1
|
Waye AA, Moeller J, Veiga-Lopez A. Epidermal growth factor receptor in placental health and disease: pathways, dysfunction, and chemical disruption. Toxicol Sci 2025; 205:11-27. [PMID: 39985453 PMCID: PMC12038240 DOI: 10.1093/toxsci/kfaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025] Open
Abstract
Formation of the placenta during gestation is required to support fetal growth and development. Derived from the placenta, trophoblast cells express nuclear and membrane-bound receptors. Among these receptors is the epidermal growth factor receptor (EGFR) which plays a key role in placental development. Activation of EGFR-mediated signaling in trophoblast cells regulates critical processes, such as proliferation, differentiation, invasion, and fusion during pregnancy, making it essential for normal placental formation. Dysfunction of EGFR in placental trophoblast cells has been associated with adverse pregnancy outcomes, including intrauterine growth restriction, preeclampsia, and preterm birth. Ubiquitous environmental chemicals, like polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorine pesticides, and bisphenols, have been reported to modulate EGFR signaling pathways, potentially contributing to placental dysfunction. This review explores the pivotal role of EGFR signaling in placental development and function, with a focus on how environmental chemicals interfere with EGFR-mediated pathways and placental cell functions as well as their implications for pregnancy outcomes. Findings presented herein underscore the need for further research into the effects of exposure to environmental chemicals on modulating EGFR signaling pathways in the context of placental health.
Collapse
Affiliation(s)
- Anita A Waye
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Jacob Moeller
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
- The Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL 60612, United States
| |
Collapse
|
2
|
Godakumara K, Heath PR, Fazeli A. Rhythm of the First Language: Dynamics of Extracellular Vesicle-Based Embryo-Maternal Communication in the Pre-Implantation Microenvironment. Int J Mol Sci 2023; 24:ijms24076811. [PMID: 37047784 PMCID: PMC10095160 DOI: 10.3390/ijms24076811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
One of the most critical steps in mammalian reproduction is implantation. Embryos with an impaired capacity for embryo-maternal crosstalk are thought to have a reduced potential for implantation. One agent of embryo-maternal communication is extracellular vesicles (EV). EVs are lipid bilayer-bound biological nanoparticles implicated in intercellular communication between many of the known cell types. In the current study, we isolated EVs from trophoblast analogue JAr spheroids and supplemented the EVs with receptive endometrium analogue RL95-2 cells to simulate pre-implantation embryo-maternal dialogue. The transcriptome of the endometrial cells was examined at 30 min, 4 h and 48 h intervals using Oxford Nanopore® technology. At the time points, 30 min, 4 h and 48 h, the endometrial cells showed a significantly altered transcriptome. It seems trophoblast EVs induce a swift and drastic effect on the endometrial transcriptome. The effect peaks at around 4 h of EV supplementation, indicating a generalized effect on cell physiology. Alterations are especially apparent in biological pathways critical to embryonic implantation, such as extracellular matrix-receptor interactions and cytokine-receptor interactions. These observations can be helpful in elucidating the dynamics of embryo-maternal communication in the pre-implantation period.
