1
|
Szántó M, Yélamos J, Bai P. Specific and shared biological functions of PARP2 - is PARP2 really a lil' brother of PARP1? Expert Rev Mol Med 2024; 26:e13. [PMID: 38698556 PMCID: PMC11140550 DOI: 10.1017/erm.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024]
Abstract
PARP2, that belongs to the family of ADP-ribosyl transferase enzymes (ART), is a discovery of the millennium, as it was identified in 1999. Although PARP2 was described initially as a DNA repair factor, it is now evident that PARP2 partakes in the regulation or execution of multiple biological processes as inflammation, carcinogenesis and cancer progression, metabolism or oxidative stress-related diseases. Hereby, we review the involvement of PARP2 in these processes with the aim of understanding which processes are specific for PARP2, but not for other members of the ART family. A better understanding of the specific functions of PARP2 in all of these biological processes is crucial for the development of new PARP-centred selective therapies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - José Yélamos
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Péter Bai
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
2
|
Ahmed EA, Alzahrani AM, Scherthan H. Parp1-Dependent DNA Double-Strand Break Repair in Irradiated Late Pachytene Spermatocytes. DNA Cell Biol 2020; 40:209-218. [PMID: 33337266 DOI: 10.1089/dna.2020.5727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Poly (ADP-ribose) polymerase-1 (Parp1) is a member of nuclear enzymes family involved in to the response to genotoxic stresses, DNA repair, and is critical for the maintenance of genome stability. During gametogenesis, genome stability is essential for inheritance and formation of healthy gametes. The latter involves DNA double-strand break (DSB)-driven pairing of homologous chromosomes in first meiotic prophase. By analysis of DSB repair kinetics in male meiotic prophase cells of homologous recombination (HR) and nonhomologous end joining (NHEJ)-deficient mouse models, we previously demonstrated an interplay between HR and the conventional NHEJ repair pathway. In the current work, we evaluate the relative contribution of Parp1-dependent NHEJ to the repair of ectopic ionizing radiation (IR)-induced DSBs in control and Parp1-inhibited mouse pachytene spermatocytes before and after the completion of meiotic recombination in stages VI-XI. The disappearance of large, exogenous DSB-related γ-H2AX foci was quantified 1 and 8 h after 1 Gy γ-irradiation of control and 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)quinolinone (DPQ) Parp1-inhibited mice. Late pachytene control spermatocytes obtained 8 h after IR had repaired >80% of DSBs observed at 1 h after IR. However, only 64% of DSBs were repaired in late spermatocytes of DPQ-treated (Parp1-inhibited) mice. Thus, it appears that Parp1 contributes to the repair of a fraction of DSBs in late prophase I, providing further insights in DNA repair pathway choreography during spermatogenic differentiation.
Collapse
Affiliation(s)
- Emad A Ahmed
- Biological Sciences Department, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia.,Laboratory of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Abdullah M Alzahrani
- Biological Sciences Department, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Harry Scherthan
- Institut für Radiobiologie der Bundeswehr in Verb. mit der Universität Ulm, Munich, Germany
| |
Collapse
|
3
|
Batnasan E, Xie S, Zhang Q, Li Y. Observation of Parthanatos Involvement in Diminished Ovarian Reserve Patients and Melatonin's Protective Function Through Inhibiting ADP-Ribose (PAR) Expression and Preventing AIF Translocation into the Nucleus. Reprod Sci 2020; 27:75-86. [PMID: 32046374 DOI: 10.1007/s43032-019-00005-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/25/2019] [Indexed: 01/09/2023]
Abstract
Diminished ovarian reserve (DOR) is characterized by the depletion of the ovarian pool, which leads to reductions in oocyte quality and quantity. Studies have suggested that ovarian reserve or ovarian aging is tightly related to apoptosis. However, the cell death mechanism is not comprehensively understood. Parthanatos, a type of poly [ADP-ribose] polymerase 1(PARP1)-dependent and apoptosis-inducing factor (AIF)-mediated cell death, plays a crucial role in various disorders. In the present study, we aimed to investigate whether parthanatos is involved in the pathogenesis of DOR. We recruited 40 patients (20 DOR patients and 20 normal ovarian reserve (NOR) patients) and examined PAR expression and AIF translocation in their isolated cumulus GCs (granulosa cells) by fluorescence microscopy. Our results demonstrated that PAR expression and AIF nuclear translocation were significantly higher in cumulus GCs of DOR patients, suggesting that PARP1-dependent cell death may be associated with DOR pathophysiology. Moreover, we tested the protective function of melatonin on hydrogen peroxide (H2O2)-induced parthanatos in human ovarian cancer (IGROV1) cells. Our results demonstrated that H2O2 treatment of IGROV1 cells led to excessive protein PARylation and AIF translocation into the nuclei. Melatonin effectively inhibits PARylation, blocks translocation of AIF into the nucleus, and consequently decreases the risk of parthanatos in cumulus GCs.
