1
|
Tissarinen P, Tiensuu H, Haapalainen AM, Ronkainen E, Laatio L, Vääräsmäki M, Öhman H, Hallman M, Rämet M. Maternal serum alpha-1 antitrypsin levels in spontaneous preterm and term pregnancies. Sci Rep 2024; 14:10819. [PMID: 38734716 PMCID: PMC11088650 DOI: 10.1038/s41598-024-61206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Currently, there are no accurate means to predict spontaneous preterm birth (SPTB). Recently, we observed low expression of alpha-1 antitrypsin (AAT) in SPTB placentas. Present aim was to compare the concentrations of maternal serum AAT in pregnancies with preterm and term deliveries. Serum C-reactive protein (CRP) was used as a reference inflammatory marker. Two populations were studied. The first population comprised women who eventually gave birth spontaneously preterm (SPTB group) or term (control group). The second population included pregnant women shortly before delivery and nonpregnant women. We observed that serum AAT levels were higher in the SPTB group than in the controls, and a similar difference was observed when serum CRP was considered in multivariable analysis. However, the overlap in the AAT concentrations was considerable. No statistical significance was observed in serum AAT levels between preterm and term pregnancies at delivery. However, AAT levels were higher at delivery compared to nonpregnant controls. We did not observe a strong correlation between serum AAT and CRP in early pregnancy samples and at labor. We propose that during early pregnancy, complicated by subsequent SPTB, modest elevation of serum AAT associates with SPTB.
Collapse
Affiliation(s)
- Pinja Tissarinen
- Research Unit of Clinical Medicine and Medical Research Center, Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, University of Oulu, PO Box 5000, 90014, Oulu, Finland
| | - Heli Tiensuu
- Research Unit of Clinical Medicine and Medical Research Center, Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, University of Oulu, PO Box 5000, 90014, Oulu, Finland
| | - Antti M Haapalainen
- Research Unit of Clinical Medicine and Medical Research Center, Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, University of Oulu, PO Box 5000, 90014, Oulu, Finland
| | - Eveliina Ronkainen
- Research Unit of Clinical Medicine and Medical Research Center, Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, University of Oulu, PO Box 5000, 90014, Oulu, Finland
| | - Liisa Laatio
- Research Unit of Clinical Medicine, Department of Obstetrics and Gynecology, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Marja Vääräsmäki
- Research Unit of Clinical Medicine and Medical Research Center, Department of Obstetrics and Gynecology, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Hanna Öhman
- Faculty of Medicine, Biobank Borealis of Northern Finland, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Mikko Hallman
- Research Unit of Clinical Medicine and Medical Research Center, Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, University of Oulu, PO Box 5000, 90014, Oulu, Finland.
| | - Mika Rämet
- Research Unit of Clinical Medicine and Medical Research Center, Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, University of Oulu, PO Box 5000, 90014, Oulu, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
2
|
Orimoloye HT, He D, Li T, Janzen C, Barjaktarevic I, Wang X, Hansen J, Heck JE. Alpha-1 antitrypsin deficiency and pregnancy complications and birth outcomes: A population-based cohort study in Denmark. PLoS One 2024; 19:e0296434. [PMID: 38166066 PMCID: PMC10760838 DOI: 10.1371/journal.pone.0296434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/13/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Alpha-1 antitrypsin deficiency (AATD) is related to developing lung and liver disease, but no large-scale studies examine its association with birth outcomes. OBJECTIVE We investigated the risk of pregnancy complications and adverse birth outcomes in mothers and children with AATD. METHODS Using a large cohort data of Danish mothers and children with AATD from 1973 to 2013 (n = 2,027,229), with 559 cases (305 mothers and 254 children). We conducted Poisson regression to examine associations between alpha-1 antitrypsin deficiency, adverse birth outcomes, and pregnancy complications in mothers and children. RESULTS AATD was related to term low birth weight [<2500g; Risk Ratio(RR) = 2.04, 95% confidence interval (CI): 1.50-2.79], lowest quartile of abdominal circumference at birth in children of non-smoking mothers (RR = 1.55, 95% CI: 1.14-2.11), delivery via Cesarean-section (RR = 1.59, 95% CI: 1.05-2.40), preterm birth (RR = 1.54, 95% CI: 1.19-2.00) and preeclampsia (RR = 2.64, 95% CI: 1.76-3.94). CONCLUSIONS This emphasizes the need for mothers with AATD to be monitored closely during pregnancy to reduce the risk of adverse birth outcomes. Routine screening for alpha-1 antitrypsin in pregnancy may be considered among mothers with a pulmonary and liver disease history.
