1
|
Ma Q, Ye S, Liu H, Zhao Y, Zhang W. The emerging role and mechanism of HMGA2 in breast cancer. J Cancer Res Clin Oncol 2024; 150:259. [PMID: 38753081 PMCID: PMC11098884 DOI: 10.1007/s00432-024-05785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
High mobility group AT-hook 2 (HMGA2) is a member of the non-histone chromosomal high mobility group (HMG) protein family, which participate in embryonic development and other biological processes. HMGA2 overexpression is associated with breast cancer (BC) cell growth, proliferation, metastasis, and drug resistance. Furthermore, HMGA2 expression is positively associated with poor prognosis of patients with BC, and inhibiting HMGA2 signaling can stimulate BC cell progression and metastasis. In this review, we focus on HMGA2 expression changes in BC tissues and multiple BC cell lines. Wnt/β-catenin, STAT3, CNN6, and TRAIL-R2 proteins are upstream mediators of HMGA2 that can induce BC invasion and metastasis. Moreover, microRNAs (miRNAs) can suppress BC cell growth, invasion, and metastasis by inhibiting HMGA2 expression. Furthermore, long noncoding RNAs (LncRNAs) and circular RNAs (CircRNAs) mainly regulate HMGA2 mRNA and protein expression levels by sponging miRNAs, thereby promoting BC development. Additionally, certain small molecule inhibitors can suppress BC drug resistance by reducing HMGA2 expression. Finally, we summarize findings demonstrating that HMGA2 siRNA and HMGA2 siRNA-loaded nanoliposomes can suppress BC progression and metastasis.
Collapse
Affiliation(s)
- Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Sisi Ye
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Hong Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Yu Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Wei Zhang
- Emergency Department of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Wang X, Gu Y, Zhang L, Ma J, Xia Y, Wang X. Long noncoding RNAs regulate intrauterine adhesion and cervical cancer development and progression. Semin Cell Dev Biol 2024; 154:221-226. [PMID: 36841649 DOI: 10.1016/j.semcdb.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023]
Abstract
Intrauterine adhesion, one of reproductive system diseases in females, is developed due to endometrial injury, such as infection, trauma, uterine congenital abnormalities and uterine curettage. Intrauterine adhesion affects female infertility and causes several complications, including amenorrhoea, hypomenorrhoea, and recurrent abortion. Cervical cancer is one of the common gynecological tumors and the fourth leading cancer-related death in women worldwide. Although the treatments of cervical cancer have been improved, the advanced cervical cancer patients have a low survival rate due to tumor recurrence and metastasis. The molecular mechanisms of intrauterine adhesion and cervical tumorigenesis have not been fully elucidated. In recent years, long noncoding RNAs (lncRNAs) have been known to participate in intrauterine adhesion and cervical carcinogenesis. Therefore, in this review, we will summarize the role of lncRNAs in regulation of intrauterine adhesion development and progression. Moreover, we will discuss the several lncRNAs in control of cervical oncogenesis and progression. Furthermore, we highlight that targeting lncRNAs could be used for treatment of intrauterine adhesion and cervical cancer.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Yu Gu
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Leichao Zhang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Jingchao Ma
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Yong Xia
- Department of Gynecology and Obstetrics, Fuzhou Maternity and Infant Hospital, Fuzhou, Fujian 350301, China
| | - Xueju Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China.
| |
Collapse
|
3
|
Li C, Hu Y. Extracellular Vesicles Derived from Mesenchymal Stem Cells as Cell-Free Therapy for Intrauterine Adhesion. Int J Stem Cells 2023; 16:260-268. [PMID: 37385632 PMCID: PMC10465336 DOI: 10.15283/ijsc21177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/17/2021] [Indexed: 07/01/2023] Open
Abstract
Intrauterine adhesion (IUA) can occur after trauma to the basal layer of the endometrium, contributing to severe complications in females, such as infertility and amenorrhea. To date, the proposed therapeutic strategies are targeted to relieve IUA, such as hysteroscopic adhesiolysis, Foley catheter balloon, and hyaluronic acid injection have been applied in the clinic. However, these approaches showed limited effects in alleviating endometrial fibrosis and thin endometrium. Mesenchymal stem cells (MSCs) can offer the potential for endometrium regeneration owing to reduce inflammation and release growth factors. On this basis, MSCs have been proposed as promising methods to treat intrauterine adhesion. However, due to the drawbacks of cell therapy, the possible therapeutic use of extracellular vesicles released by stem cells is raising increasing interest. The paracrine effect, mediated by MSCs derived extracellular vehicles (MSC-EVs), has recently been suggested as a mechanism for their therapeutic properties. Here, we summarizes the main pathological mechanisms involved in intrauterine adhesion, the biogenesis and characteristics of extracellular vesicles, explaining how these vesicles could provide new opportunities for MSCs.
