1
|
Luo H. How Big Is Big? The Effective Population Size of Marine Bacteria. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:537-560. [PMID: 39288792 DOI: 10.1146/annurev-marine-050823-104415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Genome-reduced bacteria constitute most of the cells in surface-ocean bacterioplankton communities. Their extremely large census population sizes (N c) have been unfoundedly translated to huge effective population sizes (N e)-the size of an ideal population carrying as much neutral genetic diversity as the actual population. As N e scales inversely with the strength of genetic drift, constraining the magnitude of N e is key to evaluating whether natural selection can overcome the power of genetic drift to drive evolutionary events. Determining the N e of extant species requires measuring the genomic mutation rate, a challenging step for most genome-reduced bacterioplankton lineages. Results for genome-reduced Prochlorococcus and CHUG are surprising-their N e values are an order of magnitude lower than those of less abundant lineages carrying large genomes, such as Ruegeria and Vibrio. As bacterioplankton genome reduction commonly occurred in the distant past, appreciating their population genetic mechanisms requires constraining their ancient N e values by other methods.
Collapse
Affiliation(s)
- Haiwei Luo
- Institute of Environment, Energy, and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
- Department of Earth and Environmental Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR;
| |
Collapse
|
2
|
Zhang L, Deng T, Liufu Z, Chen X, Wu S, Liu X, Shi C, Chen B, Hu Z, Cai Q, Liu C, Li M, Tracy ME, Lu X, Wu CI, Wen HJ. Characterization of cancer-driving nucleotides (CDNs) across genes, cancer types, and patients. eLife 2024; 13:RP99341. [PMID: 39688957 DOI: 10.7554/elife.99341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
A central goal of cancer genomics is to identify, in each patient, all the cancer-driving mutations. Among them, point mutations are referred to as cancer-driving nucleotides (CDNs), which recur in cancers. The companion study shows that the probability of i recurrent hits in n patients would decrease exponentially with i; hence, any mutation with i ≥ 3 hits in The Cancer Genome Atlas (TCGA) database is a high-probability CDN. This study characterizes the 50-150 CDNs identifiable for each cancer type of TCGA (while anticipating 10 times more undiscovered ones) as follows: (i) CDNs tend to code for amino acids of divergent chemical properties. (ii) At the genic level, far more CDNs (more than fivefold) fall on noncanonical than canonical cancer-driving genes (CDGs). Most undiscovered CDNs are expected to be on unknown CDGs. (iii) CDNs tend to be more widely shared among cancer types than canonical CDGs, mainly because of the higher resolution at the nucleotide than the whole-gene level. (iv) Most important, among the 50-100 coding region mutations carried by a cancer patient, 5-8 CDNs are expected but only 0-2 CDNs have been identified at present. This low level of identification has hampered functional test and gene-targeted therapy. We show that, by expanding the sample size to 105, most CDNs can be identified. Full CDN identification will then facilitate the design of patient-specific targeting against multiple CDN-harboring genes.
