1
|
Kirtikumar Bub N, Anand S, Garg S, Saxena V, Khanna DSR, Agarwal D, Kochar SK, Singh S, Garg S. Plasmodium Iron-Sulfur [Fe-S] cluster assembly protein Dre2 as a plausible target of Artemisinin: Mechanistic insights derived in a prokaryotic heterologous system. Gene 2023; 869:147396. [PMID: 36990255 DOI: 10.1016/j.gene.2023.147396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Iron-sulfur (Fe-S) cluster containing proteins have been assigned roles in various essential cellular processes, such as regulation of gene expression, electron transfer, sensing of oxygen and balancing free radical chemistry. However, their role as the drug target remains sparse. Recently the screening of protein alkylation targets for artemisinin in Plasmodium falciparum led to identification of Dre2, a protein involved in redox mechanism for the cytoplasmic Fe-S cluster assembly in different organisms. In the present study, to further explore the interaction between artemisinin and Dre2, we have expressed the Dre2 protein of both P. falciparum and P. vivax in E. coli. The opaque brown colour of the IPTG induced recombinant Plasmodium Dre2 bacterial pellet, suggested iron accumulation as confirmed by the ICP-OES analysis. In addition, overexpression of rPvDre2 in E. coli reduced its viability, growth and increased the ROS levels of bacterial cells, which in turn led to an increase in expression of stress response genes of E. coli such as recA, soxS, mazF. Moreover, the overexpression of rDre2 induced cell death could be rescued by treatment with Artemisinin derivatives suggesting their interaction. The interaction between DHA and PfDre2 was later demonstrated by CETSA and microscale thermophoresis. Overall, this study suggests that Dre2 is the probable target of Artemisinin and the antimalarial activity of DHA/Artemether could also be due to yet unidentified molecular mechanism altering the Dre2 activity in addition to inducing DNA and protein damage.
Collapse
Affiliation(s)
- Nidhi Kirtikumar Bub
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Vidya Vihar, Pilani, Rajasthan 333031, India
| | - Sakshi Anand
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Swati Garg
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vishal Saxena
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Vidya Vihar, Pilani, Rajasthan 333031, India
| | | | - Deeptanshu Agarwal
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Vidya Vihar, Pilani, Rajasthan 333031, India
| | | | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Shilpi Garg
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Vidya Vihar, Pilani, Rajasthan 333031, India.
| |
Collapse
|
2
|
Raval PK, Garg SG, Gould SB. Endosymbiotic selective pressure at the origin of eukaryotic cell biology. eLife 2022; 11:e81033. [PMID: 36355038 PMCID: PMC9648965 DOI: 10.7554/elife.81033] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
The dichotomy that separates prokaryotic from eukaryotic cells runs deep. The transition from pro- to eukaryote evolution is poorly understood due to a lack of reliable intermediate forms and definitions regarding the nature of the first host that could no longer be considered a prokaryote, the first eukaryotic common ancestor, FECA. The last eukaryotic common ancestor, LECA, was a complex cell that united all traits characterising eukaryotic biology including a mitochondrion. The role of the endosymbiotic organelle in this radical transition towards complex life forms is, however, sometimes questioned. In particular the discovery of the asgard archaea has stimulated discussions regarding the pre-endosymbiotic complexity of FECA. Here we review differences and similarities among models that view eukaryotic traits as isolated coincidental events in asgard archaeal evolution or, on the contrary, as a result of and in response to endosymbiosis. Inspecting eukaryotic traits from the perspective of the endosymbiont uncovers that eukaryotic cell biology can be explained as having evolved as a solution to housing a semi-autonomous organelle and why the addition of another endosymbiont, the plastid, added no extra compartments. Mitochondria provided the selective pressures for the origin (and continued maintenance) of eukaryotic cell complexity. Moreover, they also provided the energetic benefit throughout eukaryogenesis for evolving thousands of gene families unique to eukaryotes. Hence, a synthesis of the current data lets us conclude that traits such as the Golgi apparatus, the nucleus, autophagosomes, and meiosis and sex evolved as a response to the selective pressures an endosymbiont imposes.