Collapse
Affiliation(s)
- Enkhzaya Batnasan
- Center for Reproductive Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province, People's Republic of China
| | - Shi Xie
- Center for Reproductive Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province, People's Republic of China
| | - Qiong Zhang
- Center for Reproductive Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province, People's Republic of China
| | - Yanping Li
- Center for Reproductive Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China. .,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province, People's Republic of China.
| |
Collapse
|
4
|
Sarkar S, Sujit KM, Singh V, Pandey R, Trivedi S, Singh K, Gupta G, Rajender S. Array-based DNA methylation profiling reveals peripheral blood differential methylation in male infertility. Fertil Steril 2019; 112:61-72.e1. [DOI: 10.1016/j.fertnstert.2019.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/27/2022]
|
5
|
Sun Q, Gatie MI, Kelly GM. Serum-dependent and -independent regulation of PARP2. Biochem Cell Biol 2019; 97:600-611. [PMID: 30880404 DOI: 10.1139/bcb-2018-0345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PARP2 belongs to a family of proteins involved in cell differentiation, DNA damage repair, cellular energy expenditure, and chromatin modeling. In addition to these overlapping functions with PARP1, PARP2 participates in spermatogenesis, T-cell maturation, extra-embryonic endoderm formation, adipogenesis, lipid metabolism, and cholesterol homeostasis. Knowledge of the functions of PARP2 is far from complete, and the mechanism(s) by which the gene and protein are regulated are unknown. In this study, we found that two different mechanisms are used in vitro to regulate PARP2 levels. In the presence of serum, PARP2 is degraded through the ubiquitin-proteasome pathway; however, when serum is removed or dialyzed with a 3.5 kDa molecular cut membrane, PARP2 rapidly becomes sodium dodecyl sulphate- and urea-insoluble. Despite the presence of a putative serum response element in the PARP2 gene, transcription is not affected by serum deprivation, and PARP2 levels are restored when serum is replaced. The loss of PARP2 affects cell differentiation and gene expression linked to cholesterol and lipid metabolism. These observations highlight the critical roles that PARP2 plays under different physiological conditions, and reveal that PARP2 is tightly regulated by distinct pathways.
