1
|
Feng Y, Zhao X, Ruan Z, Li Z, Mo H, Lu F, Shi D. Zinc improves the developmental ability of bovine in vitro fertilization embryos through its antioxidative action. Theriogenology 2024; 221:47-58. [PMID: 38554613 DOI: 10.1016/j.theriogenology.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Zinc, an essential trace mineral, exerts a pivotal influence in various biological processes. Through zinc concentration analysis, we found that the zinc concentration in the bovine embryo in vitro culture (IVC) medium was significantly lower than that in bovine follicular fluid. Therefore, this study explored the impact of zinc sulfate on IVC bovine embryo development and investigated the underlying mechanism. The results revealed a significant decline in zygote cleavage and blastocyst development rates when zinc deficiency was induced using zinc chelator N, N, N', N'-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) in culture medium during embryo in vitro culture. The influence of zinc-deficiency was time-dependent. Conversely, supplementing 0.8 μg/mL zinc sulfate to culture medium (CM) increased the cleavage and blastocyst formation rate significantly. Moreover, this supplementation reduced reactive oxygen species (ROS) levels, elevated the glutathione (GSH) levels in blastocysts, upregulated the mRNA expression of antioxidase-related genes, and activated the Nrf2-Keap1-ARE signaling pathways. Furthermore, 0.8 μg/mL zinc sulfate enhanced mitochondrial membrane potential, maintained DNA stability, and enhanced the quality of bovine (in vitro fertilization) IVF blastocysts. In conclusion, the addition of 0.8 μg/mL zinc sulfate to CM could enhance the antioxidant capacity, activates the Nrf2-Keap1-ARE signaling pathways, augment mitochondrial membrane potential, and stabilizes DNA, ultimately improving blastocyst quality and in vitro bovine embryo development.
Collapse
Affiliation(s)
- Yun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Xin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China; Reproductive Medicine Center, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China
| | - Ziyun Ruan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Zhengda Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Hongfang Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China.
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
2
|
Saleh A, Thanassoulas A, Aliyev E, Swann K, Naija A, Yalcin HC, Lai FA, Nomikos M. Development of Recombinant PLC-Zeta Protein as a Therapeutic Intervention for the Clinical Treatment of Oocyte Activation Failure. Biomedicines 2024; 12:1183. [PMID: 38927390 PMCID: PMC11201047 DOI: 10.3390/biomedicines12061183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024] Open
Abstract
The sperm-specific phospholipase C zeta (PLCζ) protein is widely considered as the predominant physiological stimulus for initiating the Ca2+ release responsible for oocyte activation during mammalian fertilization. The increasing number of genetic and clinical reports that directly link PLCζ defects and/or deficiencies with oocyte activation failure (OAF) necessitates the use of a powerful therapeutic intervention to overcome such cases of male factor infertility. Currently, in vitro fertilization (IVF) clinics treat OAF cases after intracytoplasmic sperm injection (ICSI) with Ca2+ ionophores. Despite their successful use, such chemical agents are unable to trigger the physiological pattern of Ca2+ oscillations. Moreover, the safety of these ionophores is not yet fully established. We have previously demonstrated that recombinant PLCζ protein can be successfully used to rescue failed oocyte activation, resulting in efficient blastocyst formation. Herein, we produced a maltose binding protein (MBP)-tagged recombinant human PLCζ protein capable of inducing Ca2+ oscillations in mouse oocytes similar to those observed at fertilization. Circular dichroism (CD) experiments revealed a stable, well-folded protein with a high helical content. Moreover, the recombinant protein could retain its enzymatic properties for at least up to 90 days after storage at -80 °C. Finally, a chick embryo model was employed and revealed that exposure of fertilized chicken eggs to MBP-PLCζ did not alter the embryonic viability when compared to the control, giving a first indication of its safety. Our data support the potential use of the MBP-PLCζ recombinant protein as an effective therapeutic tool but further studies are required prior to its use in a clinical setting.
Collapse
Affiliation(s)
- Alaaeldin Saleh
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Angelos Thanassoulas
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Elnur Aliyev
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Karl Swann
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Azza Naija
- Biomedical Research Center, Qatar University, Doha 2713, Qatar (H.C.Y.)
