1
|
Zhang Y, Liu G, Huang L, He X, Su Y, Nie X, Mao Z, Xing X. SUN5 interacts with nuclear membrane LaminB1 and cytoskeletal GTPase Septin12 mediating the sperm head-and-tail junction. Mol Hum Reprod 2024; 30:gaae022. [PMID: 38870534 DOI: 10.1093/molehr/gaae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
Acephalic spermatozoa syndrome (ASS) is a severe teratospermia with decaudated, decapitated, and malformed sperm, resulting in male infertility. Nuclear envelope protein SUN5 localizes to the junction between the sperm head and tail. Mutations in the SUN5 gene have been identified most frequently (33-47%) in ASS cases, and its molecular mechanism of action is yet to be explored. In the present study, we generated Sun5 knockout mice, which presented the phenotype of ASS. Nuclear membrane protein LaminB1 and cytoskeletal GTPases Septin12 and Septin2 were identified as potential partners for interacting with SUN5 by immunoprecipitation-mass spectrometry in mouse testis. Further studies demonstrated that SUN5 connected the nucleus by interacting with LaminB1 and connected the proximal centriole by interacting with Septin12. The binding between SUN5 and Septin12 promoted their aggregation together in the sperm neck. The disruption of the LaminB1/SUN5/Septin12 complex by Sun5 deficiency caused separation of the Septin12-proximal centriole from the nucleus, leading to the breakage of the head-to-tail junction. Collectively, these data provide new insights into the pathogenesis of ASS caused by SUN5 deficiency.
Collapse
Affiliation(s)
- Yunfei Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gang Liu
- Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| | - Lihua Huang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiyi He
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuyan Su
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zenghui Mao
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Xiaowei Xing
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Li W, Liu M, Zhou M, Zhou X, Zhang D, Duan J, Zhang A, Xu B. Downregulation of SEPTIN11 inhibits endometrial epithelial cell adhesive function in patients with elevated peripheral blood natural killer cell counts. Reprod Biomed Online 2023; 47:103203. [PMID: 37349244 DOI: 10.1016/j.rbmo.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
RESEARCH QUESTION What is the underlying mechanism of IVF and embryo transfer (IVF-ET) failure in patients with elevated peripheral blood natural killer cell (pNK) counts? DESIGN Patients undergoing IVF-ET cycles for tubal obstruction or pelvic adhesion (n = 486) were assigned to three groups: high (CD56+CD16+pNK >30% [n = 49]); medium (15< CD56+CD16+pNK ≤30% [n = 211]); and normal pNK groups (5≤ CD56+CD16+pNK ≤15% [n = 226]). Their general condition, previous pregnancy history and IVF outcomes were compared. Uterine fluid and endometrial tissue from patients in the high and normal pNK groups were collected during the mid-secretory phase and studied to elucidate the molecular mechanism underlying impaired endometrial receptivity. RESULTS The highest incidence of IVF-ET cycles (P < 0.0001) and biochemical pregnancy losses (P < 0.0001), and lowest implantation and clinical pregnancy rates (both P < 0.0001), were observed in patients with pNK over 30%. No significant difference was found in the number of previous miscarriages and rate of spontaneous miscarriage in IVF outcomes. Lower Septin11 (SEPT11) expression in the uterine fluid and endometrial epithelial cells (EEC), and higher endometrial IFN-γ, was observed in patients with high pNK. Ishikawa cell and human endometrial epithelial cell (HEEC) adhesion was inhibited after SEPT11 knock-down. Elevated IFN-γ decreased the SEPT11 protein levels in Ishikawa cells and HEECs. CONCLUSIONS CD56+CD16+pNK above 30% may be a threshold for adverse IVF-ET outcomes. Low SEPT11 expression in EEC inhibits cell adhesion, which may cause impaired endometrial receptivity in patients with elevated pNK. The level of SEPT11 in mid-secretory uterine fluid could serve as a non-invasive marker to assess endometrial receptivity in these patients.
Collapse
Affiliation(s)
- Wenzhu Li
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mengyu Liu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingjuan Zhou
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaowei Zhou
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dan Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingru Duan
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Aijun Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Bufang Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
3
|
Moretti E, Noto D, Corsaro R, Collodel G. Focus on centrin in normal and altered human spermatozoa. Syst Biol Reprod Med 2023; 69:175-187. [PMID: 36892570 DOI: 10.1080/19396368.2023.2181115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
This review provides details on the role of centrin in human spermatozoa and in various forms of male infertility. Centrin is a calcium (Ca2+)-binding phosphoprotein that is located in the centrioles - which are typical structures of the sperm connecting piece and play a key role in centrosome dynamics during sperm morphogenesis - as well as in zygotes and early embryos during spindle assembly. In humans, three different centrin genes encoding three isoforms have been discovered. Centrin 1, the only one expressed in spermatozoa, seems to be lost inside the oocyte after fertilization. The sperm connecting piece is characterized by the presence of numerous proteins including centrin, that deserves particular attention because, in humans, it is enriched during maturation of the centrioles. In normal sperm, centrin 1 is visible as two distinct spots in the head-tail junction; however, in some defective spermatozoa, centrin 1 distribution is altered. Centrin has been studied in humans and animal models. Its mutations may lead to several structural alterations, such as serious defects in the connective piece and, subsequently, fertilization failure or incomplete embryonic development. However, the effects of these abnormalities on male fertility have not been fully studied. Because the presence and the function of centrin in the sperm connecting piece appears important for reproductive success, additional studies are needed to bring medical benefits in resolving some cases of idiopathic infertility.