Collapse
Affiliation(s)
- Helen T. Orimoloye
- Department of Rehabilitation and Health Services, University of North Texas, Denton, Texas, United States of America
| | - Di He
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Tong Li
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Carla Janzen
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Igor Barjaktarevic
- Division of Pulmonary and Critical Care, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Xuexia Wang
- Department of Biostatistics, Florida International University, Miami, Florida, United States of America
| | | | - Julia E. Heck
- Department of Rehabilitation and Health Services, University of North Texas, Denton, Texas, United States of America
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
3
|
Nguyen LM, Aronoff DM, Eastman AJ. Matrix metalloproteinases in preterm prelabor rupture of membranes in the setting of chorioamnionitis: A scoping review. Am J Reprod Immunol 2023; 89:e13642. [PMID: 36300889 DOI: 10.1111/aji.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/23/2022] [Accepted: 10/18/2022] [Indexed: 12/15/2022] Open
Abstract
Fetal or gestational membranes extend from the placenta to enclose the fetus and amniotic fluid. While the membranes spontaneously rupture at term in normal pregnancies, they can rupture prematurely before the onset of labor, termed preterm prelabor rupture of membranes (PPROM). PPROM can be triggered by bacterial infection or sterile inflammation in the membranes, known as chorioamnionitis (CAM). The membranes derive their tensile strength from a collagen-rich extracellular matrix (ECM); as such, understanding the enzymes and processes that can degrade the membrane ECM are of paramount importance. Matrix metalloproteinases (MMPs) are a class of enzymes capable of degrading collagen and other components of the ECM, and can be induced by inflammation. We used a scoping review to address the question of how MMP activity is associated with PPROM, particularly their induction due to sterile or nonsterile CAM. We have found that the most studied MMPs in PPROM were MMPs 2, 8, and 9. Additionally, some MMPs are constitutively active, while others are induced by inflammation. Mechanistic studies of the pathways that induce MMP activation are sparse, and this area is ripe for future studies. Targeting MMP activation could be a future strategy to delay or prevent PPROM.
Collapse
Affiliation(s)
- Lynsa M Nguyen
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David M Aronoff
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alison J Eastman
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Lechowicz U, Rudzinski S, Jezela-Stanek A, Janciauskiene S, Chorostowska-Wynimko J. Post-Translational Modifications of Circulating Alpha-1-Antitrypsin Protein. Int J Mol Sci 2020; 21:E9187. [PMID: 33276468 PMCID: PMC7731214 DOI: 10.3390/ijms21239187] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Alpha-1-antitrypsin (AAT), an acute-phase protein encoded by the SERPINA1 gene, is a member of the serine protease inhibitor (SERPIN) superfamily. Its primary function is to protect tissues from enzymes released during inflammation, such as neutrophil elastase and proteinase 3. In addition to its antiprotease activity, AAT interacts with numerous other substances and has various functions, mainly arising from the conformational flexibility of normal variants of AAT. Therefore, AAT has diverse biological functions and plays a role in various pathophysiological processes. This review discusses major molecular forms of AAT, including complex, cleaved, glycosylated, oxidized, and S-nitrosylated forms, in terms of their origin and function.
