1
|
Fakhari S, Campolina‐Silva G, Asayesh F, Girardet L, Scott‐Boyer M, Droit A, Soulet D, Greener J, Belleannée C. Shear stress effects on epididymal epithelial cell via primary cilia mechanosensory signaling. J Cell Physiol 2025; 240:e31475. [PMID: 39508588 PMCID: PMC11733861 DOI: 10.1002/jcp.31475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
Shear stress, resulting from fluid flow, is a fundamental mechanical stimulus affecting various cellular functions. The epididymis, essential for sperm maturation, offers a compelling model to study the effects of shear stress on cellular behavior. This organ undergoes extensive proliferation and differentiation until puberty, achieving full functionality as spermatozoa commence their post-testicular maturation. Although the mechanical tension exerted by testicular fluid is hypothesized to drive epithelial proliferation and differentiation, the precise mechanisms remain unclear. Here we assessed whether the responsiveness of the epididymal cells to shear stress depends on functional primary cilia by combining microfluidic strategies on immortalized epididymal cells, calcium signaling assays, and high-throughput gene expression analysis. We identified 97 genes overexpressed in response to shear stress, including early growth response (Egr) 2/3, cellular communication network factor (Ccn) 1/2, and Fos proto-oncogene (Fos). While shear stress triggered a rapid increase of intracellular Ca2+, this response was abrogated following the impairment of primary ciliogenesis through pharmacological and siRNA approaches. Overall, our findings provide valuable insights into how mechanical forces influence the development of the male reproductive system, a requisite to sperm maturation.
Collapse
Affiliation(s)
- Sepideh Fakhari
- Department of Obstetrics, Gynecology, and Reproduction, Centre de recherche en Reproduction, Développement et Santé IntergénérationnelleFaculty of MedicineQuébec CityQuebecCanada
- Centre de recherche du centre hospitalier universitaire de Québec ‐ Université LavalQuébec CityQuebecCanada
- Department of ChemistryFaculty of Science and EngineeringQuébec CityQuebecCanada
| | - Gabriel Campolina‐Silva
- Department of Obstetrics, Gynecology, and Reproduction, Centre de recherche en Reproduction, Développement et Santé IntergénérationnelleFaculty of MedicineQuébec CityQuebecCanada
- Centre de recherche du centre hospitalier universitaire de Québec ‐ Université LavalQuébec CityQuebecCanada
| | - Farnaz Asayesh
- Department of Obstetrics, Gynecology, and Reproduction, Centre de recherche en Reproduction, Développement et Santé IntergénérationnelleFaculty of MedicineQuébec CityQuebecCanada
| | - Laura Girardet
- Department of Obstetrics, Gynecology, and Reproduction, Centre de recherche en Reproduction, Développement et Santé IntergénérationnelleFaculty of MedicineQuébec CityQuebecCanada
- Centre de recherche du centre hospitalier universitaire de Québec ‐ Université LavalQuébec CityQuebecCanada
| | - Marie‐Pier Scott‐Boyer
- Proteomics Platform, Québec Genomic Center, Université Laval, CHU de Québec Research Center (CHUL)Québec CityQuebecCanada
| | - Arnaud Droit
- Proteomics Platform, Québec Genomic Center, Université Laval, CHU de Québec Research Center (CHUL)Québec CityQuebecCanada
| | - Denis Soulet
- Centre de recherche du centre hospitalier universitaire de Québec ‐ Université LavalQuébec CityQuebecCanada
- Faculté de pharmacieUniversité LavalQuébec CityQuebecCanada
| | - Jesse Greener
- Centre de recherche du centre hospitalier universitaire de Québec ‐ Université LavalQuébec CityQuebecCanada
- Department of ChemistryFaculty of Science and EngineeringQuébec CityQuebecCanada
| | - Clémence Belleannée
- Department of Obstetrics, Gynecology, and Reproduction, Centre de recherche en Reproduction, Développement et Santé IntergénérationnelleFaculty of MedicineQuébec CityQuebecCanada
- Centre de recherche du centre hospitalier universitaire de Québec ‐ Université LavalQuébec CityQuebecCanada
| |
Collapse
|
2
|
Lee V, Hinton BT, Hirashima T. Collective cell dynamics and luminal fluid flow in the epididymis: A mechanobiological perspective. Andrology 2024; 12:939-948. [PMID: 37415418 PMCID: PMC11278975 DOI: 10.1111/andr.13490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/08/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND The mammalian epididymis is a specialized duct system that serves a critical role in sperm maturation and storage. Its distinctive, highly coiled tissue morphology provides a unique opportunity to investigate the link between form and function in reproductive biology. Although recent genetic studies have identified key genes and signaling pathways involved in the development and physiological functions of the epididymis, there has been limited discussion about the underlying dynamic and mechanical processes that govern these phenomena. AIMS In this review, we aim to address this gap by examining two key aspects of the epididymis across its developmental and physiological phases. RESULTS AND DISCUSSION First, we discuss how the complex morphology of the Wolffian/epididymal duct emerges through collective cell dynamics, including duct elongation, cell proliferation, and arrangement during embryonic development. Second, we highlight dynamic aspects of luminal fluid flow in the epididymis, essential for regulating the microenvironment for sperm maturation and motility, and discuss how this phenomenon emerges and interplays with epididymal epithelial cells. CONCLUSION This review not only aims to summarize current knowledge but also to provide a starting point for further exploration of mechanobiological aspects related to the cellular and extracellular fluid dynamics in the epididymis.