Collapse
Affiliation(s)
- Lingjie Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tong Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongqi Liufu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Center for Excellence in Animal Evolution and Genetics, The Chinese Academy of Sciences, Kunming, China
| | - Xiangnyu Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shijie Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xueyu Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Changhao Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bingjie Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zheng Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qichun Cai
- Cancer Center, Clifford Hospital, Jinan University, Guangzhou, China
| | - Chenli Liu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mengfeng Li
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Miles E Tracy
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuemei Lu
- Center for Excellence in Animal Evolution and Genetics, The Chinese Academy of Sciences, Kunming, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Department of Ecology and Evolution, University of Chicago, Chicago, United States
| | - Hai-Jun Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Chen Q, Xu Y, Kang S, Lin W, Luo L, Yang L, Zhang Q, Yang P, Huang J, Zhang X, Zhang J, Zhao Q, Xu R, Luo H. The tissue and circulating cell-free DNA-derived genetic landscape of premalignant colorectal lesions and its application for early diagnosis of colorectal cancer. MedComm (Beijing) 2024; 5:e70011. [PMID: 39554798 PMCID: PMC11564342 DOI: 10.1002/mco2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/22/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024] Open
Abstract
Colorectal adenomas (CRAs) represent precancerous lesions that precede the development of colorectal cancer (CRC). Regular monitoring of CRAs can hinder the progression into carcinoma. To explore the utility of tissue DNA and circulating cell-free DNA (cfDNA) in early diagnosis of CRC, we retrospectively sequenced paired tissue and plasma samples from 85 patients with conventional CRAs. The genetic alterations identified were compared with those from 78 stage-I CRC patients (CRC-I) in the ChangKang project. Within the CRA cohort, we pinpointed 12 genes, notably APC, KRAS, and SOX9, that exhibited significant mutated rates in tissue. Patients harboring KMT2C and KMT2D mutations displayed persistent polyps. By comparing with the mutational profiles of metastatic CRC plasma samples, we found that ZNF717 was exclusively mutated in CRAs, while KMT2C and KMT2D mutations were detected in both CRA and CRC. The presence of cfDNA mutations in plasma was validated through polymerase chain reaction, enhancing the feasibility of using cfDNA mutations for early CRC screening. Compared with CRC-I, CRAs exhibited a reduced frequency of TP53 and PIK3CA somatic mutations and underwent non-neutral evolution more often. We established a random forest model based on 15 characteristic genes to distinguish CRA and CRC, achieving an area under the curve of 0.89. Through this endeavor, we identified two novel genes, CNTNAP5 and GATA6, implicated in CRC carcinogenesis. Overall, our findings reveal convincing biomarkers markers for detecting CRAs with a propensity for CRC development, highlighting the importance of early genetic screening in CRC prevention.
Collapse
Affiliation(s)
- Qingjian Chen
- Department of Medical OncologySun Yat Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouGuangdongChina
- Department of OncologyState Key Laboratory of Systems Medicine for CancerShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiShanghaiChina
| | - Yu‐Hong Xu
- Department of Medical OncologySun Yat Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouGuangdongChina
| | - Shiyang Kang
- Department of AnaesthesiologySun Yat Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - WuHao Lin
- Department of Medical OncologySun Yat Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouGuangdongChina
| | - Linna Luo
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouGuangdongChina
- Department of EndoscopySun Yat Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Luping Yang
- Department of Medical OncologySun Yat Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouGuangdongChina
| | - Qi‐Hua Zhang
- Department of Medical OncologySun Yat Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouGuangdongChina
| | - Pan Yang
- HaploX BiotechnologyShenzhenChina
| | - Jia‐Qian Huang
- Department of Medical OncologySun Yat Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouGuangdongChina
| | | | | | - Qi Zhao
- Department of Medical OncologySun Yat Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouGuangdongChina
| | - Rui‐Hua Xu
- Department of Medical OncologySun Yat Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouGuangdongChina
| | - Hui‐Yan Luo
- Department of Medical OncologySun Yat Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouGuangdongChina
| |
Collapse
|
4
|
Qiu MZ, Chen Q, Zheng DY, Zhao Q, Wu QN, Zhou ZW, Yang LQ, Luo QY, Sun YT, Lai MY, Yuan SS, Wang FH, Luo HY, Wang F, Li YH, Zhang HZ, Xu RH. Precise microdissection of gastric mixed adeno-neuroendocrine carcinoma dissects its genomic landscape and evolutionary clonal origins. Cell Rep 2023; 42:112576. [PMID: 37285266 DOI: 10.1016/j.celrep.2023.112576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/02/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023] Open
Abstract
Gastric mixed adenoneuroendocrine carcinoma (MANEC) is a clinically aggressive and heterogeneous tumor composed of adenocarcinoma (ACA) and neuroendocrine carcinoma (NEC). The genomic properties and evolutionary clonal origins of MANEC remain unclear. We conduct whole-exome and multiregional sequencing on 101 samples from 33 patients to elucidate their evolutionary paths. We identify four significantly mutated genes, TP53, RB1, APC, and CTNNB1. MANEC resembles chromosomal instability stomach adenocarcinoma in that whole-genome doubling in MANEC is predominant and occurs earlier than most copy-number losses. All tumors are of monoclonal origin, and NEC components show more aggressive genomic properties than their ACA counterparts. The phylogenetic trees show two tumor divergence patterns, including sequential and parallel divergence. Furthermore, ACA-to-NEC rather than NEC-to-ACA transition is confirmed by immunohistochemistry on 6 biomarkers in ACA- and NEC-dominant regions. These results provide insights into the clonal origin and tumor differentiation of MANEC.
