na H, Barry K, Grigoriev IV, Stajich JE, Kennedy PG. Comparative genomics reveals dynamic genome evolution in host specialist ectomycorrhizal fungi. THE NEW PHYTOLOGIST 2021; 230:774-792. [PMID: 33355923 PMCID: PMC7969408 DOI: 10.1111/nph.17160] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/16/2020] [Indexed: 05/24/2023]
Abstract
While there has been significant progress characterizing the 'symbiotic toolkit' of ectomycorrhizal (ECM) fungi, how host specificity may be encoded into ECM fungal genomes remains poorly understood. We conducted a comparative genomic analysis of ECM fungal host specialists and generalists, focusing on the specialist genus Suillus. Global analyses of genome dynamics across 46 species were assessed, along with targeted analyses of three classes of molecules previously identified as important determinants of host specificity: small secreted proteins (SSPs), secondary metabolites (SMs) and G-protein coupled receptors (GPCRs). Relative to other ECM fungi, including other host specialists, Suillus had highly dynamic genomes including numerous rapidly evolving gene families and many domain expansions and contractions. Targeted analyses supported a role for SMs but not SSPs or GPCRs in Suillus host specificity. Phylogenomic-based ancestral state reconstruction identified Larix as the ancestral host of Suillus, with multiple independent switches between white and red pine hosts. These results suggest that like other defining characteristics of the ECM lifestyle, host specificity is a dynamic process at the genome level. In the case of Suillus, both SMs and pathways involved in the deactivation of reactive oxygen species appear to be strongly associated with enhanced host specificity.
Collapse
Affiliation(s)
- Lotus A Lofgren
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - Nhu H Nguyen
- Department of Tropical Plant and Soil Science, University of Hawaii, Manoa, HI, 96822, USA
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Joske Ruytinx
- Research group Microbiology, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussel, BE1500, Belgium
| | - Hui-Ling Liao
- Department of Soil Microbial Ecology, University of Florida, Quincy, FL, 32351, USA
| | - Sara Branco
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, 80204, USA
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - William Andreopoulos
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hope Hundley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hyunsoo Na
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA
| | - Peter G Kennedy
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| |
Collapse
|
12
|
Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat Commun 2020; 11:5125. [PMID: 33046698 PMCID: PMC7550596 DOI: 10.1038/s41467-020-18795-w] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022] Open
Abstract
Mycorrhizal fungi are mutualists that play crucial roles in nutrient acquisition in terrestrial ecosystems. Mycorrhizal symbioses arose repeatedly across multiple lineages of Mucoromycotina, Ascomycota, and Basidiomycota. Considerable variation exists in the capacity of mycorrhizal fungi to acquire carbon from soil organic matter. Here, we present a combined analysis of 135 fungal genomes from 73 saprotrophic, endophytic and pathogenic species, and 62 mycorrhizal species, including 29 new mycorrhizal genomes. This study samples ecologically dominant fungal guilds for which there were previously no symbiotic genomes available, including ectomycorrhizal Russulales, Thelephorales and Cantharellales. Our analyses show that transitions from saprotrophy to symbiosis involve (1) widespread losses of degrading enzymes acting on lignin and cellulose, (2) co-option of genes present in saprotrophic ancestors to fulfill new symbiotic functions, (3) diversification of novel, lineage-specific symbiosis-induced genes, (4) proliferation of transposable elements and (5) divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild. Mycorrhizal symbioses have evolved repeatedly in diverse fungal lineages. A large phylogenomic analysis sheds light on genomic changes associated with transitions from saprotrophy to symbiosis, including divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild.
Collapse
|
13
|
Obermaier S, Müller M. Ibotenic Acid Biosynthesis in the Fly Agaric Is Initiated by Glutamate Hydroxylation. Angew Chem Int Ed Engl 2020; 59:12432-12435. [PMID: 32233056 PMCID: PMC7383597 DOI: 10.1002/anie.202001870] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/09/2022]
Abstract
The fly agaric, Amanita muscaria, is widely known for its content of the psychoactive metabolites ibotenic acid and muscimol. However, their biosynthetic pathway and the respective enzymes are entirely unknown. 50 years ago, the biosynthesis was hypothesized to start with 3-hydroxyglutamate. Here, we build on this hypothesis by the identification and recombinant production of a glutamate hydroxylase from A. muscaria. The hydroxylase gene is surrounded by six further biosynthetic genes, which we link to the production of ibotenic acid and muscimol using recent genomic and transcriptomic data. Our results pinpoint the genetic basis for ibotenic acid formation and thus provide new insights into a decades-old question concerning a centuries-old drug.