Collapse
Affiliation(s)
- Chao Li
- Department of Gynecology, Tianjin Medical University, Tianjin, China
- Department of Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Yuanjing Hu
- Department of Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| |
Collapse
|
4
|
Wang Y, Chen Y, Liang J, Jiang M, Zhang T, Wan X, Wu J, Li X, Chen J, Sun J, Hu Y, Huang P, Feng J, Liu T, Sun X. METTL3-mediated m6A modification of HMGA2 mRNA promotes subretinal fibrosis and epithelial-mesenchymal transition. J Mol Cell Biol 2023; 15:mjad005. [PMID: 36945110 PMCID: PMC10603769 DOI: 10.1093/jmcb/mjad005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/01/2022] [Accepted: 11/28/2022] [Indexed: 03/23/2023] Open
Abstract
Subretinal fibrosis is a major cause of the poor visual prognosis for patients with neovascular age-related macular degeneration (nAMD). Myofibroblasts originated from retinal pigment epithelial (RPE) cells through epithelial-mesenchymal transition (EMT) contribute to the fibrosis formation. N6-Methyladenosine (m6A) modification has been implicated in the EMT process and multiple fibrotic diseases. The role of m6A modification in EMT-related subretinal fibrosis has not yet been elucidated. In this study, we found that during subretinal fibrosis in the mouse model of laser-induced choroidal neovascularization, METTL3 was upregulated in RPE cells. Through m6A epitranscriptomic microarray and further verification, high-mobility group AT-hook 2 (HMGA2) was identified as the key downstream target of METTL3, subsequently activating potent EMT-inducing transcription factor SNAIL. Finally, by subretinal injections of adeno-associated virus vectors, we confirmed that METTL3 deficiency in RPE cells could efficiently attenuate subretinal fibrosis in vivo. In conclusion, our present research identified an epigenetic mechanism of METTL3-m6A-HMGA2 in subretinal fibrosis and EMT of RPE cells, providing a novel therapeutic target for subretinal fibrosis secondary to nAMD.
Collapse
Affiliation(s)
- Yuwei Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Yuhong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Jian Liang
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Mei Jiang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Ting Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Xiaoling Wan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Jiahui Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Xiaomeng Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Jieqiong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Junran Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Yifan Hu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Peirong Huang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Jingyang Feng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| |
Collapse
|
5
|
Yuan D, Guo T, Qian H, Jin C, Ge H, Zhao Y, Zhu D, Lin M, Wang H, Yu H. Exosomal miR-543 derived from umbilical cord mesenchymal stem cells ameliorates endometrial fibrosis in intrauterine adhesion via downregulating N-cadherin. Placenta 2023; 131:75-81. [PMID: 36521318 DOI: 10.1016/j.placenta.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/09/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Human umbilical cord mesenchymal stem cells (UCMSCs) play an important role in repairing the damaged endometrium of intrauterine adhesion (IUA). Meanwhile, exosomes released by UCMSCs can mediate intercellular communication by delivering miRNAs. It has been shown that miR-543 level was reduced in IUA tissues. However, the role of miR-543 in the progression of IUA remains largely unknown. Therefore, we investigated the role of UCMSCs-derived exosomal miR-543 in IUA. METHODS In this study, human endometrial epithelial cells (hEECs) were treated with TGF-β1 for mimicking endometrial fibrosis in vitro. In addition, the IUA-like mouse model in vivo was established by a dual damage method of curettage and LPS infection. RESULTS The level of miR-543 was markedly reduced in hEECs exposed to TGF-β1 and in endometrium tissues of IUA mice. Additionally, miR-543 could be transferred from UCMSCs to hEECs via exosomes. Meanwhile, exosomal miR-543-derived from UCMSCs significantly reduced the expressions of N-cadherin, α-SMA, fibronectin 1 and elevated the expression of E-cadherin in TGF-β1-treated hEECs. Furthermore, UCMSCs-derived exosomal miR-543 attenuated IUA-induced endometrial fibrosis in vivo, as shown by the decreased N-cadherin, α-SMA and fibronectin 1 protein expressions. DISCUSSION Collectively, UCMSCs-derived exosomal miR-543 was able to prevent endometrial fibrosis both in vitro and in vivo via downregulating N-cadherin. These results may provide an insight into the clinical treatment for IUA.