Collapse
Affiliation(s)
- Miao-Zhen Qiu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Qingjian Chen
- Department of Basic Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China; State Key Laboratory of Systems Medicine for Cancer, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Dan-Yang Zheng
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China; Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Qi Zhao
- Department of Basic Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Qi-Nian Wu
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Zhi-Wei Zhou
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Li-Qiong Yang
- Department of Basic Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Qiu-Yun Luo
- Department of Basic Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Yu-Ting Sun
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Ming-Yu Lai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Sha-Sha Yuan
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Feng-Hua Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Hui-Yan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Feng Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Yu-Hong Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Hui-Zhong Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, P.R. China.
| |
Collapse
|
5
|
Fan W, Liu F, Jia Q, Du H, Chen W, Ruan J, Lei J, Li DZ, Mower JP, Zhu A. Fragaria mitogenomes evolve rapidly in structure but slowly in sequence and incur frequent multinucleotide mutations mediated by microinversions. THE NEW PHYTOLOGIST 2022; 236:745-759. [PMID: 35731093 DOI: 10.1111/nph.18334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Plant mitochondrial DNA has been described as evolving rapidly in structure but slowly in sequence. However, many of the noncoding portions of plant mitogenomes are not homologous among species, raising questions about the rate and spectrum of mutations in noncoding regions. Recent studies have suggested that the lack of homology in noncoding regions could be due to increased sequence divergence. We compared 30 kb of coding and 200 kb of noncoding DNA from 13 sequenced Fragaria mitogenomes, followed by analysis of the rate of sequence divergence, microinversion events and structural variations. Substitution rates in synonymous sites and nongenic sites are nearly identical, suggesting that the genome-wide point mutation rate is generally consistent. A surprisingly high number of large multinucleotide substitutions were detected in Fragaria mitogenomes, which may have resulted from microinversion events and could affect phylogenetic signal and local rate estimates. Fragaria mitogenomes preferentially accumulate deletions relative to insertions and substantial genomic arrangements, whereas mutation rates could positively associate with these sequence and structural changes among species. Together, these observations suggest that plant mitogenomes exhibit low point mutations genome-wide but exceptionally high structural variations, and our results favour a gain-and-loss model for the rapid loss of homology among plant mitogenomes.
Collapse
Affiliation(s)
- Weishu Fan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Fang Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiaoya Jia
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- School of Life Sciences, Yunnan University, Kunming, Yunnan, 650500, China
| | - Haiyuan Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wu Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiwei Ruan
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Jiajun Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Andan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| |
Collapse
|
6
|
Gu X. d N/d S-H, a New Test to Distinguish Different Selection Modes in Protein Evolution and Cancer Evolution. J Mol Evol 2022; 90:342-351. [PMID: 35920867 DOI: 10.1007/s00239-022-10064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
One of the most popular measures in the analysis of protein sequence evolution is the ratio of nonsynonymous distance (dN) to synonymous distance (dS). Under the assumption that synonymous substitutions in the coding region are selectively neutral, the dN/dS ratio can be used to statistically detect the adaptive evolution (or purifying selection) if dN/dS > 1 (or dN/dS < 1) significantly. However, due to strong structural constraints and/or variable functional constraints imposed on amino acid sites, most encoding genes in most species have demonstrated dN/dS < 1. Consequently, the statistical power for testing dN/dS = 1 may be insufficient to distinguish between different selection modes. In this paper, we propose a more powerful test, called dN/dS-H, in which a new parameter H, a relative measure of rate variation among sites, was introduced. Given the condition of strong purifying selections at some sites, the dN/dS-H model predicts dN/dS = 1-H for neutral evolution, dN/dS < 1-H for nearly neutral selection, and dN/dS > 1-H for adaptive evolution. The potential of this new method for resolving the neutral-adaptive debates is illustrated by the protein sequence evolution in vertebrates, Drosophila and yeasts, as well as somatic cancer evolution (specialized as the CN/CS-H test).