Collapse
Affiliation(s)
- Veronica Lee
- Mechanobiology, Institute, National University of Singapore, Singapore, Singapore
| | - Barry T. Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Tsuyoshi Hirashima
- Mechanobiology, Institute, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Gao DD, Liu GQ, Chen YL, Ding N, Zhong JH, Liang GN, Deng WJ, Li PL, Su JR, Wang M, Huang JH, Hu M. Cellular mechanism underlying leptin-induced anion secretion of rat epididymal epithelial cells. Andrology 2024. [PMID: 38778669 DOI: 10.1111/andr.13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND A large number of studies have shown that leptin plays an important role in the regulation of fertility via the hypothalamus-pituitary-gonad axis. However, its peripheral function in epididymis was still elusive. OBJECTIVE The purpose of this study was to determine the pro-secretion effect of leptin on the rat epididymal epithelium. MATERIALS AND METHODS In the present study, real-time quantitative polymerase chain reaction, western blot, and immunohistochemical analysis were employed to detect the expression pattern of leptin receptors in rat epididymis. The pro-secretion effect of leptin on epididymal epithelial cells was measured by short-circuit current, and the prostaglandin E2 and cyclic adenosine monophosphate level was evaluated by enzyme-linked immunosorbent assay. RESULTS We verified that the leptin receptor was located on the epididymal epithelium, with a relatively high expression level in corpus and cauda epididymis. Ussing chamber experiments showed that leptin stimulated a significant rise of the short-circuit current in rat epididymal epithelial cells, which could be abolished by the specific leptin receptor antagonist peptide Allo-aca, or by removing the ambient Cl- and HCO3 -. Furthermore, the leptin-stimulated short-circuit current response could be abrogated by blocking the apical cystic fibrosis transmembrane regulator or the basolateral Na+-K+-2Cl- cotransporter. Our pharmacological experiments manifested that interfering with the prostaglandin H synthase-2-prostaglandin E2-EP2/EP4-adenylate cyclase pathways could significantly blunt the cystic fibrosis transmembrane regulator-mediated anion secretion induced by leptin. The enzyme-linked immunosorbent assay demonstrated that leptin could induce a substantial increase in prostaglandin E2 release and cyclic adenosine monophosphate synthesis of primary cultured rat cauda epididymal epithelial cells. Our data also suggested that JAK2, ERK, and PI3K-dependent phosphorylation may be involved in the activation of prostaglandin H synthase-2 and the subsequent prostaglandin E2 production. CONCLUSIONS The present study demonstrated the pro-secretion function of leptin in rat epididymal epithelium via the activation of cystic fibrosis transmembrane regulator and Na+-K+-2Cl- cotransporter, which was dependent on the paracrine/autocrine prostaglandin E2 stimulated EP2/EP4-adenylate cyclase pathways, and thus contributed to the formation of an appropriate microenvironment essential for sperm maturation.
Collapse
Affiliation(s)
- Dong-Dong Gao
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Guo-Qing Liu
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Yi-Lin Chen
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Nan Ding
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Jia-Hui Zhong
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Guang-Nan Liang
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Wei-Ji Deng
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Pei-Lun Li
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Jia-Rui Su
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Ming Wang
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Jun-Hao Huang
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Min Hu
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| |
Collapse
|
4
|
Gao DD, Huang JH, Ding N, Deng WJ, Li PL, Mai YN, Wu JR, Hu M. Mechanosensitive Piezo1 channel in rat epididymal epithelial cells promotes transepithelial K+ secretion. Cell Calcium 2022; 104:102571. [DOI: 10.1016/j.ceca.2022.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/28/2022]
|