Collapse
Affiliation(s)
- Sebastian Obermaier
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Michael Müller
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| |
Collapse
|
14
|
Li Q, He X, Ren Y, Xiong C, Jin X, Peng L, Huang W. Comparative Mitogenome Analysis Reveals Mitochondrial Genome Differentiation in Ectomycorrhizal and Asymbiotic Amanita Species. Front Microbiol 2020; 11:1382. [PMID: 32636830 PMCID: PMC7318869 DOI: 10.3389/fmicb.2020.01382] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/28/2020] [Indexed: 11/19/2022] Open
Abstract
In this present study, we assembled and analyzed the mitogenomes of two asymbiotic and six ectomycorrhizal Amanita species based on next-generation sequencing data. The size of the eight Amanita mitogenomes ranged from 37,341 to 137,428 bp, and we considered introns to be one of the main factors contributing to the size variation of Amanita. The introns of the cox1 gene experienced frequent gain/loss events in Amanita; and the intron position class cox1P386 was lost in the six ectomycorrhizal Amanita species. In addition, ectomycorrhizal Amanita species had more repetitive sequences and fewer intergenic sequences than asymbiotic Amanita species in their mitogenomes. Large-scale gene rearrangements were detected in the Amanita species we tested, including gene displacements and inversions. On the basis of the combined mitochondrial gene set, we reconstructed the phylogenetic relationships of 66 Basidiomycetes. The six ectomycorrhizal Amanita species were of single origin, and the two saprophytic Amanita species formed two distinct clades. This study is the first to elucidate the functions of the mitogenome in the evolution and ecological adaptation of Amanita species.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaohui He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
15
|
Feldman D, Yarden O, Hadar Y. Seeking the Roles for Fungal Small-Secreted Proteins in Affecting Saprophytic Lifestyles. Front Microbiol 2020; 11:455. [PMID: 32265881 PMCID: PMC7105643 DOI: 10.3389/fmicb.2020.00455] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/03/2020] [Indexed: 11/24/2022] Open
Abstract
Small secreted proteins (SSPs) comprise 40–60% of the total fungal secretome and are present in fungi of all phylogenetic groups, representing the entire spectrum of lifestyles. They are characteristically shorter than 300 amino acids in length and have a signal peptide. The majority of SSPs are coded by orphan genes, which lack known domains or similarities to known protein sequences. Effectors are a group of SSPs that have been investigated extensively in fungi that interact with living hosts, either pathogens or mutualistic systems. They are involved in suppressing the host defense response and altering its physiology. Here, we aim to delineate some of the potential roles of SSPs in saprotrophic fungi, that have been bioinformatically predicted as effectors, and termed in this mini-review as “effector-like” proteins. The effector-like Ssp1 from the white-rot fungus Pleurotus ostreatus is presented as a case study, and its potential role in regulating the ligninolytic system, secondary metabolism, development, and fruiting body initiation are discussed. We propose that deciphering the nature of effector-like SSPs will contribute to our understanding of development and communication in saprophytic fungi, as well as help, to elucidate the origin, regulation, and mechanisms of fungal-host, fungal-fungal, and fungal-bacterial interactions.
