1
|
Liu P, Shao Y, Liu C, Lv X, Afedo SY, Bao W. Special Staining and Protein Expression of VEGF/EGFR and P53/NF-κB in Cryptorchid Tissue of Erhualian Pigs. Life (Basel) 2024; 14:100. [PMID: 38255715 PMCID: PMC10817362 DOI: 10.3390/life14010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Erhualian pigs exhibit one of the highest reproductive rates globally, and cryptorchidism is a crucial factor affecting reproductive abilities of boars. This investigation focused on cryptorchid tissues from Erhualian pigs, where the histological structure of cryptorchidism was observed using specialized staining. In addition, protein expression of P53/NF-κB in cryptorchid tissues was assessed using Western blot and immunohistochemistry. In comparison to normal Erhualian testes, Masson's trichrome staining indicated a reduction in collagen fibers in the connective tissue and around the basal membrane of the seminiferous tubules in cryptorchid testes. Moreover, collagen fiber distribution was observed to be disordered. Verhoeff Van Gieson (EVG) and argyrophilic staining demonstrated brownish-black granular nucleoli organized regions in mesenchymal cells and germ cells. When compared to normal testicles, the convoluted seminiferous tubules of cryptorchids exhibited a significantly reduced number and diameter (p < 0.01). Notably, VEGF/EGFR and P53/NF-κB expression in cryptorchidism significantly differed from that in normal testes. In particular, the expression of VEGF and P53 in cryptorchid tissues was significantly higher than that in normal testes tissues, whereas the expression of EGFR in cryptorchid tissues was significantly lower than that in normal testes tissues (all p < 0.01). NF-κB expressed no difference in both conditions. The expressions of VEGF and NF-κB were observed in the cytoplasm of testicular Leydig cells and spermatogenic cells, but they were weak in the nucleus. EGFR and P53 were more positively expressed in the cytoplasm of these cells, with no positive expression in the nucleus. Conclusion: There were changes in the tissue morphology and structure of the cryptorchid testis, coupled with abnormally high expression of VEGF and P53 proteins in Erhualian pigs. We speculate that this may be an important limiting factor to fecundity during cryptorchidism.
Collapse
Affiliation(s)
- Penggang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Yiming Shao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Caihong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Seth Yaw Afedo
- Department of Animal Science, School of Agriculture, University of Cape Coast, Cape Coast P.O. Box 5007, Ghana
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Guazzone VA, Lustig L. Varicocele and testicular cord torsion: immune testicular microenvironment imbalance. Front Cell Dev Biol 2023; 11:1282579. [PMID: 38099296 PMCID: PMC10720440 DOI: 10.3389/fcell.2023.1282579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 12/17/2023] Open
Abstract
The main functions of the testis, steroidogenesis and spermatogenesis, depend on the endocrine axis and systemic and local tolerance mechanisms. Infectious or non-infectious diseases may disturb testicular immune regulation causing infertility. Literature has illustrated that bacterial and viral infections lead to autoimmune infertility: either sperm antibodies or autoimmune epidydimo-orchitis. However, little is known about the association between non-infectious testicular pathologic diseases and autoimmunity. Here we review the novel aspect of varicocele and testicular cord torsion pathology linked to inflammation and discuss how immune factors could contribute to or modulate autoimmunity in ipsi- and contralateral testis.
Collapse
Affiliation(s)
- Vanesa A. Guazzone
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología/Unidad Académica II, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Livia Lustig
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología/Unidad Académica II, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| |
Collapse
|
3
|
Xu T, Hu X, Yang G, Liu Y, Zhang Q, Yu S, Chen G, Li Y, Sha R, Chen Y, Xie HQ, Guo TL, Xu L, Zhao B. HIF-1alpha/VEGF pathway mediates 1,3,6,8-tetrabromo-9 H-carbazole-induced angiogenesis: a potential vascular toxicity of an emerging contaminant. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128718. [PMID: 35338935 DOI: 10.1016/j.jhazmat.2022.128718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The dioxin-like substances polyhalogenated carbazoles (PHCZs) may trigger the aryl hydrocarbon receptor (AhR) signaling pathway. Although the crosstalk between AhR and the hypoxia inducible factor-1 (HIF-1) pathways is generally believed to occur, the exact mechanisms of the HIF-1 pathway in PHCZ toxicity have not been determined. We aimed to elucidate the effect of PHCZs on the HIF-1 pathway and its involvement in the regulation of target genes of HIF-1. Herein, we employed human HepG2 cells transiently transfected with a hypoxia response element (HRE) luciferase reporter to identify PHCZs that could influence HIF-1 pathway. We found that exposure to one of the four selected PHCZs, specifically 1,3,6,8-tetrabromo-9 H-carbazole (1368-BCZ), induced a significant enhancement of the activity of HRE activity. In silico data supported 1368-BCZ-induced HIF-1α activity preferentially. Moreover, 1368-BCZ significantly upregulated the expression of HIF-1 target genes, including endothelial growth factor (VEGF) and erythropoietin. Importantly, the stimulated secretion of VEGF by 1368-BCZ promoted the angiogenesis in human umbilical vein endothelial cells. Therefore, the present experimental and computational studies provide new and direct evidence of 1368-BCZ - HIF-1 interaction, which sheds light on the HIF-mediated cardiovascular toxicity and allows a knowledge-based risk assessment of emerging pollutants.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxu Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanglei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Shuyuan Yu