Collapse
Affiliation(s)
- Donglan Yuan
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Ting Guo
- Department of Laboratory Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Hua Qian
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Chunyan Jin
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Hongshan Ge
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Yinling Zhao
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Dandan Zhu
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Mei Lin
- Department of Laboratory Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Hua Wang
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China.
| |
Collapse
|
6
|
Zhou Z, Wang H, Zhang X, Song M, Yao S, Jiang P, Liu D, Wang Z, Lv H, Li R, Hong Y, Dai J, Hu Y, Zhao G. Defective autophagy contributes to endometrial epithelial-mesenchymal transition in intrauterine adhesions. Autophagy 2022; 18:2427-2442. [PMID: 35196191 PMCID: PMC9542425 DOI: 10.1080/15548627.2022.2038994] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Intrauterine adhesions (IUA), characterized by endometrial fibrosis, is a common cause of uterine infertility. We previously demonstrated that partial epithelial-mesenchymal transition (EMT) and the loss of epithelial homeostasis play a vital role in the development of endometrial fibrosis. As a pro-survival strategy in maintaining cell and tissue homeostasis, macroautophagy/autophagy, conversely, may participate in this process. However, the role of autophagy in endometrial fibrosis remains unknown. Here, we demonstrated that autophagy is defective in endometria of IUA patients, which aggravates EMT and endometrial fibrosis, and defective autophagy is related to DIO2 (iodothyronine deiodinase 2) downregulation. In endometrial epithelial cells (EECs), pharmacological inhibition of autophagy by chloroquine (CQ) promoted EEC-EMT, whereas enhanced autophagy by rapamycin extenuated this process. Mechanistically, silencing DIO2 in EECs blocked autophagic flux and promoted EMT via the MAPK/ERK-MTOR pathway. Inversely, overexpression of DIO2 or triiodothyronine (T3) treatment could restore autophagy and partly reverse EEC-EMT. Furthermore, in an IUA-like mouse model, the autophagy in endometrium was defective accompanied by EEC-EMT, and CQ could inhibit autophagy and aggravate endometrial fibrosis, whereas rapamycin or T3 treatment could improve the autophagic levels and blunt endometrial fibrosis. Together, we demonstrated that defective autophagy played an important role in EEC-EMT in IUA via the DIO2-MAPK/ERK-MTOR pathway, which provided a potential target for therapeutic implications.Abbreviations: ACTA2/α-SMA: actin alpha 2, smooth muscle; AMPK: adenosine 5'-monophosphate-activated protein kinase; AKT/protein kinase B: AKT serine/threonine kinase; ATG: autophagy related; CDH1/E-cadherin: cadherin 1; CDH2/N-cadherin: cadherin 2; CQ: chloroquine; CTSD: cathepsin D; DIO2: iodothyronine deiodinase 2; DEGs: differentially expressed genes; EECs: endometrial epithelial cells; EMT: epithelial-mesenchymal transition; FN1: fibronectin 1; IUA: intrauterine adhesions; LAMP1: lysosomal associated membrane protein 1; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; Rapa: rapamycin; SQSTM1/p62: sequestosome 1; T3: triiodothyronine; T4: tetraiodothyronine; TFEB: transcription factor EB; PBS: phosphate-buffered saline; TEM: transmission electron microscopy; TGFB/TGFβ: transforming growth factor beta.
Collapse
Affiliation(s)
- Zhenhua Zhou
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China,Department of Obstetrics and Gynecology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Huiyan Wang
- Department of Obstetrics and Gynecology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xiwen Zhang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Minmin Song
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Simin Yao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Peipei Jiang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Dan Liu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhiyin Wang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Haining Lv
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Ruotian Li
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Ying Hong
- Department of Obstetrics and Gynecology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China,Jianwu Dai Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100190, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China,Department of Obstetrics and Gynecology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China,Yali Hu
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China,Department of Obstetrics and Gynecology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China,CONTACT Guangfeng Zhao Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
7
|
A review of the effects of estrogen and epithelial-mesenchymal transformation on intrauterine adhesion and endometriosis. Transpl Immunol 2022; 79:101679. [PMID: 35908631 DOI: 10.1016/j.trim.2022.101679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022]
Abstract
Uterus transplantation has become an option for women suffering from some form of infertility. Current review discusses key physiological functions of the endometrium requiring the transition of tissue cells between the mesenchyme and epithelial cell phenotype, a process known as epithelial-mesenchymal transition (EMT). Estrogen and EMT play a key role in the pathogenesis and treatment of intrauterine adhesion and endometriosis. There is also a close regulatory relationship between estrogen and EMT, and investigation of this relationship is of great significance for the treatment of endometrial disorders. The present review discusses the effects of estrogen on endometrial dysfunction, with a focus on the relationship between estrogen and EMT in endometrial disorders, taking into consideration the mechanisms by which receptors that regulate their functions and proteins that regulate their local biological functions interact with the factors involved in EMT. In addition, the review summarizes emerging drugs targeting receptors or proteins and provides information on the direction of new therapies for endometrial disorders.