| | - Huseyin C. Yalcin
- Biomedical Research Center, Qatar University, Doha 2713, Qatar (H.C.Y.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - F. Anthony Lai
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Michail Nomikos
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| |
Collapse
|
3
|
Ruan JL, Liang SS, Pan JP, Chen ZQ, Teng XM. Artificial oocyte activation with Ca 2+ ionophore improves reproductive outcomes in patients with fertilization failure and poor embryo development in previous ICSI cycles. Front Endocrinol (Lausanne) 2023; 14:1244507. [PMID: 37635975 PMCID: PMC10455927 DOI: 10.3389/fendo.2023.1244507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Research question Does artificial oocyte activation (AOA) by a calcium ionophore (ionomycin) improve the previous fertilization failure or poor embryo development of intracytoplasmic sperm injection (ICSI) account for male factor infertility or other infertility causes? Design This retrospective study involved 114 patients receiving ICSI-AOA in Shanghai First Maternity and Infant Hospital with previous ICSI fertilization failure or poor embryo development. The previous ICSI cycles of the same patients without AOA served as the control group. The fertilization rates, cleavage rates, transferable embryo rates and blastocyst formation rates of the two groups were compared. Additionally, the clinical pregnancy, implantation rate and live birth rates were also compared to assess the efficiency and safety of AOA. Furthermore, two subgroup analyses were performed in this study based on the cause of infertility and the reason for AOA. The fertilization rate, embryonic development potential and clinical outcome were compared among groups. Results Among 114 ICSI-AOA cycles, the fertilization rate, top-quality embryo rate, implantation rate, clinical pregnancy per patient and live birth rate per patient were improved significantly compared with previous ICSI cycles (p<0.05 to P< 0.001), and the miscarriage rate in the AOA group was significantly lower than that of the control group (p<0.001). In the AOA subgroups based on the cause of infertility, the fertilization rates of each subgroup were significantly improved compared with previous control cycles except for the mixed factor infertility subgroup (p<0.05 to p<0.001). In the AOA subgroups based on the reason for AOA, the fertilization rates of each subgroup were significantly increased compared with those in their previous ICSI cycle without AOA (p<0.001); however, there was no significant difference in the top-quality embryo rate. No significant improvement was found in the implantation rates and the clinical pregnancy rate in each subgroup except for the poor embryo development subgroup. In the 114 AOA cycles, 35 healthy infants (21 singletons and 7 twins) were delivered without major congenital birth defects or malformations. Conclusion This study showed that AOA with the calcium ionophore ionomycin can improve the reproductive outcomes of patients with previous fertilization failure and poor embryo development after ICSI.
Collapse
Affiliation(s)
- Jing Ling Ruan
- Reproductive Medicine Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shan Shan Liang
- Reproductive Medicine Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia Ping Pan
- Reproductive Medicine Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhi Qin Chen
- Reproductive Medicine Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiao Ming Teng
- Reproductive Medicine Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Zhang X, Li L, Zhang W, Luo Y, Mao Y, Du H, Li L. Embryo development and live birth resulted from artificial oocyte activation after microdissection testicular sperm extraction with ICSI in patients with non-obstructive azoospermia. Front Endocrinol (Lausanne) 2023; 14:1123541. [PMID: 36896176 PMCID: PMC9989460 DOI: 10.3389/fendo.2023.1123541] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
INTRODUCTION The application of microdissection testicular sperm extraction (micro-TESE) to retrieve the sperm of patients with non-obstructive azoospermia (NOA) has greatly increased. Patients with NOA often have poor quality sperm. Unfortunately, there are few studies on artificial oocyte activation (AOA) performed on patients who successfully retrieved motile and immotile sperm by micro-TESE after intracytoplasmic sperm injection (ICSI). Therefore, this study sought to obtain more comprehensive evidence-based data and embryo development outcomes to aid consultation of patients with NOA who opted to receive assisted reproductive techniques and to determine whether AOA needs to be performed in different motile sperm after ICSI. METHODS This retrospective study involved 235 patients with NOA who underwent micro-TESE to retrieve adequate sperm for ICSI between January 2018 and December 2020. A total of 331 ICSI cycles were performed in the 235 couples. Embryological, clinical, and neonatal outcomes were demonstrated comprehensively between motile sperm and immotile sperm using AOA and non-AOA treatment. RESULTS Motile sperm injection with AOA (group 1) showed significantly higher fertility rate (72.77% vs. 67.59%, p=0.005), 2 pronucleus (2PN) fertility rate (64.33% vs. 60.22%, p=0.036), and miscarriage rate (17.65% vs. 2.44%, p=0.018) compared with motile sperm injection with non-AOA (group 2). Group 1 had comparable available embryo rate (41.29% vs. 40.74%, p=0.817), good embryo rate (13.44% vs. 15.44%, p=0.265), and without an embryo for transfer rate (10.85% vs. 9.90%, p=0.815) compared