Collapse
Affiliation(s)
- Urszula Lechowicz
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
| | - Stefan Rudzinski
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
| | - Sabina Janciauskiene
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
- Member of the German Center for Lung Research DZL, Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover BREATH, 30625 Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
| |
Collapse
|
5
|
Proteomic analysis of first trimester maternal serum to identify candidate biomarkers potentially predictive of spontaneous preterm birth. J Proteomics 2018; 178:31-42. [PMID: 29448056 DOI: 10.1016/j.jprot.2018.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 01/01/2023]
Abstract
Spontaneous preterm birth (sPTB) remains a major clinical dilemma; current diagnostics and interventions have not reduced the rate of this serious healthcare burden. This study characterizes differential protein profiles and post-translational modifications (PTMs) in first trimester maternal serum using a refined top-down approach coupling two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS) to directly compare subsequent term and preterm labour events and identify marked protein differences. 30 proteoforms were found to be significantly increased or decreased in the sPTB group including 9 phosphoproteins and 11 glycoproteins. Changes occurred in proteins associated with immune and defence responses. We identified protein species that are associated with several clinically relevant biological processes, including interrelated biological networks linked to regulation of the complement cascade and coagulation pathways, immune modulation, metabolic processes and cell signalling. The finding of altered proteoforms in maternal serum from pregnancies that delivered preterm suggests these as potential early biomarkers of sPTB and also possible mediators of the disorder. BIOLOGICAL SIGNIFICANCE Identifying changes in protein profiles is critical in the study of cell biology, and disease treatment and prevention. Identifying consistent changes in the maternal serum proteome during early pregnancy, including specific protein PTMs (e.g. phosphorylation, glycosylation), is likely to provide better opportunities for prediction, intervention and prevention of preterm birth. This is the first study to examine first trimester maternal serum using a highly refined top-down proteomic analytical approach based on high resolution 2DE coupled with mass spectrometry to directly compare preterm (<37 weeks) and preterm (≥37 weeks) events and identify select protein differences between these conditions. As such, the data present a promising avenue for translation of biomarker discovery to a clinical setting as well as for future investigation of underlying aetiological processes.
Collapse
|
6
|
Uchide N, Obatake K, Yamada R, Sadanari H, Matsubara K, Murayama T, Ohyama K. Regulation of Matrix Metalloproteinases-2 and -9 Gene Expression in Cultured Human Fetal Membrane Cells by Influenza Virus Infection. Biol Pharm Bull 2017; 39:1912-1921. [PMID: 27904034 DOI: 10.1248/bpb.b16-00093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to understand a possible etiology of adverse pregnancy outcomes associated with intrauterine influenza virus infection, we examined the effect of influenza virus infection on gene expression of matrix metalloproteinases (MMPs) in cultured amnion epithelial, amnion mesenchymal and chorion trophoblast cells prepared from human fetal membrane tissues by gelatin zymography, Western blotting and reverse transcriptase-PCR. The cells were infected with influenza A (H1N1) virus. The levels of pro-MMP-9 activity in culture supernatants of three types of cells were increased during the period of 24-48 h after the virus infection as compared to those of mock infection. Chorion trophoblast cells spontaneously released a much greater level of pro-MMP-2 activity than amnion epithelial and amnion mesenchymal cells. The cleavage of pro-MMP-2 into an active intermediate form was enhanced in chorion trophoblast cells by the virus infection. The activity levels of MMP-2 and MMP-9 in culture supernatants were consistent with their protein levels. The virus infection induced the mRNA expression of MMP-9, but not MMP-2, in three types of cells. These results suggest that influenza virus infection induces the gene expression of MMP-9 and the cleavage of pro-MMP-2 into an active intermediate form in human fetal membrane cells, resulting in weakening of the membranes through extracellular matrix degradation. Therefore, it is possible that the regulation of MMPs gene expression in fetal membrane cells by influenza virus infection is implicated in a part of the etiology of adverse pregnancy outcomes associated with intrauterine infection with the virus.