Collapse
Affiliation(s)
- Qizhi Sun
- Department of Biology, Molecular Genetics Unit, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Mohamed I Gatie
- Department of Biology, Molecular Genetics Unit, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Gregory M Kelly
- Department of Biology, Molecular Genetics Unit, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada.,Departments of Physiology, Pharmacology, and Paediatrics, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada.,Child Health Research Institute, 800 Commissioners Road East, London, ON N6C 2B5, Canada.,Ontario Institute for Regenerative Medicine, MaRS Centre, 661 University Avenue, Suite 510, Toronto, ON M5G 0A3, Canada
| |
Collapse
|
6
|
Meyer RG, Ketchum CC, Meyer-Ficca ML. Heritable sperm chromatin epigenetics: a break to remember†. Biol Reprod 2017; 97:784-797. [DOI: 10.1093/biolre/iox137] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023] Open
|
7
|
Celik-Ozenci C, Tasatargil A. Role of poly(ADP-ribose) polymerases in male reproduction. SPERMATOGENESIS 2014; 3:e24194. [PMID: 23885303 PMCID: PMC3710221 DOI: 10.4161/spmg.24194] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 01/05/2023]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes involved in a wide variety of biological processes, including DNA repair and maintenance of genomic stability following genotoxic stress, and regulates the expression of various proteins at the transcriptional level as well as replication and differentiation. However, excessive activation of PARP has been shown to contribute to the pathogenesis of several diseases associated with oxidative stress (OS), which has been known to play a fundamental role in the etiology of male infertility. Based on the degree and type of the stress stimulus, PARP directs cells to specific fates (such as, DNA repair vs. cell death). A large volume of accumulated evidence indicates the presence of PARP and its homologs in testicular germ line cells and its activity may offer a key mechanism for keeping DNA integrity in spermatogenesis. On the other hand, a possible role of PARP overactivation in OS-induced male reproductive disorders and in human sperm is gaining significance in recent years. In this review, we focus on the findings about the importance of PARP-1 and PARP-2 in male reproduction and possible involvement of PARP overactivation in various clinical conditions associated with male infertility.
Collapse
Affiliation(s)
- Ciler Celik-Ozenci
- Akdeniz University Medical Faculty Department of Histology and Embryology; Antalya, Turkey
| | | |
Collapse
|
8
|
Sriram CS, Jangra A, Kasala ER, Bodduluru LN, Bezbaruah BK. Targeting poly(ADP-ribose)polymerase1 in neurological diseases: A promising trove for new pharmacological interventions to enter clinical translation. Neurochem Int 2014; 76:70-81. [PMID: 25049175 DOI: 10.1016/j.neuint.2014.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 12/22/2022]
Abstract
The highly conserved abundant nuclear protein poly(ADP-ribose)polymerase1 (PARP1) functions at the center of cellular stress response and is mainly implied in DNA damage repair mechanism. Apart from its involvement in DNA damage repair, it does sway multiple vital cellular processes such as cell death pathways, cell aging, insulator function, chromatin modification, transcription and mitotic apparatus function. Since brain is the principal organ vulnerable to oxidative stress and inflammatory responses, upon stress encounters robust DNA damage can occur and intense PARP1 activation may result that will lead to various CNS diseases. In the context of soaring interest towards PARP1 as a therapeutic target for newer pharmacological interventions, here in the present review, we are attempting to give a silhouette of the role of PARP1 in the neurological diseases and the potential of its inhibitors to enter clinical translation, along with its structural and functional aspects.
Collapse
Affiliation(s)
- Chandra Shekhar Sriram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), III Floor, Guwahati Medical College, Narkachal Hilltop, Bhangagarh, Guwahati, Assam 781032, India.
