1
|
Bogaert KA, Zakka EE, Coelho SM, De Clerck O. Polarization of brown algal zygotes. Semin Cell Dev Biol 2023; 134:90-102. [PMID: 35317961 DOI: 10.1016/j.semcdb.2022.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
Brown algae are a group of multicellular, heterokont algae that have convergently evolved developmental complexity that rivals that of embryophytes, animals or fungi. Early in development, brown algal zygotes establish a basal and an apical pole, which will become respectively the basal system (holdfast) and the apical system (thallus) of the adult alga. Brown algae are interesting models for understanding the establishment of cell polarity in a broad evolutionary context, because they exhibit a large diversity of life cycles, reproductive strategies and, importantly, their zygotes are produced in large quantities free of parental tissue, with symmetry breaking and asymmetric division taking place in a highly synchronous manner. This review describes the current knowledge about the establishment of the apical-basal axis in the model brown seaweeds Ectocarpus, Dictyota, Fucus and Saccharina, highlighting the advantages and specific interests of each system. Ectocarpus is a genetic model system that allows access to the molecular basis of early development and life-cycle control over apical-basal polarity. The oogamous brown alga Fucus, together with emerging comparative models Dictyota and Saccharina, emphasize the diversity of strategies of symmetry breaking in determining a cell polarity vector in brown algae. A comparison with symmetry-breaking mechanisms in land plants, animals and fungi, reveals that the one-step zygote polarisation of Fucus compares well to Saccharomyces budding and Arabidopsis stomata development, while the two-phased symmetry breaking in the Dictyota zygote compares to Schizosaccharomyces fission, the Caenorhabditis anterior-posterior zygote polarisation and Arabidopsis prolate pollen polarisation. The apical-basal patterning in Saccharina zygotes on the other hand, may be seen as analogous to that of land plants. Overall, brown algae have the potential to bring exciting new information on how a single cell gives rise to an entire complex body plan.
Collapse
Affiliation(s)
- Kenny A Bogaert
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium.
| | - Eliane E Zakka
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Olivier De Clerck
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium
| |
Collapse
|
2
|
Inaba M, Fort A, Bringloe T, Mols-Mortensen A, Ni Ghriofa C, Sulpice R. Branding and tracing seaweed: Development of a high-resolution genetic kit to identify the geographic provenance of Alaria esculenta. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
3
|
Badis Y, Scornet D, Harada M, Caillard C, Godfroy O, Raphalen M, Gachon CMM, Coelho SM, Motomura T, Nagasato C, Cock JM. Targeted CRISPR-Cas9-based gene knockouts in the model brown alga Ectocarpus. THE NEW PHYTOLOGIST 2021; 231:2077-2091. [PMID: 34076889 DOI: 10.1111/nph.17525] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Brown algae are an important group of multicellular eukaryotes, phylogenetically distinct from both the animal and land plant lineages. Ectocarpus has emerged as a model organism to study diverse aspects of brown algal biology, but this system currently lacks an effective reverse genetics methodology to analyse the functions of selected target genes. Here, we report that mutations at specific target sites are generated following the introduction of CRISPR-Cas9 ribonucleoproteins into Ectocarpus cells, using either biolistics or microinjection as the delivery method. Individuals with mutations affecting the ADENINE PHOSPHORIBOSYL TRANSFERASE (APT) gene were isolated following treatment with 2-fluoroadenine, and this selection system was used to isolate individuals in which mutations had been introduced simultaneously at APT and at a second gene. This double mutation approach could potentially be used to isolate mutants affecting any Ectocarpus gene, providing an effective reverse genetics tool for this model organism. The availability of this tool will significantly enhance the utility of Ectocarpus as a model organism for this ecologically and economically important group of marine organisms. Moreover, the methodology described here should be readily transferable to other brown algal species.
