1
|
Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol 2024; 25:865-885. [PMID: 39223427 DOI: 10.1038/s41580-024-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
2
|
Adams JC. Thrombospondins: Conserved mediators and modulators of metazoan extracellular matrix. Int J Exp Pathol 2024. [PMID: 39267379 DOI: 10.1111/iep.12517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/17/2024] Open
Abstract
This review provides a personal overview of significant scientific developments in the thrombospondin field during the course of my career. Thrombospondins are multidomain, multimeric, calcium-binding extracellular glycoproteins with context-specific roles in tissue organisation. They act at cell surfaces and within ECM to regulate cell phenotype and signalling, differentiation and assembly of collagenous ECM, along with tissue-specific roles in cartilage, angiogenesis and synaptic function. More recently, intracellular, homeostatic roles have also been identified. Resolution of structures for the major domains of mammalian thrombospondins has facilitated major advances in understanding thrombospondin biology from molecule to tissue; for example, in illuminating molecular consequences of disease-causing coding mutations in human pseudoachrondroplasia. Although principally studied in vertebrates, thrombospondins are amongst the most ancient of animal ECM proteins, with many invertebrates encoding a single thrombospondin and the thrombospondin gene family of vertebrates originating through gene duplications. Moreover, thrombospondins form one branch of a thrombospondin superfamily that debuted at the origin of metazoans. The super-family includes additional sub-groups, present only in invertebrates, that differ in N-terminal domain organisation, share the distinctive TSP C-terminal region domain architecture and, to the limited extent studied to date, apparently contribute to tissue development and organisation. Finally, major lines of translational research are discussed, related to fibrosis; TSP1, TSP2 and inhibition of angiogenesis; and the alleviation of chronic cartilage tissue pathologies in pseudoachrondroplasia.
Collapse
|
3
|
Tucker RP, Adams JC. Molecular evolution of the Thrombospondin superfamily. Semin Cell Dev Biol 2024; 155:12-21. [PMID: 37202276 DOI: 10.1016/j.semcdb.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Thrombospondins (TSPs) are multidomain, calcium-binding glycoproteins that have wide-ranging roles in vertebrates in cell interactions, extracellular matrix (ECM) organisation, angiogenesis, tissue remodelling, synaptogenesis, and also in musculoskeletal and cardiovascular functions. Land animals encode five TSPs, which assembly co-translationally either as trimers (subgroup A) or pentamers (subgroup B). The vast majority of research has focused on this canonical TSP family, which evolved through the whole-genome duplications that took place early in the vertebrate lineage. With benefit of the growth in genome- and transcriptome-predicted proteomes of a much wider range of animal species, examination of TSPs throughout metazoan phyla has revealed extensive conservation of subgroup B-type TSPs in invertebrates. In addition, these searches established that canonical TSPs are, in fact, one branch within a TSP superfamily that includes other clades designated mega-TSPs, sushi-TSPs and poriferan-TSPs. Despite the apparent simplicity of poriferans and cnidarians as organisms, these phyla encode a greater diversity of TSP superfamily members than vertebrates. We discuss here the molecular characteristics of the TSP superfamily members, current knowledge of their expression profiles and functions in invertebrates, and models for the evolution of this complex ECM superfamily.
Collapse
Affiliation(s)
- Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, CA, 95616 USA
| | | |
Collapse
|
4
|
Ziegler B, Yiallouros I, Trageser B, Kumar S, Mercker M, Kling S, Fath M, Warnken U, Schnölzer M, Holstein TW, Hartl M, Marciniak-Czochra A, Stetefeld J, Stöcker W, Özbek S. The Wnt-specific astacin proteinase HAS-7 restricts head organizer formation in Hydra. BMC Biol 2021; 19:120. [PMID: 34107975 PMCID: PMC8191133 DOI: 10.1186/s12915-021-01046-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background The Hydra head organizer acts as a signaling center that initiates and maintains the primary body axis in steady state polyps and during budding or regeneration. Wnt/beta-Catenin signaling functions as a primary cue controlling this process, but how Wnt ligand activity is locally restricted at the protein level is poorly understood. Here we report a proteomic analysis of Hydra head tissue leading to the identification of an astacin family proteinase as a Wnt processing factor. Results Hydra astacin-7 (HAS-7) is expressed from gland cells as an apical-distal gradient in the body column, peaking close beneath the tentacle zone. HAS-7 siRNA knockdown abrogates HyWnt3 proteolysis in the head tissue and induces a robust double axis phenotype, which is rescued by simultaneous HyWnt3 knockdown. Accordingly, double axes are also observed in conditions of increased Wnt activity as in transgenic actin::HyWnt3 and HyDkk1/2/4 siRNA treated animals. HyWnt3-induced double axes in Xenopus embryos could be rescued by coinjection of HAS-7 mRNA. Mathematical modelling combined with experimental promotor analysis indicate an indirect regulation of HAS-7 by beta-Catenin, expanding the classical Turing-type activator-inhibitor model. Conclusions We show the astacin family protease HAS-7 maintains a single head organizer through proteolysis of HyWnt3. Our data suggest a negative regulatory function of Wnt processing astacin proteinases in the global patterning of the oral-aboral axis in Hydra. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01046-9.
Collapse
Affiliation(s)
- Berenice Ziegler
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Irene Yiallouros
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Benjamin Trageser
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Sumit Kumar
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Moritz Mercker
- Institute for Applied Mathematics, Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Svenja Kling
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Maike Fath
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Schnölzer
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas W Holstein
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Markus Hartl
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Anna Marciniak-Czochra
- Institute for Applied Mathematics, Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T 2 N2, Canada
| | - Walter Stöcker
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Suat Özbek
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Modelling the early evolution of extracellular matrix from modern Ctenophores and Sponges. Essays Biochem 2019; 63:389-405. [DOI: 10.1042/ebc20180048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
AbstractAnimals (metazoans) include some of the most complex living organisms on Earth, with regard to their multicellularity, numbers of differentiated cell types, and lifecycles. The metazoan extracellular matrix (ECM) is well-known to have major roles in the development of tissues during embryogenesis and in maintaining homoeostasis throughout life, yet insight into the ECM proteins which may have contributed to the transition from unicellular eukaryotes to multicellular animals remains sparse. Recent phylogenetic studies place either ctenophores or poriferans as the closest modern relatives of the earliest emerging metazoans. Here, we review the literature and representative genomic and transcriptomic databases for evidence of ECM and ECM-affiliated components known to be conserved in bilaterians, that are also present in ctenophores and/or poriferans. Whereas an extensive set of related proteins are identifiable in poriferans, there is a strikingly lack of conservation in ctenophores. From this perspective, much remains to be learnt about the composition of ctenophore mesoglea. The principal ECM-related proteins conserved between ctenophores, poriferans, and bilaterians include collagen IV, laminin-like proteins, thrombospondin superfamily members, integrins, membrane-associated proteoglycans, and tissue transglutaminase. These are candidates for a putative ancestral ECM that may have contributed to the emergence of the metazoans.
Collapse
|