| | - Ashok Jangra
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), III Floor, Guwahati Medical College, Narkachal Hilltop, Bhangagarh, Guwahati, Assam 781032, India
| | - Eshvendar Reddy Kasala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), III Floor, Guwahati Medical College, Narkachal Hilltop, Bhangagarh, Guwahati, Assam 781032, India
| | - Lakshmi Narendra Bodduluru
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), III Floor, Guwahati Medical College, Narkachal Hilltop, Bhangagarh, Guwahati, Assam 781032, India
| | - Babul Kumar Bezbaruah
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), III Floor, Guwahati Medical College, Narkachal Hilltop, Bhangagarh, Guwahati, Assam 781032, India; Department of Pharmacology, III Floor, Guwahati Medical College, Narkachal Hilltop, Bhangagarh, Guwahati, Assam 781032, India
| |
Collapse
|
9
|
Gungor-Ordueri NE, Sahin Z, Sahin P, Celik-Ozenci C. The expression pattern of PARP-1 and PARP-2 in the developing and adult mouse testis. Acta Histochem 2014; 116:958-64. [PMID: 24785709 DOI: 10.1016/j.acthis.2014.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 11/15/2022]
Abstract
Although the importance of the PARP family members in the adult testis has already been acknowledged, their expression in the developing testis has not been addressed. We performed immunohistochemistry by using PARP-1 and PARP-2 antibodies on the developing mouse testis at embryonic day (E) 15.5, E17.5, postnatal day (PN) 0, PN3, PN9, PN20 and adult. Our results showed that at embryonic and early postnatal days, the expression of PARP-1 was in the nuclei of gonocytes and spermatogonia. PARP-1 was positive in interstitial cells with nuclear localization at all studied ages. At embryonic and early postnatal days, the expression of PARP-2 was in the cytoplasm of gonocytes and spermatogonia. During the progress of spermatogenesis, PARP-2 was localized in the cytoplasm of pre-leptotene spermatocytes on PN9, in the cytoplasm of pachytene spermatocytes on PN15 and in the cytoplasm of round spermatids on PN20. In the adult, PARP-2 staining can still be observed in the cytoplasm of spermatogonia, but to a much lesser degree than in the round and elongating spermatids. For all the studied ages, PARP-2 was positive in Sertoli cells and interstitial cells with cytoplasmic localization. Our results indicate that PARP proteins are present in germ and somatic cells during testis development in mice.
Collapse
Affiliation(s)
- Nazli Ece Gungor-Ordueri
- Department of Histology and Embryology, Medical Faculty of Akdeniz University, Campus 07070, Antalya, Turkey
| | - Zeliha Sahin
- Department of Histology and Embryology, Faculty of Medicine, Near East University 922022, Nicosia, Mersin-10, Turkey
| | - Pinar Sahin
- Department of Histology and Embryology, Medical Faculty of Akdeniz University, Campus 07070, Antalya, Turkey
| | - Ciler Celik-Ozenci
- Department of Histology and Embryology, Medical Faculty of Akdeniz University, Campus 07070, Antalya, Turkey.
| |
Collapse
|
10
|
The PARP1/ARTD1-Mediated Poly-ADP-Ribosylation and DNA Damage Repair in B Cell Diversification. Antibodies (Basel) 2014. [DOI: 10.3390/antib3010037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Villani P, Fresegna AM, Ranaldi R, Eleuteri P, Paris L, Pacchierotti F, Cordelli E. X-ray induced DNA damage and repair in germ cells of PARP1(-/-) male mice. Int J Mol Sci 2013; 14:18078-92. [PMID: 24009020 PMCID: PMC3794770 DOI: 10.3390/ijms140918078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 11/16/2022] Open
Abstract
Poly(ADP-ribose)polymerase-1 (PARP1) is a nuclear protein implicated in DNA repair, recombination, replication, and chromatin remodeling. The aim of this study was to evaluate possible differences between PARP1−/− and wild-type mice regarding induction and repair of DNA lesions in irradiated male germ cells. Comet assay was applied to detect DNA damage in testicular cells immediately, and two hours after 4 Gy X-ray irradiation. A similar level of spontaneous and radiation-induced DNA damage was observed in PARP1−/− and wild-type mice. Conversely, two hours after irradiation, a significant level of residual damage was observed in PARP1−/− cells only. This finding was particularly evident in round spermatids. To evaluate if PARP1 had also a role in the dynamics of H2AX phosphorylation in round spermatids, in which γ-H2AX foci had been shown to persist after completion of DNA repair, we carried out a parallel analysis of γ-H2AX foci at 0.5, 2, and 48 h after irradiation in wild-type and PARP1−/− mice. No evidence was obtained of an effect of PARP1 depletion on H2AX phosphorylation induction and removal. Our results suggest that, in round spermatids, under the tested experimental conditions, PARP1 has a role in radiation-induced DNA damage repair rather than in long-term chromatin modifications signaled by phosphorylated H2AX.