Collapse
Affiliation(s)
- Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 50411 Tartu, Estonia
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience (SITRAN), University of Sheffield, 385a Glossop Rd., Broomhall, Sheffield S10 2HQ, UK
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 50411 Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, 14B Ravila, 50411 Tartu, Estonia
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|
3
|
Hirbo J, Eidem H, Rokas A, Abbot P. Integrating Diverse Types of Genomic Data to Identify Genes that Underlie Adverse Pregnancy Phenotypes. PLoS One 2015; 10:e0144155. [PMID: 26641094 PMCID: PMC4671692 DOI: 10.1371/journal.pone.0144155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/14/2015] [Indexed: 11/18/2022] Open
Abstract
Progress in understanding complex genetic diseases has been bolstered by synthetic approaches that overlay diverse data types and analyses to identify functionally important genes. Pre-term birth (PTB), a major complication of pregnancy, is a leading cause of infant mortality worldwide. A major obstacle in addressing PTB is that the mechanisms controlling parturition and birth timing remain poorly understood. Integrative approaches that overlay datasets derived from comparative genomics with function-derived ones have potential to advance our understanding of the genetics of birth timing, and thus provide insights into the genes that may contribute to PTB. We intersected data from fast evolving coding and non-coding gene regions in the human and primate lineage with data from genes expressed in the placenta, from genes that show enriched expression only in the placenta, as well as from genes that are differentially expressed in four distinct PTB clinical subtypes. A large fraction of genes that are expressed in placenta, and differentially expressed in PTB clinical subtypes (23–34%) are fast evolving, and are associated with functions that include adhesion neurodevelopmental and immune processes. Functional categories of genes that express fast evolution in coding regions differ from those linked to fast evolution in non-coding regions. Finally, there is a surprising lack of overlap between fast evolving genes that are differentially expressed in four PTB clinical subtypes. Integrative approaches, especially those that incorporate evolutionary perspectives, can be successful in identifying potential genetic contributions to complex genetic diseases, such as PTB.
Collapse
Affiliation(s)
- Jibril Hirbo
- Department of Biological Sciences, Vanderbilt University, Box 35164 Station B, Nashville, TN, 37235–1634, United States of America
| | - Haley Eidem
- Department of Biological Sciences, Vanderbilt University, Box 35164 Station B, Nashville, TN, 37235–1634, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Box 35164 Station B, Nashville, TN, 37235–1634, United States of America
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Box 35164 Station B, Nashville, TN, 37235–1634, United States of America
- * E-mail:
| |
Collapse
|
4
|
Ospina-Prieto S, Chaiwangyen W, Pastuschek J, Schleussner E, Markert UR, Morales-Prieto DM. STAT5 is Activated by Epidermal Growth Factor and Induces Proliferation and Invasion in Trophoblastic Cells. Reprod Sci 2015; 22:1358-66. [PMID: 25862676 DOI: 10.1177/1933719115578923] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Epidermal growth factor (EGF) is expressed by decidual and trophoblast cells and influences manifold cellular functions during embryo implantation. Thus far, signaling of EGF via Signal Transducer and Activator of Transcription 5 (STAT5) has been only partially investigated. STAT5 stimulates proliferation and cell cycle progression in several cell types. Its dysregulation is associated with pregnancy. The aim of this study was to investigate STAT5 activation and function mediated by EGF in 2 trophoblastic cell lines, namely, HTR8/SVneo and JAR. Additionally, expression of STAT5B messenger RNA (mRNA) in trophoblast models has been compared to that of primary cells isolated from term placentas. Our results demonstrate the highest STAT5B mRNA expression in isolated trophoblast cells, lower expression in HTR8/SVneo cells, and the significantly lowest in JAR cells. Moreover, EGF-mediated STAT5 activation increases cell proliferation and viability in both cell lines. The STAT5 knockdown results in significant decrease in cell viability induced by EGF. Only in HTR8/SVneo cells, invasion decreases after STAT5 silencing and this effect cannot be rescued by further addition of EGF. These results demonstrate that STAT5 activated by EGF constitutes an important cascade for the regulation of cell proliferation and invasion in trophoblast cells.