- Environment and Health Department, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, China
| | - Guomin Chen
- Environment and Health Department, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, China
| | - Yunping Li
- School of environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Rui Sha
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tai L Guo
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-0002, USA
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
4
|
Molecular Mechanism of the Effect of Zhizhu Pill on Gastroesophageal Reflux Disease Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2996865. [PMID: 35646148 PMCID: PMC9135531 DOI: 10.1155/2022/2996865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
Abstract
Background To investigate the pharmacological mechanism of Zhizhu pill (ZZP) against gastroesophageal reflux disease (GERD), network pharmacology in combination with molecular docking was applied in this study. Methods Active compounds of ZZP and target genes related to GERD were identified through public databases. Subsequently, the obtained data were used as a basis for further network pharmacological analysis to explore the potential key active compounds, core targets, and biological processes involved in ZZP against GERD. Finally, the results predicted by network pharmacology were validated by molecular docking. Results Twenty active components of ZZP were identified to act on 59 targets related to GERD. Enrichment analysis revealed that multiple biological processes including response to oxygen levels, response to oxidative stress, and response to reactive oxygen species were involved in the GERD ZZP treatment with ZZP. ZZP had an impact on the prognosis of GERD mainly through the HIF-1 signaling pathway, PI3K-Akt signaling pathway, and pathways in cancer. Further analysis identified the key components and core targets of ZZP against GERD, of which nobiletin, didymin, luteolin, and naringenin were key components, and PPARG, MMP9, JUN, TP53, PTGS2, EGFR, MAPK3, CASP3, AKT1, and VEGFA were the core targets. Molecular docking verified the stable bonds formed between the key components and the core targets. Conclusions The results of this study predict that the therapeutic effects of ZZP in GERD are mediated at least in part via PPARG, MMP9, JUN, TP53, PTGS2, EGFR, MAPK3, CASP3, AKT1, and VEGFA. These results may be useful in providing an experimental basis and new ideas for further research on ZZP in GERD.
Collapse
|
5
|
Mansouri Torghabeh F, Rostamzadeh P, Davoudi S, Keivan M, Shokri-Asl V. Effects of Rosmarinus officinalis on orchitis following spermatic cord torsion-detorsion in male mice with emphasis on anti-inflammatory and antioxidant properties. Andrologia 2021; 54:e14252. [PMID: 34554588 DOI: 10.1111/and.14252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Orchitis as inflammation of testis occurs following traumatic injuries such as testicular torsion leading to high levels of oxidative stress and inflammation. Rosmarinus officinalis is a herb with anti-inflammatory and antioxidant properties. This study assessed therapeutic effects of rosemary following testicular torsion. A total of 36 male mice were categorised; control, torsion, rosemary (100 and 200 mg/kg) and torsion+rosemary groups. Torsion was induced surgically, and rosemary was gavaged. Total antioxidant capacity of extract was approved by Ferric Reducing Ability of Plasma. Malondialdehyde and Griess protocols were hired to assess oxidative stress. Finally, sperm parameters and testosterone levels were analysed. Immunofluorescent (of Tumour Necrosis Factor Alpha), hematoxylin and eosin stainings and expression of inflammatory genes (Interleukin-1α, Interleukin-1β, Interferon-γ) were also assessed. Data were analysed using SPSS (v. 19), and graphs were drawn by GraphPad Prism (v. 9). Significantly (p < .05), oxidative stress indices and inflammatory genes expression were increased in torsion group, and total antioxidant capacity was increased in rosemary groups. In torsion+rosemary groups, total antioxidant capacity, sperm parameters and testosterone levels were increased, and inflammatory gene expression decreased significantly (p < .05). Rosemary with anti-inflammatory and antioxidant properties accelerates testicular healing in torsion cases, especially in therapeutic dose of 200 mg/kg.
Collapse
Affiliation(s)
- Fatemeh Mansouri Torghabeh
- Department of Physiology Sciences, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parsa Rostamzadeh
- Department of Anatomical Sciences, Medical School, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Samira Davoudi
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Keivan
- Member of Research Committee, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Shokri-Asl
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|