Collapse
Affiliation(s)
- Paola Villani
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-06-3048-4316; Fax: +39-06-3048-6559
| | - Anna Maria Fresegna
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
| | - Roberto Ranaldi
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
| | - Patrizia Eleuteri
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
| | - Lorena Paris
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
- Department of Ecology and Biology, University of Tuscia, Viterbo 01100, Italy
| | - Francesca Pacchierotti
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
| | - Eugenia Cordelli
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
| |
Collapse
|
12
|
Robert I, Karicheva O, Reina San Martin B, Schreiber V, Dantzer F. Functional aspects of PARylation in induced and programmed DNA repair processes: preserving genome integrity and modulating physiological events. Mol Aspects Med 2013; 34:1138-52. [PMID: 23454615 DOI: 10.1016/j.mam.2013.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/04/2013] [Accepted: 02/18/2013] [Indexed: 12/24/2022]
Abstract
To cope with the devastating insults constantly inflicted to their genome by intrinsic and extrinsic DNA damaging sources, cells have evolved a sophisticated network of interconnected DNA caretaking mechanisms that will detect, signal and repair the lesions. Among the underlying molecular mechanisms that regulate these events, PARylation catalyzed by Poly(ADP-ribose) polymerases (PARPs), appears as one of the earliest post-translational modification at the site of the lesion that is known to elicit recruitment and regulation of many DNA damage response proteins. In this review we discuss how the complex PAR molecule operates in stress-induced DNA damage signaling and genome maintenance but also in various physiological settings initiated by developmentally programmed DNA breakage. To illustrate the latter, particular emphasis will be placed on the emerging contribution of PARPs to B cell receptor assembly and diversification.
Collapse
Affiliation(s)
- Isabelle Robert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM), Centre National de Recherche Scientifique (CNRS), UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | | | | | | | | |
Collapse
|
13
|
Szántó M, Brunyánszki A, Kiss B, Nagy L, Gergely P, Virág L, Bai P. Poly(ADP-ribose) polymerase-2: emerging transcriptional roles of a DNA-repair protein. Cell Mol Life Sci 2012; 69:4079-92. [PMID: 22581363 PMCID: PMC11114944 DOI: 10.1007/s00018-012-1003-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/17/2012] [Accepted: 04/19/2012] [Indexed: 12/30/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP)-2 is a nuclear enzyme that belongs to the PARP family and PARP-2 is responsible for 5-15 % of total cellular PARP activity. PARP-2 was originally described in connection to DNA repair and in physiological and pathophysiological processes associated with genome maintenance (e.g., centromere and telomere protection, spermiogenesis, thymopoiesis, azoospermia, and tumorigenesis). Recent reports have identified important rearrangements in gene expression upon the knockout of PARP-2. Such rearrangements heavily impact inflammation and metabolism. Metabolic effects are mediated through modifying PPARγ and SIRT1 function. Altered gene expression gives rise to a complex phenotype characterized primarily by enhanced mitochondrial activity that results both in beneficial (loss of fat, enhanced insulin sensitivity) and in disadvantageous (pancreatic beta cell hypofunction upon high fat feeding) consequences. Enhanced mitochondrial biogenesis provides protection in oxidative stress-related diseases. Hereby, we review the recent developments in PARP-2 research with special attention to the involvement of PARP-2 in transcriptional and metabolic regulation.