with group 2. Immotile sperm injection with AOA (group 3) displayed significantly higher fertility rate (78.56% vs. 67.59%, p=0.000), 2PN fertility rate (67.36% vs. 60.22%, p=0.001), without an embryo for transfer rate (23.76% vs. 9.90%, p=0.008), and miscarriage rate (20.00% vs. 2.44%, p=0.014), but significantly lower available embryo rate (26.63% vs.40.74%, p=0.000) and good embryo rate (15.44% vs. 6.99%, p=0.000) compared with group 2. In groups 1, 2, and 3, the rates of implantation (34.87%, 31.85% and 28.00%, respectively; p=0.408), clinical pregnancy (43.87%, 41.00%, and 34.48%, respectively; p=0.360) and live birth (36.13%, 40.00%, and 27.59%, respectively; p=0.194) were similar. DISCUSSION For those patients with NOA from whom adequate sperm were retrieved for ICSI, AOA could improve fertilization rate, but not embryo quality and live birth outcomes. For patients with NOA and only immotile sperm, AOA can help achieve acceptable fertilization rate and live birth outcomes. AOA is recommended for patients with NOA only when immotile sperm are injected.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhong Zhang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yang Luo
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuling Mao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongzi Du
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Lei Li, ; Hongzi Du,
| | - Lei Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Lei Li, ; Hongzi Du,
| |
Collapse
|
5
|
Shi L, Zhai Y, Zhao Y, Kong X, Zhang D, Yu H, Li Z. ELF4 is critical to zygotic gene activation and epigenetic reprogramming during early embryonic development in pigs. Front Vet Sci 2022; 9:954601. [PMID: 35928113 PMCID: PMC9343831 DOI: 10.3389/fvets.2022.954601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022] Open
Abstract
Zygotic gene activation (ZGA) and epigenetic reprogramming are critical in early embryonic development in mammals, and transcription factors are involved in regulating these events. However, the effects of ELF4 on porcine embryonic development remain unclear. In this study, the expression of ELF4 was detected in early porcine embryos and different tissues. By knocking down ELF4, the changes of H3K9me3 modification, DNA methylation and ZGA-related genes were analyzed. Our results showed that ELF4 was expressed at all stages of early porcine embryos fertilized in vitro (IVF), with the highest expression level at the 8-cell stage. The embryonic developmental competency and blastocyst quality decreased after ELF4 knockdown (20.70% control vs. 17.49% si-scramble vs. 2.40% si-ELF4; p < 0.001). Knockdown of ELF4 induced DNA damage at the 4-cell stage. Interfering with ELF4 resulted in abnormal increases in H3K9me3 and DNA methylation levels at the 4-cell stage and inhibited the expression of genes related to ZGA. These results suggest that ELF4 affects ZGA and embryonic development competency in porcine embryos by maintaining genome integrity and regulating dynamic changes of H3K9me3 and DNA methylation, and correctly activating ZGA-related genes to promote epigenetic reprogramming. These results provide a theoretical basis for further studies on the regulatory mechanisms of ELF4 in porcine embryos.
Collapse
Affiliation(s)
- Lijing Shi
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- College of Animal Science, Jilin University, Changchun, China
| | - Yanhui Zhai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Yuanshen Zhao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Xiangjie Kong
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Daoyu Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Hao Yu
- College of Animal Science, Jilin University, Changchun, China
- Hao Yu
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- *Correspondence: Ziyi Li
| |
Collapse
|
6
|
Liang R, Fang F, Li S, Chen X, Zhang X, Lu Q. Is there any effect on imprinted genes H19, PEG3, and SNRPN during AOA? Open Med (Wars) 2022; 17:174-184. [PMID: 35071778 PMCID: PMC8760930 DOI: 10.1515/med-2022-0410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/19/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Abstract
Assisted oocyte activation (AOA) has been proposed as an effective technique to overcome the problem of impaired fertilization after intracytoplasmic sperm injection (ICSI) but the safety of AOA remains a concern. We aimed to investigate if AOA induces imprinting effects on embryos. We used 13 cleavage embryos, nine blastocysts, and eight placentas from 15 patients. The subjects were divided into six groups by tissue type and with or without AOA. The methylation levels of imprinted genes (H19, paternally expressed gene [PEG3] and small nuclear ribonucleoprotein polypeptide N [SNRPN]) were tested by pyrosequencing. We observed different methylation levels among cleavage embryos. The variability was much more remarkable between cleavage embryos than blastocysts and placenta tissues. The methylation levels were especially higher in SNRPN and lower in the H19 gene in AOA embryos than those without AOA. No significant difference was found either among blastocysts or among placenta tissues regardless of AOA. The methylation levels of the three genes in blastocysts were very similar to those in the placenta. Compared to conventional ICSI, AOA changed imprinting methylation rates at H19 and SNRPN in cleavage embryos but not in the blastocyst stage and placenta. We recommend that blastocyst transfer should be considered for patients undergoing AOA during in vitro fertilization.