Collapse
Affiliation(s)
- Daria Feldman
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
16
|
Pellegrin C, Daguerre Y, Ruytinx J, Guinet F, Kemppainen M, Frey NFD, Puech‐Pagès V, Hecker A, Pardo AG, Martin FM, Veneault‐Fourrey C. Laccaria bicolor
MiSSP8 is a small‐secreted protein decisive for the establishment of the ectomycorrhizal symbiosis. Environ Microbiol 2019; 21:3765-3779. [DOI: 10.1111/1462-2920.14727] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Clément Pellegrin
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Yohann Daguerre
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Joske Ruytinx
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Frédéric Guinet
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Minna Kemppainen
- Laboratorio de Micología Molecular, Departamento de Ciencia y TecnologıaUniversidad Nacional de Quilmes and CONICET Roque Sáenz Peña 352 B1876 Bernal Provincia de Buenos Aires Argentina
| | - Nicolas Frei dit Frey
- Laboratoire de Recherche en Sciences VégétalesUniversité de Toulouse, CNRS, UPS 24 chemin de Borde Rouge, Auzeville, BP42617 31326 Castanet Tolosan France
| | - Virginie Puech‐Pagès
- Laboratoire de Recherche en Sciences VégétalesUniversité de Toulouse, CNRS, UPS 24 chemin de Borde Rouge, Auzeville, BP42617 31326 Castanet Tolosan France
| | - Arnaud Hecker
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Alejandro G. Pardo
- Laboratorio de Micología Molecular, Departamento de Ciencia y TecnologıaUniversidad Nacional de Quilmes and CONICET Roque Sáenz Peña 352 B1876 Bernal Provincia de Buenos Aires Argentina
| | - Francis M. Martin
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Claire Veneault‐Fourrey
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| |
Collapse
|
17
|
Reina R, Kellner H, Hess J, Jehmlich N, García-Romera I, Aranda E, Hofrichter M, Liers C. Genome and secretome of Chondrostereum purpureum correspond to saprotrophic and phytopathogenic life styles. PLoS One 2019; 14:e0212769. [PMID: 30822315 PMCID: PMC6396904 DOI: 10.1371/journal.pone.0212769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/09/2019] [Indexed: 11/28/2022] Open
Abstract
The basidiomycete Chondrostereum purpureum (Silverleaf fungus) is a saprotroph and plant pathogen commercially used for combatting forest "weed" trees in vegetation management. However, little is known about its lignocellulose-degrading capabilities and the enzymatic machinery that is responsible for the degradative potential, and it is not yet clear to which group of wood-rot fungi it actually belongs. Here, we sequenced and analyzed the draft genome of C. purpureum (41.2 Mbp) and performed a quantitative proteomic approach during growth in submerged and solid-state cultures based on soybean meal suspension or containing beech wood supplemented with phenol-rich olive mill residues, respectively. The fungus harbors characteristic lignocellulolytic hydrolases (GH6 and GH7) and oxidoreductases (e.g. laccase, heme peroxidases). High abundance of some of these genes (e.g. 45 laccases, nine GH7) can be explained by gene expansion, e.g. identified for the laccase orthogroup ORTHOMCL11 that exhibits a total of 18 lineage-specific duplications. Other expanded genes families encode for proteins more related to a pathogenic lifestyle (e.g. protease and cytochrome P450s). The fungus responds to the presence of complex growth substrates (lignocellulose, phenolic residues) by the secretion of most of these lignocellulolytic and lignin-modifying enzymes (e.g. alcohol and aryl alcohol oxidases, laccases, GH6, GH7). Based on the genetic and enzymatic constitution, we consider the 'marasmioid' fungus C. purpureum as a 'phytopathogenic' white-rot fungus (WRF) that possesses a complex extracellular enzyme machinery to accomplish efficient lignocellulose degradation during both saprotrophic and phytopathogenic life phases.
Collapse
Affiliation(s)
- Rocio Reina
- Department of Soil Microbiology and Symbiotic Systems, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada, Spain
| | - Harald Kellner
- Unit of Environmental Biotechnology, Dresden University of Technology, International Institute Zittau, Zittau, Germany
| | - Jaqueline Hess
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | - Immaculada García-Romera
- Department of Soil Microbiology and Symbiotic Systems, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada, Spain
| | - Elisabet Aranda
- Department of Soil Microbiology and Symbiotic Systems, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada, Spain
| | - Martin Hofrichter
- Unit of Environmental Biotechnology, Dresden University of Technology, International Institute Zittau, Zittau, Germany
| | - Christiane Liers
- Unit of Environmental Biotechnology, Dresden University of Technology, International Institute Zittau, Zittau, Germany
| |
Collapse
|