Collapse
Affiliation(s)
| | - Wittaya Chaiwangyen
- Department of Obstetrics, University Hospital Jena, Placenta-Lab, Bachstraße, Jena, Germany
| | - Jana Pastuschek
- Department of Obstetrics, University Hospital Jena, Placenta-Lab, Bachstraße, Jena, Germany
| | - Ekkehard Schleussner
- Department of Obstetrics, University Hospital Jena, Placenta-Lab, Bachstraße, Jena, Germany
| | - Udo R Markert
- Department of Obstetrics, University Hospital Jena, Placenta-Lab, Bachstraße, Jena, Germany
| | - Diana M Morales-Prieto
- Department of Obstetrics, University Hospital Jena, Placenta-Lab, Bachstraße, Jena, Germany
| |
Collapse
|
5
|
Esmailizadeh AK. Genome-scan analysis for genetic mapping of quantitative trait loci underlying birth weight and onset of puberty in doe kids (Capra hircus). Anim Genet 2014; 45:849-54. [PMID: 25199639 DOI: 10.1111/age.12216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2014] [Indexed: 11/30/2022]
Abstract
The objective of this study was to locate quantitative trait loci (QTL) causing variation in birth weight and age of puberty of doe kids in a population of Rayini cashmere goats. Four hundred and thirty kids from five half-sib families were genotyped for 116 microsatellite markers located on the caprine autosomes. The traits recorded were birth weight of the male and female kids, body weight at puberty, average daily gain from birth to age of puberty and age at puberty of the doe kids. QTL analysis was conducted using the least squares interval mapping approach. Linkage analysis indicated significant QTL for birth weight on Capra hircus chromosomes (CHI) 4, 5, 6, 18 and 21. Five QTL located on CHI 5, 14 and 29 were associated with age at puberty. Across-family analysis revealed evidence for overlapping QTL affecting birth weight (78 cM), body weight at puberty (72 cM), average daily gain from birth to age of puberty (72 cM) and age at puberty (76 cM) on CHI 5 and overlapping QTL controlling body weight at puberty and age at puberty on CHI 14 at 18-19 cM. The proportion of the phenotypic variance explained by the detected QTL ranged between 7.9% and 14.4%. Confirming some of the previously reported results for birth weight and growth QTL in goats, this study identified more QTL for these traits and is the first report of QTL for onset of puberty in doe kids.
Collapse
Affiliation(s)
- A K Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB, 76169-133, Iran
| |
Collapse
|
6
|
The epidermal growth factor receptor critically regulates endometrial function during early pregnancy. PLoS Genet 2014; 10:e1004451. [PMID: 24945252 PMCID: PMC4063709 DOI: 10.1371/journal.pgen.1004451] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/02/2014] [Indexed: 01/11/2023] Open
Abstract
Infertility and adverse gynecological outcomes such as preeclampsia and miscarriage represent significant female reproductive health concerns. The spatiotemporal expression of growth factors indicates that they play an important role in pregnancy. The goal of this study is to define the role of the ERBB family of growth factor receptors in endometrial function. Using conditional ablation in mice and siRNA in primary human endometrial stromal cells, we identified the epidermal growth factor receptor (Egfr) to be critical for endometrial function during early pregnancy. While ablation of Her2 or Erbb3 led to only a modest reduction in litter size, mice lacking Egfr expression are severely subfertile. Pregnancy demise occurred shortly after blastocyst implantation due to defects in decidualization including decreased proliferation, cell survival, differentiation and target gene expression. To place Egfr in a genetic regulatory hierarchy, transcriptome analyses was used to compare the gene signatures from mice with conditional ablation of Egfr, wingless-related MMTV integration site 4 (Wnt4) or boneless morphogenic protein 2 (Bmp2); revealing that not only are Bmp2 and Wnt4 key downstream effectors of Egfr, but they also regulate distinct physiological functions. In primary human endometrial stromal cells, marker gene expression, a novel high content image-based approach and phosphokinase array analysis were used to demonstrate that EGFR is a critical regulator of human decidualization. Furthermore, inhibition of EGFR signaling intermediaries WNK1 and AKT1S1, members identified in the kinase array and previously unreported to play a role in the endometrium, also attenuate decidualization. These results demonstrate that EGFR plays an integral role in establishing the cellular context necessary for successful pregnancy via the activation of intricate signaling and transcriptional networks, thereby providing valuable insight into potential therapeutic targets. Approximately 10% of reproductive aged women are considered infertile. While great strides have been made in assisted reproductive technologies, overall success rates, especially considering the cost, remain low. Studies indicate that due to its sequential nature, nearly 75% of pregnancy failures are due to defects that occur very early in gestation. Therefore, understanding the physiological changes that occur in the endometrium during this period and how those changes are regulated is of paramount importance if we are to improve our ability to address female reproductive health concerns. We investigated a family of growth factor receptors and identified one that critically regulates the growth and survival of the endometrium in response to the implanting embryo. Furthermore, we used unbiased approaches to identify which signaling pathways and genetic networks are activated downstream of this receptor to execute each of the processes necessary for a successful pregnancy. Understanding the mechanisms and genetic networks with which pregnancy is regulated is a prerequisite to the development of effective pharmaceutical therapeutics.