Collapse
Affiliation(s)
- Xun Gu
- The Laurence H. Baker Center in Bioinformatics on Biological Statistics, Iowa State University, Ames, IA, 50011, USA. .,Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA. .,Program of Ecological and Evolutionary Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
7
|
Chen Q, Wu QN, Rong YM, Wang S, Zuo Z, Bai L, Zhang B, Yuan S, Zhao Q. Deciphering clonal dynamics and metastatic routines in a rare patient of synchronous triple-primary tumors and multiple metastases with MPTevol. Brief Bioinform 2022; 23:6590438. [DOI: 10.1093/bib/bbac175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/30/2022] [Accepted: 04/18/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Multiple primary tumor (MPT) is a special and rare cancer type, defined as more than two primary tumors presenting at the diagnosis in a single patient. The molecular characteristics and tumorigenesis of MPT remain unclear due to insufficient approaches. Here, we present MPTevol, a practical computational framework for comprehensively exploring the MPT from multiregion sequencing (MRS) experiments. To verify the utility of MPTevol, we performed whole-exome MRS for 33 samples of a rare patient with triple-primary tumors and three metastatic sites and systematically investigated clonal dynamics and metastatic routines. MPTevol assists in comparing genomic profiles across samples, detecting clonal evolutionary history and metastatic routines and quantifying the metastatic history. All triple-primary tumors were independent origins and their genomic characteristics were consistent with corresponding sporadic tumors, strongly supporting their independent tumorigenesis. We further showed two independent early monoclonal seeding events for the metastases in the ovary and uterus. We revealed that two ovarian metastases were disseminated from the same subclone of the primary tumor through undergoing whole-genome doubling processes, suggesting metastases-to-metastases seeding occurred when tumors had similar microenvironments. Surprisingly, according to the metastasis timing model of MPTevol, we found that primary tumors of about 0.058–0.124 cm diameter have been disseminating to distant organs, which is much earlier than conventional clinical views. We developed MPT-specialized analysis framework MPTevol and demonstrated its utility in explicitly resolving clonal evolutionary history and metastatic seeding routines with a rare MPT case. MPTevol is implemented in R and is available at https://github.com/qingjian1991/MPTevol under the GPL v3 license.
Collapse
Affiliation(s)
- Qingjian Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China
| | - Qi-Nian Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Yu-Ming Rong
- Department of VIP Region, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Shixiang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China
| | - Long Bai
- Department of VIP Region, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Bei Zhang
- Department of VIP Region, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Shuqiang Yuan
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China
| |
Collapse
|
8
|
Chen Q, Yang H, Feng X, Chen Q, Shi S, Wu CI, He Z. Two decades of suspect evidence for adaptive molecular evolution – Negative selection confounding positive selection signals. Natl Sci Rev 2021; 9:nwab217. [PMID: 35663241 PMCID: PMC9154339 DOI: 10.1093/nsr/nwab217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/21/2021] [Indexed: 11/21/2022] Open
Abstract
There has been a large literature in the last two decades affirming adaptive DNA sequence evolution between species. The main lines of evidence are from (i) the McDonald-Kreitman (MK) test, which compares divergence and polymorphism data, and (ii) the phylogenetic analysis by maximum likelihood (PAML) test, which analyzes multispecies divergence data. Here, we apply these two tests concurrently to genomic data of Drosophila and Arabidopsis. To our surprise, the >100 genes identified by the two tests do not overlap beyond random expectation. Because the non-concordance could be due to low powers leading to high false negatives, we merge every 20–30 genes into a ‘supergene’. At the supergene level, the power of detection is large but the calls still do not overlap. We rule out methodological reasons for the non-concordance. In particular, extensive simulations fail to find scenarios whereby positive selection can only be detected by either MK or PAML, but not both. Since molecular evolution is governed by positive and negative selection concurrently, a fundamental assumption for estimating one of these (say, positive selection) is that the other is constant. However, in a broad survey of primates, birds, Drosophila and Arabidopsis, we found that negative selection rarely stays constant for long in evolution. As a consequence, the variation in negative selection is often misconstrued as a signal of positive selection. In conclusion, MK, PAML and any method that examines genomic sequence evolution has to explicitly address the variation in negative selection before estimating positive selection. In a companion study, we propose a possible path forward in two stages—first, by mapping out the changes in negative selection and then using this map to estimate positive selection. For now, the large literature on positive selection between species has to await reassessment.