Collapse
Affiliation(s)
- Magdolna Szántó
- Medical and Health Science Center, MHSC, Department of Medical Chemistry, University of Debrecen, Nagyerdei krt. 98., Pf. 7, 4032 Debrecen, Hungary
| | - Attila Brunyánszki
- Medical and Health Science Center, MHSC, Department of Medical Chemistry, University of Debrecen, Nagyerdei krt. 98., Pf. 7, 4032 Debrecen, Hungary
| | - Borbála Kiss
- Medical and Health Science Center, Department of Dermatology, University of Debrecen, 4032 Debrecen, Hungary
| | - Lilla Nagy
- Medical and Health Science Center, MHSC, Department of Medical Chemistry, University of Debrecen, Nagyerdei krt. 98., Pf. 7, 4032 Debrecen, Hungary
| | - Pál Gergely
- Medical and Health Science Center, MHSC, Department of Medical Chemistry, University of Debrecen, Nagyerdei krt. 98., Pf. 7, 4032 Debrecen, Hungary
| | - László Virág
- Medical and Health Science Center, MHSC, Department of Medical Chemistry, University of Debrecen, Nagyerdei krt. 98., Pf. 7, 4032 Debrecen, Hungary
| | - Péter Bai
- Medical and Health Science Center, MHSC, Department of Medical Chemistry, University of Debrecen, Nagyerdei krt. 98., Pf. 7, 4032 Debrecen, Hungary
| |
Collapse
|
14
|
Pic E, Gagné JP, Poirier GG. Mass spectrometry-based functional proteomics of poly(ADP-ribose) polymerase-1. Expert Rev Proteomics 2012; 8:759-74. [PMID: 22087659 DOI: 10.1586/epr.11.63] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PARP-1 is an abundant nuclear protein that plays an essential role in the regulation of many genome integrity and chromatin-based processes, such as DNA repair, replication or transcriptional regulation. PARP-1 modulates the function of chromatin and nuclear proteins through several poly(ADP-ribose) (pADPr)-dependent pathways. Aside from the clearly established role of PARP-1 in the maintenance of genome stability, PARP-1 also emerged as an important regulator that links chromatin functions with extranuclear compartments. pADPr signaling has notably been found to be responsible for PARP-1-mediated mitochondrial dysfunction and cell death. Defining the mechanisms that govern the intrinsic functions of PARP-1 is fundamental to the understanding of signaling networks regulated by pADPr. The emergence of mass spectrometry-based proteomics and its broad applications in the study of biological systems represents an outstanding opportunity to widen our knowledge of the functional spectrum of PARP-1. In this article, we summarize various PARP-1 targeted proteomics studies and proteome-wide analyses that shed light on its protein interaction partners, expression levels and post-translational modifications.
Collapse
Affiliation(s)
- Emilie Pic
- Centre de Recherche du CHUQ ? Pavillon CHUL, Faculty of Medicine, Laval University, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada
| | | | | |
Collapse
|
15
|
Meyer-Ficca ML, Ihara M, Lonchar JD, Meistrich ML, Austin CA, Min W, Wang ZQ, Meyer RG. Poly(ADP-ribose) metabolism is essential for proper nucleoprotein exchange during mouse spermiogenesis. Biol Reprod 2010; 84:218-28. [PMID: 20881315 DOI: 10.1095/biolreprod.110.087361] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sperm chromatin is organized in a protamine-based, highly condensed form, which protects the paternal chromosome complement in transit, facilitates fertilization, and supports correct gene expression in the early embryo. Very few histones remain selectively associated with genes and defined regulatory sequences essential to embryonic development, while most of the genome becomes bound to protamine during spermiogenesis. Chromatin remodeling processes resulting in the dramatically different nuclear structure of sperm are poorly understood. This study shows that perturbation of poly(ADP-ribose) (PAR) metabolism, which is mediated by PAR polymerases and PAR glycohydrolase in response to naturally occurring endogenous DNA strand breaks during spermatogenesis, results in the abnormal retention of core histones and histone linker HIST1H1T (H1t) and H1-like linker protein HILS1 in mature sperm. Moreover, genetic or pharmacological alteration of PAR metabolism caused poor sperm chromatin quality and an abnormal nuclear structure in mice, thus reducing male fertility.