Collapse
|
8
|
Xu C, Bao M, Fan X, Huang J, Zhu C, Xia W. EndMT: New findings on the origin of myofibroblasts in endometrial fibrosis of intrauterine adhesions. Reprod Biol Endocrinol 2022; 20:9. [PMID: 34996477 PMCID: PMC8739974 DOI: 10.1186/s12958-022-00887-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Intrauterine adhesion (IUA) is one of the leading causes of infertility and the main clinical challenge is the high recurrence rate. The key to solving this dilemma lies in elucidating the mechanisms of endometrial fibrosis. The aim of our team is to study the mechanism underlying intrauterine adhesion fibrosis and the origin of fibroblasts in the repair of endometrial fibrosis. METHODS Our experimental study involving an animal model of intrauterine adhesion and detection of fibrosis-related molecules. The levels of molecular factors related to the endothelial-to-mesenchymal transition (EndMT) were examined in a rat model of intrauterine adhesion using immunofluorescence, immunohistochemistry, qPCR and Western blot analyses. Main outcome measures are levels of the endothelial marker CD31 and the mesenchymal markers alpha-smooth muscle actin (α-SMA) and vimentin. RESULTS Immunofluorescence co-localization of CD31 and a-SMA showed that 14 days after moulding, double positive cells for CD31 and a-SMA could be clearly observed in the endometrium. Decreased CD31 levels and increased α-SMA and vimentin levels indicate that EndMT is involved in intrauterine adhesion fibrosis. CONCLUSIONS Endothelial cells promote the emergence of fibroblasts via the EndMT during the endometrial fibrosis of intrauterine adhesions.
Collapse
Affiliation(s)
- Chengcheng Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Meng Bao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Xiaorong Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Jin Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Changhong Zhu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Wei Xia
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
9
|
Wang L, Liu D, Wei J, Yuan L, Zhao S, Huang Y, Ma J, Yang Z. MiR-543 Inhibits the Migration and Epithelial-To-Mesenchymal Transition of TGF-β-Treated Endometrial Stromal Cells via the MAPK and Wnt/β-Catenin Signaling Pathways. Pathol Oncol Res 2021; 27:1609761. [PMID: 34257616 PMCID: PMC8262167 DOI: 10.3389/pore.2021.1609761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022]
Abstract
Intrauterine adhesion (IUA) is one of the most prevalent reproductive system diseases in females. MicroRNAs (miRNAs) are reported to be master regulators in a variety of diseases, including IUA, but the role of microRNA-543 (miR-543) in IUA remains to be elucidated. In this study, we observed that miR-543 was downregulated in transforming growth factor-beta (TGF-β)-treated endometrial stromal cells (ESCs). Functionally, we observed that miR-543 suppressed the migration, epithelial-to-mesenchymal transition (EMT), and inhibited expression of extracellular matrix (ECM) proteins in TGF-β-treated ESCs. Mechanistically, MAPK1 is targeted by miR-543 after prediction and screening. A luciferase reporter assay demonstrated that miR-543 complementarily binds with the 3' untranslated region of mitogen-activated protein kinase 1 (MAPK1), and western blot analysis indicated that miR-543 negatively regulates MAPK1 protein levels. In addition, results from rescue assays showed that miR-543 inhibits the migration and EMT of TGF-β-treated ESCs by targeting MAPK1. In addition, we observed that miR-543 inactivates the Wnt/β-catenin signaling pathway through inhibiting the phosphorylation of MAPK1 and β-catenin. Finally, we confirmed that miR-543 represses migration, EMT and inhibits levels of ECM proteins in TGF-β-treated ESCs by targeting the Wnt/β-catenin signaling pathway. Our results demonstrated that miR-543 suppresses migration and EMT of TGF-β-treated ESCs by targeting the MAPK and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Linlin Wang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Dan Liu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China.,Key Laboratory of Ministry of Education for Fertility Preservation and Maintenance, Ningxia Medical University, Yinchuan, China
| | - Jun Wei
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Liwei Yuan
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shiyun Zhao
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yani Huang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jingwen Ma
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhijuan Yang
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|