Collapse
Affiliation(s)
- Noboru Uchide
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University
| | | | | | | | | | | | | |
Collapse
|
7
|
T Helper Subsets, Peripheral Plasticity, and the Acute Phase Protein, α1-Antitrypsin. BIOMED RESEARCH INTERNATIONAL 2015; 2015:184574. [PMID: 26583093 PMCID: PMC4637007 DOI: 10.1155/2015/184574] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/30/2015] [Indexed: 02/08/2023]
Abstract
The traditional model of T helper differentiation describes the naïve T cell as choosing one of several subsets upon stimulation and an added reciprocal inhibition aimed at maintaining the chosen subset. However, to date, evidence is mounting to support the presence of subset plasticity. This is, presumably, aimed at fine-tuning adaptive immune responses according to local signals. Reprograming of cell phenotype is made possible by changes in activation of master transcription factors, employing epigenetic modifications that preserve a flexible mode, permitting a shift between activation and silencing of genes. The acute phase response represents an example of peripheral changes that are critical in modulating T cell responses. α1-antitrypsin (AAT) belongs to the acute phase responses and has recently surfaced as a tolerogenic agent in the context of adaptive immune responses. Nonetheless, AAT does not inhibit T cell responses, nor does it shutdown inflammation per se; rather, it appears that AAT targets non-T cell immunocytes towards changing the cytokine environment of T cells, thus promoting a regulatory T cell profile. The present review focuses on this intriguing two-way communication between innate and adaptive entities, a crosstalk that holds important implications on potential therapies for a multitude of immune disorders.
Collapse
|
8
|
Koike C, Zhou K, Takeda Y, Fathy M, Okabe M, Yoshida T, Nakamura Y, Kato Y, Nikaido T. Characterization of amniotic stem cells. Cell Reprogram 2015; 16:298-305. [PMID: 25068631 DOI: 10.1089/cell.2013.0090] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The amnion membrane is developed from embryo-derived cells, and amniotic cells have been shown to exhibit multidifferentiation potential. These cells represent a desirable source for stem cells for a variety of reasons. However, to date very few molecular analyses of amnion-derived cells have been reported, and efficient markers for isolating the stem cells remain unclear. This paper assesses the characterization of amnion-derived cells as stem cells by examining stemness marker expressions for amnion-derived epithelial cells and mesenchymal cells by flow cytometry, immunocytochemistry, and quantitative PCR. Flow cytometry revealed that amnion epithelial cells expressed CD133, CD 271, and TRA-1-60, whereas mecenchymal cells expressed CD44, CD73, CD90, and CD105. Immunohistochemistry showed that both cells expressed the stemness markers Oct3/4, Sox2, Klf4, and SSEA4. Stemness genes' expression in amnion epithelial cells, mesenchymal cells, fibroblast, bone marrow-derived mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) was compared by quantitative reverse-transcription polymerase chain reaction (RT-PCR). Amnion-derived epithelial cells and mesenchymal cells expressed Oct3/4, Nanog, and Klf4 more than bone marrow-derived MSCs. The sorted TRA1-60-positive cells expressed Oct3/4, Nanog, and Klf4 more than unsorted cells or TRA1-60-negative cells. TRA1-60 can be a marker for isolating amnion epithelial stem cells.
Collapse
Affiliation(s)
- Chika Koike
- 1 Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama, 930-0194, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cirman T, Beltram M, Schollmayer P, Rožman P, Kreft ME. Amniotic membrane properties and current practice of amniotic membrane use in ophthalmology in Slovenia. Cell Tissue Bank 2013; 15:177-92. [PMID: 24352631 DOI: 10.1007/s10561-013-9417-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/12/2013] [Indexed: 01/01/2023]
Abstract
Amniotic membrane (AM) is the innermost, multilayered part of the placenta. When harvested, processed and stored properly, its properties, stemming from AM biological composition, make it a useful tissue for ophthalmic surgery. AM was shown to have several beneficial effects: it promotes epithelization, has antimicrobial effects, decreases inflammation, fibrosis and neovascularization. Many case reports and case series as well as practical experience (e.g. reconstruction of conjunctival and corneal defects, treatment of corneal ulcers) demonstrated the beneficial effect of AM for different ophthalmological indications. The combination of the above mentioned beneficial effects and reasonable mechanical properties are also the reason why AM is used as a substrate for ex vivo expansion of epithelial progenitor cells. Recently, amnion-derived cells, which also have stem cell characteristics, have been proposed as potential contributors to cell-based treatment of ocular surface disease. However, the use of AM remains one of the least standardized methods in ophthalmic surgery. In this review, the various properties of AM and its current clinical use in ophthalmology in Slovenia are discussed.