Collapse
Affiliation(s)
- Mirella L Meyer-Ficca
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Agarwal A, Mahfouz RZ, Sharma RK, Sarkar O, Mangrola D, Mathur PP. Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes. Reprod Biol Endocrinol 2009; 7:143. [PMID: 19961617 PMCID: PMC2800114 DOI: 10.1186/1477-7827-7-143] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 12/05/2009] [Indexed: 12/13/2022] Open
Abstract
Maintaining the integrity of sperm DNA is vital to reproduction and male fertility. Sperm contain a number of molecules and pathways for the repair of base excision, base mismatches and DNA strand breaks. The presence of Poly (ADP-ribose) polymerase (PARP), a DNA repair enzyme, and its homologues has recently been shown in male germ cells, specifically during stage VII of spermatogenesis. High PARP expression has been reported in mature spermatozoa and in proven fertile men. Whenever there are strand breaks in sperm DNA due to oxidative stress, chromatin remodeling or cell death, PARP is activated. However, the cleavage of PARP by caspase-3 inactivates it and inhibits PARP's DNA-repairing abilities. Therefore, cleaved PARP (cPARP) may be considered a marker of apoptosis. The presence of higher levels of cPARP in sperm of infertile men adds a new proof for the correlation between apoptosis and male infertility. This review describes the possible biological significance of PARP in mammalian cells with the focus on male reproduction. The review elaborates on the role played by PARP during spermatogenesis, sperm maturation in ejaculated spermatozoa and the potential role of PARP as new marker of sperm damage. PARP could provide new strategies to preserve fertility in cancer patients subjected to genotoxic stresses and may be a key to better male reproductive health.
Collapse
Affiliation(s)
- Ashok Agarwal
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Reda Z Mahfouz
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Rakesh K Sharma
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Oli Sarkar
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
- McGill University Health Center, Montreal, Canada
| | - Devna Mangrola
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Premendu P Mathur
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
| |
Collapse
|
17
|
Mahfouz RZ, Sharma RK, Poenicke K, Jha R, Paasch U, Grunewald S, Agarwal A. Evaluation of poly(ADP-ribose) polymerase cleavage (cPARP) in ejaculated human sperm fractions after induction of apoptosis. Fertil Steril 2009; 91:2210-20. [DOI: 10.1016/j.fertnstert.2008.02.173] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 02/28/2008] [Accepted: 02/28/2008] [Indexed: 10/22/2022]
|
18
|
Gambi N, Tramontano F, Quesada P. Poly(ADPR)polymerase inhibition and apoptosis induction in cDDP-treated human carcinoma cell lines. Biochem Pharmacol 2008; 75:2356-63. [DOI: 10.1016/j.bcp.2008.03.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 03/19/2008] [Accepted: 03/25/2008] [Indexed: 11/16/2022]
|
19
|
Yélamos J, Schreiber V, Dantzer F. Toward specific functions of poly(ADP-ribose) polymerase-2. Trends Mol Med 2008; 14:169-78. [PMID: 18353725 DOI: 10.1016/j.molmed.2008.02.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 12/31/2022]
Abstract
Poly(ADP-ribose) polymerase-2 (PARP-2) belongs to a family of enzymes that catalyze poly(ADP-ribosyl)ation of proteins. PARP-1 and PARP-2 are so far the only PARP enzymes whose catalytic activity has been shown to be induced by DNA-strand breaks, providing strong support for key shared functions in the cellular response to DNA damage. Accordingly, clinical trials for cancer, using PARP inhibitors that target the conserved catalytic domain of PARP proteins, are now ongoing. However, recent data suggest unique functions for PARP-2 in specific processes, such as genome surveillance, spermatogenesis, adipogenesis and T cell development. Understanding these physiological roles might provide invaluable clues to the rational development and exploitation of specific PARP-2 inhibitor drugs in a clinical setting and the design of new therapeutic approaches in different pathophysiological conditions.
Collapse
Affiliation(s)
- José Yélamos
- Department of Immunology, IMIM-Hospital del Mar, Barcelona Biomedical Research Park, Barcelona, Spain.
| | | | | |
Collapse
|