Collapse
Affiliation(s)
- Elena Moretti
- Department Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Daria Noto
- Department Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Roberta Corsaro
- Department Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giulia Collodel
- Department Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
4
|
Wang HY, Shen YR, Tsai YC, Wu SR, Wang CY, Kuo PL. Proper phosphorylation of septin 12 regulates septin 4 and soluble adenylyl cyclase expression to induce sperm capacitation. J Cell Physiol 2023; 238:597-609. [PMID: 36715674 DOI: 10.1002/jcp.30951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/31/2023]
Abstract
Septin-based ring complexes maintain the sperm annulus. Defective annular structures are observed in the sperm of Sept12- and Sept4-null mice. In addition, sperm capacitation, a process required for proper fertilization, is inhibited in Sept4-null mice, implying that the sperm annulus might play a role in controlling sperm capacitation. Hence, we analyzed sperm capacitation of sperm obtained from SEPT12 Ser196 phosphomimetic (S196E), phosphorylation-deficient (S196A), and SEPT4-depleted mutant mice. Capacitation was reduced in the sperm of both the Sept12 S196E- and Sept12 S196A-knock-in mice. The protein levels of septins, namely, SEPT4 and SEPT12, were upregulated, and these proteins were concentrated in the sperm annulus during capacitation. Importantly, the expression of soluble adenylyl cyclase (sAC), a key enzyme that initiates capacitation, was upregulated, and sAC was recruited to the sperm annulus following capacitation stimulation. We further found that SEPT12, SEPT4, and sAC formed a complex and colocalized to the sperm annulus. Additionally, sAC expression was reduced and disappeared in the annulus of the SEPT12 S196E- and S196A-mutant mouse sperm. In the sperm of the SEPT4-knockout mice, sAC did not localize to the annulus. Thus, our data demonstrate that SEPT12 phosphorylation status and SEPT4 activity jointly regulate sAC protein levels and annular localization to induce sperm capacitation.
Collapse
Affiliation(s)
- Han-Yu Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ru Shen
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Chieh Tsai
- Department of Obstetrics and Gynecology, Sport Management, and Biotechnology, Chi-Mei Medical Center, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pao-Lin Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
5
|
Peng C, Cheng Q, Liu Y, Zhang Z, Wang Z, Ma H, Liu D, Wang L, Wang C. Marginal Zinc Deficiency in Mice Increased the Number of Abnormal Sperm and Altered the Expression Level of Spermatogenesis-Related Genes. Biol Trace Elem Res 2022; 200:3738-3749. [PMID: 34676520 DOI: 10.1007/s12011-021-02979-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/17/2021] [Indexed: 12/27/2022]
Abstract
Marginal zinc deficiency is more common than severe zinc deficiency, and the effect of marginal zinc deficiency on male reproduction is unknown. This study investigated the effect of marginal zinc deficiency on spermatogenesis and its mechanism. Male ICR mice were fed normal zinc (30 mg/kg) and marginal zinc deficiency (10 mg/kg) diets for 35 days. Zinc-dependent proteins and enzymes were measured as biomarkers of zinc levels in the body. Metallothionein and Cu-Zn SOD levels in the control group were higher than those in the marginal zinc deficiency group. Hematoxylin and eosin staining showed that the marginal zinc deficiency diet caused histopathological changes in the testis and destruction of the sperm head under scanning electron microscopy. Sperm parameters and sex hormone levels were also affected by marginal zinc deficiency. In addition, marginal zinc deficiency led to alter expression level of several important spermatogenesis-related genes in the epididymis and testes. These results indicate that although zinc intake in marginal zinc deficiency is close to the recommended reference value, low zinc intake interferes with the expression of genes related to spermatogenesis and may lead to sperm abnormalities in mice.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Qian Cheng
- Angel Nutritech Company Limited, Yichang, 443000, Hubei Province, People's Republic of China
| | - Youjiao Liu
- Angel Nutritech Company Limited, Yichang, 443000, Hubei Province, People's Republic of China
| | - Zhaoyu Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Ziqiong Wang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Haitao Ma
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Duanya Liu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Lei Wang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Chunhong Wang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China.