Collapse
Affiliation(s)
- Yacine Badis
- Roscoff Biological Station, Place Georges Teissier, Roscoff, 29680, France
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll,, PA37 1QA, UK
| | - Delphine Scornet
- Roscoff Biological Station, Place Georges Teissier, Roscoff, 29680, France
| | - Minori Harada
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Céline Caillard
- Roscoff Biological Station, Place Georges Teissier, Roscoff, 29680, France
| | - Olivier Godfroy
- Roscoff Biological Station, Place Georges Teissier, Roscoff, 29680, France
| | - Morgane Raphalen
- Roscoff Biological Station, Place Georges Teissier, Roscoff, 29680, France
| | - Claire M M Gachon
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll,, PA37 1QA, UK
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, Paris, 75005, France
| | - Susana M Coelho
- Roscoff Biological Station, Place Georges Teissier, Roscoff, 29680, France
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, Tübingen, 72076, Germany
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| | - J Mark Cock
- Roscoff Biological Station, Place Georges Teissier, Roscoff, 29680, France
| |
Collapse
|
4
|
Coelho SM, Peters AF, Müller D, Cock JM. Ectocarpus: an evo-devo model for the brown algae. EvoDevo 2020; 11:19. [PMID: 32874530 PMCID: PMC7457493 DOI: 10.1186/s13227-020-00164-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Ectocarpus is a genus of filamentous, marine brown algae. Brown algae belong to the stramenopiles, a large supergroup of organisms that are only distantly related to animals, land plants and fungi. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity. For many years, little information was available concerning the molecular mechanisms underlying multicellular development in the brown algae, but this situation has changed with the emergence of Ectocarpus as a model brown alga. Here we summarise some of the main questions that are being addressed and areas of study using Ectocarpus as a model organism and discuss how the genomic information, genetic tools and molecular approaches available for this organism are being employed to explore developmental questions in an evolutionary context.
Collapse
Affiliation(s)
- Susana M. Coelho
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | | | - Dieter Müller
- Fachbereich Biologie der Universitat Konstanz, 78457 Konstanz, Germany
| | - J. Mark Cock
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| |
Collapse
|
5
|
Choi JW, Graf L, Peters AF, Cock JM, Nishitsuji K, Arimoto A, Shoguchi E, Nagasato C, Choi CG, Yoon HS. Organelle inheritance and genome architecture variation in isogamous brown algae. Sci Rep 2020; 10:2048. [PMID: 32029782 PMCID: PMC7005149 DOI: 10.1038/s41598-020-58817-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/26/2019] [Indexed: 11/08/2022] Open
Abstract
Among the brown algal lineages, Ectocarpales species have isogamous fertilization in which male and female gametes are morphologically similar. In contrast, female gametes are much larger than male gametes in the oogamous species found in many other brown algal lineages. It has been reported that the plastids of isogamous species are biparentally inherited whereas the plastids of oogamous species are maternally inherited. In contrast, in both isogamous and oogamous species, the mitochondria are usually inherited maternally. To investigate whether there is any relationship between the modes of inheritance and organellar genome architecture, we sequenced six plastid genomes (ptDNA) and two mitochondrial genomes (mtDNA) of isogamous species from the Ectocarpales and compared them with previously sequenced organellar genomes. We found that the biparentally inherited ptDNAs of isogamous species presented distinctive structural rearrangements whereas maternally inherited ptDNAs of oogamous species showed no rearrangements. Our analysis permits the hypothesis that structural rearrangements in ptDNAs may be a consequence of the mode of inheritance.
Collapse
Affiliation(s)
- Ji Won Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Louis Graf
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | | | - J Mark Cock
- Algal Genetics Group, UMR 8227, CNRS, Sorbonne Universités, UPMC, Station Biologique Roscoff, CS 90074, 29688, Roscoff, France
| | - Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Asuka Arimoto
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
- Marine Biological Laboratory, Graduate School of Integrated Sciences for Life, Hiroshima University, Onomichi, Hiroshima, 722-0073, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University Muroran, 051-0013, Muroran, Hokkaido, Japan
| | - Chang Geun Choi
- Department of Ecological Engineering, Pukyong National University, Busan, 48513, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|