Collapse
Affiliation(s)
- Qipian Chen
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Hao Yang
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Qingjian Chen
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Zou Z, Zhang J. Are Nonsynonymous Transversions Generally More Deleterious than Nonsynonymous Transitions? Mol Biol Evol 2021; 38:181-191. [PMID: 32805043 PMCID: PMC7783172 DOI: 10.1093/molbev/msaa200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It has been suggested that, due to the structure of the genetic code, nonsynonymous transitions are less likely than transversions to cause radical changes in amino acid physicochemical properties so are on average less deleterious. This view was supported by some but not all mutagenesis experiments. Because laboratory measures of fitness effects have limited sensitivities and relative frequencies of different mutations in mutagenesis studies may not match those in nature, we here revisit this issue using comparative genomics. We extend the standard codon model of sequence evolution by adding the parameter η that quantifies the ratio of the fixation probability of transitional nonsynonymous mutations to that of transversional nonsynonymous mutations. We then estimate η from the concatenated alignment of all protein-coding DNA sequences of two closely related genomes. Surprisingly, η ranges from 0.13 to 2.0 across 90 species pairs sampled from the tree of life, with 51 incidences of η < 1 and 30 incidences of η >1 that are statistically significant. Hence, whether nonsynonymous transversions are overall more deleterious than nonsynonymous transitions is species-dependent. Because the corresponding groups of amino acid replacements differ between nonsynonymous transitions and transversions, η is influenced by the relative exchangeabilities of amino acid pairs. Indeed, an extensive search reveals that the large variation in η is primarily explainable by the recently reported among-species disparity in amino acid exchangeabilities. These findings demonstrate that genome-wide nucleotide substitution patterns in coding sequences have species-specific features and are more variable among evolutionary lineages than are currently thought.
Collapse
Affiliation(s)
- Zhengting Zou
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
- Corresponding author: E-mail: .Associate editor: Jeffrey Townsend
| |
Collapse
|
10
|
Wu CI, Wen H. Heightened protein-translation activities in mammalian cells and the disease/treatment implications. Natl Sci Rev 2020; 7:1851-1855. [PMID: 34691526 PMCID: PMC8288750 DOI: 10.1093/nsr/nwaa066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, China
| | - Haijun Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, China
| |
Collapse
|
11
|
He Z, Xu S, Zhang Z, Guo W, Lyu H, Zhong C, Boufford DE, Duke NC, Shi S. Convergent adaptation of the genomes of woody plants at the land-sea interface. Natl Sci Rev 2020; 7:978-993. [PMID: 34692119 PMCID: PMC8289059 DOI: 10.1093/nsr/nwaa027] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 01/19/2023] Open
Abstract
Sequencing multiple species that share the same ecological niche may be a new frontier for genomic studies. While such studies should shed light on molecular convergence, genomic-level analyses have been unsuccessful, due mainly to the absence of empirical controls. Woody plant species that colonized the global tropical coasts, collectively referred to as mangroves, are ideal for convergence studies. Here, we sequenced the genomes/transcriptomes of 16 species belonging in three major mangrove clades. To detect convergence in a large phylogeny, a CCS+ model is implemented, extending the more limited CCS method (convergence at conservative sites). Using the empirical control for reference, the CCS+ model reduces the noises drastically, thus permitting the identification of 73 convergent genes with P true (probability of true convergence) > 0.9. Products of the convergent genes tend to be on the plasma membrane associated with salinity tolerance. Importantly, convergence is more often manifested at a higher level than at amino-acid (AA) sites. Relative to >50 plant species, mangroves strongly prefer 4 AAs and avoid 5 others across the genome. AA substitutions between mangrove species strongly reflect these tendencies. In conclusion, the selection of taxa, the number of species and, in particular, the empirical control are all crucial for detecting genome-wide convergence. We believe this large study of mangroves is the first successful attempt at detecting genome-wide site convergence.