Collapse
|
7
|
Chenthuran T, Galhenagey GH, Jayasekara RW, Dissanayake VHW. Polymorphism in the epidermal growth factor gene is associated with pre-eclampsia and low birthweight. J Obstet Gynaecol Res 2014; 40:1235-42. [DOI: 10.1111/jog.12362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 11/20/2013] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Rohan W. Jayasekara
- Human Genetics Unit; Faculty of Medicine; University of Colombo; Colombo Sri Lanka
| | | |
Collapse
|
8
|
Zeng F, Harris RC. Epidermal growth factor, from gene organization to bedside. Semin Cell Dev Biol 2014; 28:2-11. [PMID: 24513230 DOI: 10.1016/j.semcdb.2014.01.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 02/07/2023]
Abstract
In 1962, epidermal growth factor (EGF) was discovered by Dr. Stanley Cohen while studying nerve growth factor (NGF). It was soon recognized that EGF is the prototypical member of a family of peptide growth factors that activate the EGF receptors, and that the EGF/EGF receptor signaling pathway plays important roles in proliferation, differentiation and migration of a variety of cell types, especially in epithelial cells. After the basic characterization of EGF function in the first decade or so after its discovery, the studies related to EGF and its signaling pathway have extended to a broad range of investigations concerning its biological and pathophysiological roles in development and in human diseases. In this review, we briefly describe the gene organization and tissue distribution of EGF, with emphasis on its biological and pathological roles in human diseases.
Collapse
Affiliation(s)
- Fenghua Zeng
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States; Department of Veterans Affairs, Nashville, TN, United States.
| |
Collapse
|
9
|
Mormile R, Vittori G, De Michele M, Squarcia U, Quaini F. Postnatal regression of hypertrophic cardiomyopathy in infants of diabetic mothers: a crosstalk between Hox genes and epidermal growth factor (EGF) gene polymorphism? Int J Cardiol 2011; 150:340. [PMID: 21624686 DOI: 10.1016/j.ijcard.2011.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 05/13/2011] [Indexed: 11/23/2022]
|
10
|
Edwards DRV, Romero R, Kusanovic JP, Hassan SS, Mazaki-Tovi S, Vaisbuch E, Kim CJ, Erez O, Chaiworapongsa T, Pearce BD, Bartlett J, Friel LA, Salisbury BA, Anant MK, Vovis GF, Lee MS, Gomez R, Behnke E, Oyarzun E, Tromp G, Menon R, Williams SM. Polymorphisms in maternal and fetal genes encoding for proteins involved in extracellular matrix metabolism alter the risk for small-for-gestational-age. J Matern Fetal Neonatal Med 2011; 24:362-80. [PMID: 20617897 PMCID: PMC3104673 DOI: 10.3109/14767058.2010.497572] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To examine the association between maternal and fetal genetic variants and small-for-gestational-age (SGA). METHODS A case-control study was conducted in patients with SGA neonates (530 maternal and 436 fetal) and controls (599 maternal and 628 fetal); 190 candidate genes and 775 SNPs were studied. Single-locus, multi-locus and haplotype association analyses were performed on maternal and fetal data with logistic regression, multifactor dimensionality reduction (MDR) analysis, and haplotype-based association with 2 and 3 marker sliding windows, respectively. Ingenuity pathway analysis (IPA) software was used to assess pathways that associate with SGA. RESULTS The most significant single-locus association in maternal data was with a SNP in tissue inhibitor of metalloproteinase 2 (TIMP2) (rs2277698 OR = 1.71, 95% CI [1.26-2.32], p = 0.0006) while in the fetus it was with a SNP in fibronectin 1 isoform 3 preproprotein (FN1) (rs3796123, OR = 1.46, 95% CI [1.20-1.78], p = 0.0001). Both SNPs were adjusted for potential confounders (maternal body mass index and fetal sex). Haplotype analyses resulted in associations in α 1 type I collagen preproprotein (COL1A1, rs1007086-rs2141279-rs17639446, global p = 0.006) in mothers and FN1 (rs2304573-rs1250204-rs1250215, global p = 0.045) in fetuses. Multi-locus analyses with MDR identified a two SNP model with maternal variants collagen type V α 2 (COL5A2) and plasminogen activator urokinase (PLAU) predicting SGA outcome correctly 59% of the time (p = 0.035). CONCLUSIONS Genetic variants in extracellular matrix-related genes showed significant single-locus association with SGA. These data are consistent with other studies that have observed elevated circulating fibronectin concentrations in association with increased risk of SGA. The present study supports the hypothesis that DNA variants can partially explain the risk of SGA in a cohort of Hispanic women.