Collapse
Affiliation(s)
- Parth K Raval
- Institute for Molecular Evolution, Heinrich-Heine-University DüsseldorfDusseldorfGermany
| | - Sriram G Garg
- Evolutionary Biochemistry Group, Max-Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University DüsseldorfDusseldorfGermany
| |
Collapse
|
3
|
Sayyed UMH, Mahalakshmi R. Mitochondrial protein translocation machinery: From TOM structural biogenesis to functional regulation. J Biol Chem 2022; 298:101870. [PMID: 35346689 PMCID: PMC9052162 DOI: 10.1016/j.jbc.2022.101870] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 01/15/2023] Open
Abstract
The human mitochondrial outer membrane is biophysically unique as it is the only membrane possessing transmembrane β-barrel proteins (mitochondrial outer membrane proteins, mOMPs) in the cell. The most vital of the three mOMPs is the core protein of the translocase of the outer mitochondrial membrane (TOM) complex. Identified first as MOM38 in Neurospora in 1990, the structure of Tom40, the core 19-stranded β-barrel translocation channel, was solved in 2017, after nearly three decades. Remarkably, the past four years have witnessed an exponential increase in structural and functional studies of yeast and human TOM complexes. In addition to being conserved across all eukaryotes, the TOM complex is the sole ATP-independent import machinery for nearly all of the ∼1000 to 1500 known mitochondrial proteins. Recent cryo-EM structures have provided detailed insight into both possible assembly mechanisms of the TOM core complex and organizational dynamics of the import machinery and now reveal novel regulatory interplay with other mOMPs. Functional characterization of the TOM complex using biochemical and structural approaches has also revealed mechanisms for substrate recognition and at least five defined import pathways for precursor proteins. In this review, we discuss the discovery, recently solved structures, molecular function, and regulation of the TOM complex and its constituents, along with the implications these advances have for alleviating human diseases.
Collapse
Affiliation(s)
- Ulfat Mohd Hanif Sayyed
- Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India
| | | |
Collapse
|
4
|
CHCHD4 (MIA40) and the mitochondrial disulfide relay system. Biochem Soc Trans 2021; 49:17-27. [PMID: 33599699 PMCID: PMC7925007 DOI: 10.1042/bst20190232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Mitochondria are pivotal for normal cellular physiology, as they perform a crucial role in diverse cellular functions and processes, including respiration and the regulation of bioenergetic and biosynthetic pathways, as well as regulating cellular signalling and transcriptional networks. In this way, mitochondria are central to the cell's homeostatic machinery, and as such mitochondrial dysfunction underlies the pathology of a diverse range of diseases including mitochondrial disease and cancer. Mitochondrial import pathways and targeting mechanisms provide the means to transport into mitochondria the hundreds of nuclear-encoded mitochondrial proteins that are critical for the organelle's many functions. One such import pathway is the highly evolutionarily conserved disulfide relay system (DRS) within the mitochondrial intermembrane space (IMS), whereby proteins undergo a form of oxidation-dependent protein import. A central component of the DRS is the oxidoreductase coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing protein 4 (CHCHD4, also known as MIA40), the human homologue of yeast Mia40. Here, we summarise the recent advances made to our understanding of the role of CHCHD4 and the DRS in physiology and disease, with a specific focus on the emerging importance of CHCHD4 in regulating the cellular response to low oxygen (hypoxia) and metabolism in cancer.
Collapse
|
5
|
Schneider A. Evolution of mitochondrial protein import – lessons from trypanosomes. Biol Chem 2020; 401:663-676. [DOI: 10.1515/hsz-2019-0444] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/02/2020] [Indexed: 01/02/2023]
Abstract
AbstractThe evolution of mitochondrial protein import and the systems that mediate it marks the boundary between the endosymbiotic ancestor of mitochondria and a true organelle that is under the control of the nucleus. Protein import has been studied in great detail inSaccharomyces cerevisiae. More recently, it has also been extensively investigated in the parasitic protozoanTrypanosoma brucei, making it arguably the second best studied system. A comparative analysis of the protein import complexes of yeast and trypanosomes is provided. Together with data from other systems, this allows to reconstruct the ancestral features of import complexes that were present in the last eukaryotic common ancestor (LECA) and to identify which subunits were added later in evolution. How these data can be translated into plausible scenarios is discussed, providing insights into the evolution of (i) outer membrane protein import receptors, (ii) proteins involved in biogenesis of α-helically anchored outer membrane proteins, and (iii) of the intermembrane space import and assembly system. Finally, it is shown that the unusual presequence-associated import motor of trypanosomes suggests a scenario of how the two ancestral inner membrane protein translocases present in LECA evolved into the single bifunctional one found in extant trypanosomes.
Collapse
Affiliation(s)
- André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|