Collapse
Affiliation(s)
- Rong Liang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University People’s Hospital , Beijing , 100044 , China
| | - Fang Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University People’s Hospital , Beijing , 100044 , China
| | - Sen Li
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Guangdong Province , Guangzhou , 510317 , China
| | - Xi Chen
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University People’s Hospital , Beijing , 100044 , China
| | - Xiaohong Zhang
- Department of Obstetrics and Gynecology, Peking University People’s Hospital , Beijing , 100044 , China
| | - Qun Lu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University People’s Hospital , Beijing , 100044 , China
| |
Collapse
|
7
|
Uysal O, Abed-Elmdoust A, Rahimi R, Farahmand Y. A systematic review and meta-analysis on the deleterious effects of 6-dimethylaminopurine on bovine embryonic development. Livest Sci 2022. [DOI: 10.1016/j.livsci.2021.104771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Kashir J, Ganesh D, Jones C, Coward K. OUP accepted manuscript. Hum Reprod Open 2022; 2022:hoac003. [PMID: 35261925 PMCID: PMC8894871 DOI: 10.1093/hropen/hoac003] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/16/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Oocyte activation deficiency (OAD) is attributed to the majority of cases underlying failure of ICSI cycles, the standard treatment for male factor infertility. Oocyte activation encompasses a series of concerted events, triggered by sperm-specific phospholipase C zeta (PLCζ), which elicits increases in free cytoplasmic calcium (Ca2+) in spatially and temporally specific oscillations. Defects in this specific pattern of Ca2+ release are directly attributable to most cases of OAD. Ca2+ release can be clinically mediated via assisted oocyte activation (AOA), a combination of mechanical, electrical and/or chemical stimuli which artificially promote an increase in the levels of intra-cytoplasmic Ca2+. However, concerns regarding safety and efficacy underlie potential risks that must be addressed before such methods can be safely widely used. OBJECTIVE AND RATIONALE Recent advances in current AOA techniques warrant a review of the safety and efficacy of these practices, to determine the extent to which AOA may be implemented in the clinic. Importantly, the primary challenges to obtaining data on the safety and efficacy of AOA must be determined. Such questions require urgent attention before widespread clinical utilization of such protocols can be advocated. SEARCH METHODS A literature review was performed using databases including PubMed, Web of Science, Medline, etc. using AOA, OAD, calcium ionophores, ICSI, PLCζ, oocyte activation, failed fertilization and fertilization failure as keywords. Relevant articles published until June 2019 were analysed and included in the review, with an emphasis on studies assessing large-scale efficacy and safety. OUTCOMES Contradictory studies on the safety and efficacy of AOA do not yet allow for the establishment of AOA as standard practice in the clinic. Heterogeneity in study methodology, inconsistent sample inclusion criteria, non-standardized outcome assessments, restricted sample size and animal model limitations render AOA strictly experimental. The main scientific concern impeding AOA utilization in the clinic is the non-physiological method of Ca2+ release mediated by most AOA agents, coupled with a lack of holistic understanding regarding the physiological mechanism(s) underlying Ca2+ release at oocyte activation. LIMITATIONS, REASONS FOR CAUTION The number of studies with clinical relevance using AOA remains significantly low. A much wider range of studies examining outcomes using multiple AOA agents are required. WIDER IMPLICATIONS In addition to addressing the five main challenges of studies assessing AOA safety and efficacy, more standardized, large-scale, multi-centre studies of AOA, as well as long-term follow-up studies of children born from AOA, would provide evidence for establishing AOA as a treatment for infertility. The delivery of an activating agent that can more accurately recapitulate physiological fertilization, such as recombinant PLCζ, is a promising prospect for the future of AOA. Further to PLCζ, many other avenues of physiological oocyte activation also require urgent investigation to assess other potential physiological avenues of AOA. STUDY FUNDING/COMPETING INTERESTS D.G. was supported by Stanford University’s Bing Overseas Study Program. J.K. was supported by a Healthcare Research Fellowship Award (HF-14-16) made by Health and Care Research Wales (HCRW), alongside a National Science, Technology, and Innovation plan (NSTIP) project grant (15-MED4186-20) awarded by the King Abdulaziz City for Science and Technology (KACST). The authors have no competing interests to declare.
Collapse
Affiliation(s)
| | | | - Celine Jones
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Oxford, UK
| | - Kevin Coward
- Correspondence address. Nuffield Department of Women’s & Reproductive Health, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Oxford, OS3 9DU, UK. E-mail: https://orcid.org/0000-0003-3577-4041
| |
Collapse
|
9
|
Yin M, Li M, Li W, Wu L, Yan Z, Zhao J, Ouyang J, Lyu Q, Yan Z, Li B. Efficacy of artificial oocyte activation in patients with embryo developmental problems: a sibling oocyte control study. Arch Gynecol Obstet 2021; 305:1225-1231. [DOI: 10.1007/s00404-021-06329-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022]
|