Collapse
Affiliation(s)
- Digna R. Velez Edwards
- Vanderbilt Epidemiology Center, Institute of Medicine and Public Health, Department of Obstetrics and Gynecology, Vanderbilt University, Nashville, Tennessee, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Shali Mazaki-Tovi
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Edi Vaisbuch
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Chong Jai Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Wayne State University, Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Brad D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jacquelaine Bartlett
- Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, USA
| | - Lara A. Friel
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| | | | | | | | | | - Ricardo Gomez
- CEDIP (Center for Perinatal Diagnosis and Research), Department of Obstetrics and Gynecology, Sotero del Rio Hospital, Santiago, Chile
- Department of Obstetrics and Gynecology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Ernesto Behnke
- CEDIP (Center for Perinatal Diagnosis and Research), Department of Obstetrics and Gynecology, Sotero del Rio Hospital, Santiago, Chile
| | - Enrique Oyarzun
- Department of Obstetrics and Gynecology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Gerard Tromp
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Ramkumar Menon
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Scott M. Williams
- Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Esmailizadeh A. A partial genome scan to identify quantitative trait loci affecting birthweight in Kermani sheep. Small Rumin Res 2010. [DOI: 10.1016/j.smallrumres.2010.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Placental and embryonic growth restriction in mice with reduced function epidermal growth factor receptor alleles. Genetics 2009; 183:207-18. [PMID: 19564486 DOI: 10.1534/genetics.109.104372] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Embryos lacking an epidermal growth factor receptor (EGFR) exhibit strain-specific defects in placental development that can result in mid-gestational embryonic lethality. To determine the level of EGFR signaling required for normal placental development, we characterized congenic strains homozygous for the hypomorphic Egfr(wa2) allele or heterozygous for the antimorphic Egfr(Wa5) allele. Egfr(wa2) homozygous embryos and placentas exhibit strain-dependent growth restriction at 15.5 days post-coitus while Egfr(Wa5) heterozygous placentas are only slightly reduced in size with no effect on embryonic growth. Egfr(wa2) homozygous placentas have a reduced spongiotrophoblast layer in some strains, while spongiotrophoblasts and glycogen cells are almost completely absent in others. Our results demonstrate that more EGFR signaling occurs in Egfr(Wa5) heterozygotes than in Egfr(wa2) homozygotes and suggest that Egfr(wa2) homozygous embryos model EGFR-mediated intrauterine growth restriction in humans. We also consistently observed differences between strains in wild-type placenta and embryo size as well as in the cellular composition and expression of trophoblast cell subtype markers and propose that differential expression in the placenta of Glut3, a glucose transporter essential for normal embryonic growth, may contribute to strain-dependent differences in intrauterine growth restriction caused by reduced EGFR activity.
Collapse
|
13
|
Dissanayake VHW, Giles V, Jayasekara RW, Seneviratne HR, Kalsheker N, Pipkin FB, Morgan L. A study of three candidate genes for pre-eclampsia in a Sinhalese population from Sri Lanka. J Obstet Gynaecol Res 2009; 35:234-42. [DOI: 10.1111/j.1447-0756.2008.00926.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|