| |
Collapse
|
6
|
Keppner A, Correia M, Santambrogio S, Koay TW, Maric D, Osterhof C, Winter DV, Clerc A, Stumpe M, Chalmel F, Dewilde S, Odermatt A, Kressler D, Hankeln T, Wenger RH, Hoogewijs D. Androglobin, a chimeric mammalian globin, is required for male fertility. eLife 2022; 11:72374. [PMID: 35700329 PMCID: PMC9249397 DOI: 10.7554/elife.72374] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Spermatogenesis is a highly specialized differentiation process driven by a dynamic gene expression program and ending with the production of mature spermatozoa. Whereas hundreds of genes are known to be essential for male germline proliferation and differentiation, the contribution of several genes remains uncharacterized. The predominant expression of the latest globin family member, androglobin (Adgb), in mammalian testis tissue prompted us to assess its physiological function in spermatogenesis. Adgb knockout mice display male infertility, reduced testis weight, impaired maturation of elongating spermatids, abnormal sperm shape, and ultrastructural defects in microtubule and mitochondrial organization. Epididymal sperm from Adgb knockout animals display multiple flagellar malformations including coiled, bifid or shortened flagella, and erratic acrosomal development. Following immunoprecipitation and mass spectrometry, we could identify septin 10 (Sept10) as interactor of Adgb. The Sept10-Adgb interaction was confirmed both in vivo using testis lysates and in vitro by reciprocal co-immunoprecipitation experiments. Furthermore, the absence of Adgb leads to mislocalization of Sept10 in sperm, indicating defective manchette and sperm annulus formation. Finally, in vitro data suggest that Adgb contributes to Sept10 proteolysis in a calmodulin-dependent manner. Collectively, our results provide evidence that Adgb is essential for murine spermatogenesis and further suggest that Adgb is required for sperm head shaping via the manchette and proper flagellum formation.
Collapse
Affiliation(s)
- Anna Keppner
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| | - Miguel Correia
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| | | | - Teng Wei Koay
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| | - Darko Maric
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| | - Carina Osterhof
- Institute for Organismic and Molecular Evolutionary Biology, University of Mainz, Mainz, Germany
| | - Denise V Winter
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Angèle Clerc
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Alex Odermatt
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Dieter Kressler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Thomas Hankeln
- Institute for Organismic and Molecular Evolutionary Biology, University of Mainz, Mainz, Germany
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - David Hoogewijs
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
7
|
Chen H, Li P, Du X, Zhao Y, Wang L, Tian Y, Song X, Shuai L, Bai X, Chen L. Homozygous Loss of Septin12, but not its Haploinsufficiency, Leads to Male Infertility and Fertilization Failure. Front Cell Dev Biol 2022; 10:850052. [PMID: 35547809 PMCID: PMC9082362 DOI: 10.3389/fcell.2022.850052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
The SEPTIN12 gene has been associated with male infertility. Male Septin12+/− chimera mice were infertile, supporting the prevailing view that SEPTIN12 haploinsufficiency causes male infertility. In this study, we identified a heterozygous mutation on SEPTIN12, c.72C>A (p.Cys24Ter) in the male partner of a patient couple, who had a previous fertilization failure (FF) after intracytoplasmic sperm injection (ICSI) and became pregnant after ICSI together with artificial oocyte activation (AOA). To investigate the role of SEPTIN12 in FF and oocyte activation, we constructed Septin12 knockout mice. Surprisingly, Septin12−/− male mice, but not Septin12+/− male mice, are infertile, and have reduced sperm counts and abnormal sperm morphology. Importantly, AOA treatment enhances the 2-cell embryo rate of ICSI embryos injected with Septin12−/− sperm, indicating that FF caused by male Septin12 deficiency is overcome by AOA. Mechanistically, loss of PLCζ around the acrosome might be the reason for FF of Septin12−/− sperm. Taken together, our data indicated that homozygous knockout of Septin12, but not Septin12 haploinsufficiency, leads to male infertility and FF.
Collapse
Affiliation(s)
- Haixia Chen
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Li
- Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Institute of Translational Medicine, Tianjin, China
| | - Xiaoling Du
- Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Institute of Translational Medicine, Tianjin, China
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Lingling Wang
- Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Institute of Translational Medicine, Tianjin, China
| | - Ye Tian
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xueru Song
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xiaohong Bai
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingyi Chen
- Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Institute of Translational Medicine, Tianjin, China
| |
Collapse
|
8
|
Woods BL, Gladfelter AS. The state of the septin cytoskeleton from assembly to function. Curr Opin Cell Biol 2020; 68:105-112. [PMID: 33188984 DOI: 10.1016/j.ceb.2020.10.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 01/09/2023]
Abstract
Septins are conserved guanine nucleotide-binding proteins that polymerize into filaments at the cell cortex or in association with other cytoskeletal proteins, such as actin or microtubules. As integral players in many morphogenic and signaling events, septins form scaffolds important for the recruitment of the cytokinetic machinery, organization of the plasma membrane, and orientation of cell polarity. Mutations in septins or their misregulation are associated with numerous diseases. Despite growing appreciation for the importance of septins in different aspects of cell biology and disease, septins remain relatively poorly understood compared with other cytoskeletal proteins. Here in this review, we highlight some of the recent developments of the last two years in the field of septin cell biology.
Collapse
Affiliation(s)
- Benjamin L Woods
- Biology Department, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Amy S Gladfelter
- Biology Department, University of North Carolina, Chapel Hill, NC, 27599, USA; Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
| |
Collapse
|