Collapse
Affiliation(s)
- Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhang Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wuxia Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haomin Lyu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cairong Zhong
- Hainan Dongzhai Harbor National Nature Reserve Administration, Haikou 571129, China
| | | | - Norman C Duke
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD 4811, Australia
| | | | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Chen Q, Lan A, Shen X, Wu CI. Molecular Evolution in Small Steps under Prevailing Negative Selection: A Nearly Universal Rule of Codon Substitution. Genome Biol Evol 2020; 11:2702-2712. [PMID: 31504473 PMCID: PMC6777424 DOI: 10.1093/gbe/evz192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2019] [Indexed: 12/16/2022] Open
Abstract
The widely accepted view that evolution proceeds in small steps is based on two premises: 1) negative selection acts strongly against large differences and 2) positive selection favors small-step changes. The two premises are not biologically connected and should be evaluated separately. We now extend a previous approach to studying codon evolution in the entire genome. Codon substitution rate is a function of the physicochemical distance between amino acids (AAs), equated with the step size of evolution. Between nine pairs of closely related species of plants, invertebrates, and vertebrates, the evolutionary rate is strongly and negatively correlated with a set of AA distances (ΔU, scaled to [0, 1]). ΔU, a composite measure of evolutionary rates across diverse taxa, is influenced by almost all of the 48 physicochemical properties used here. The new analyses reveal a crucial trend hidden from previous studies: ΔU is strongly correlated with the evolutionary rate (R2 > 0.8) only when the genes are predominantly under negative selection. Because most genes in most taxa are strongly constrained by negative selection, ΔU has indeed appeared to be a nearly universal measure of codon evolution. In conclusion, molecular evolution at the codon level generally takes small steps due to the prevailing negative selection. Whether positive selection may, or may not, follow the small-step rule is addressed in a companion study.
Collapse
Affiliation(s)
- Qingjian Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ao Lan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xu Shen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Department of Ecology and Evolution, University of Chicago
| |
Collapse
|
13
|
Zou Z, Zhang J. Amino acid exchangeabilities vary across the tree of life. SCIENCE ADVANCES 2019; 5:eaax3124. [PMID: 31840062 PMCID: PMC6892623 DOI: 10.1126/sciadv.aax3124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/24/2019] [Indexed: 05/05/2023]
Abstract
Different amino acid pairs have drastically different relative exchangeabilities (REs), and accounting for this variation is an important and common practice in inferring phylogenies, testing selection, and predicting mutational effects, among other analyses. In all such endeavors, REs have been generally considered invariant among species; this assumption, however, has not been scrutinized. Using maximum likelihood to analyze 180 genome sequences, we estimated REs from 90 clades representing all three domains of life, and found numerous instances of substantial between-clade differences in REs. REs show more differences between orthologous proteins of different clades than unrelated proteins of the same clade, suggesting that REs are genome-wide, clade-specific features, probably a result of proteome-wide evolutionary changes in the physicochemical environments of amino acid residues. The discovery of among-clade RE variations cautions against assuming constant REs in various analyses and demonstrates a higher-than-expected complexity in mechanisms of proteome evolution.
Collapse
|