Collapse
Affiliation(s)
- Tina Cirman
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
10
|
Jamnongkan W, Techasen A, Thanan R, Duenngai K, Sithithaworn P, Mairiang E, Loilome W, Namwat N, Pairojkul C, Yongvanit P. Oxidized alpha-1 antitrypsin as a predictive risk marker of opisthorchiasis-associated cholangiocarcinoma. Tumour Biol 2012. [PMID: 23188705 DOI: 10.1007/s13277-012-0597-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The oxidized alpha-1 antitrypsin (ox-A1AT) is one modified form of A1AT, generated via oxidation at its active site by free radicals released from inflammatory cells which subsequently are unable to inhibit protease enzymes. The presence of ox-A1AT in human serum has been used as oxidative stress indicator in many diseases. As oxidative/nitrative damage is one major contributor in opisthorchiasis-driven cholangiocarcinogenesis, we determined A1AT and ox-A1AT expression in human cholangiocarcinoma (CCA) tissue using immunohistochemical staining and measured serum ox-A1AT levels by ELISA. A1AT and ox-A1AT were found to be expressed in the tumor of CCA patients. The group with high expression has a significant poor prognosis. Serum levels of ox-A1AT were also significantly higher in groups of patients with heavy Opisthorchis viverrini infection, advanced periductal fibrosis (APF) and CCA when compared with healthy controls (P < 0.001). Odds ratio (OR) analysis implicated high ox-A1AT levels as a risk predictor for APF and CCA (P < 0.001; OR = 140.5 and 22.0, respectively). In conclusion, as APF may lead to hepatobiliary diseases and an increased risk of CCA development, our results identified ox-A1AT as a potential risk indicator for opisthorchiasis-associated CCA. This marker could now be explored for screening of subjects living in endemic areas where the prevalence of opisthorchiasis still remains high.
Collapse
Affiliation(s)
- Wassana Jamnongkan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lewis EC. Expanding the clinical indications for α(1)-antitrypsin therapy. Mol Med 2012; 18:957-70. [PMID: 22634722 DOI: 10.2119/molmed.2011.00196] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 05/16/2012] [Indexed: 12/13/2022] Open
Abstract
α(1)-Antitrypsin (AAT) is a 52-kDa circulating serine protease inhibitor. Production of AAT by the liver maintains 0.9-1.75 mg/mL circulating levels. During acute-phase responses, circulating AAT levels increase more than fourfold. In individuals with one of several inherited mutations in AAT, low circulating levels increase the risk for lung, liver and pancreatic destructive diseases, particularly emphysema. These individuals are treated with lifelong weekly infusions of human plasma-derived AAT. An increasing amount of evidence appears to suggest that AAT possesses not only the ability to inhibit serine proteases, such as elastase and proteinase-3 (PR-3), but also to exert antiinflammatory and tissue-protective effects independent of protease inhibition. AAT modifies dendritic cell maturation and promotes T regulatory cell differentiation, induces interleukin (IL)-1 receptor antagonist and IL-10 release, protects various cell types from cell death, inhibits caspases-1 and -3 activity and inhibits IL-1 production and activity. Importantly, unlike classic immunosuppressants, AAT allows undeterred isolated T-lymphocyte responses. On the basis of preclinical and clinical studies, AAT therapy for nondeficient individuals may interfere with disease progression in type 1 and type 2 diabetes, acute myocardial infarction, rheumatoid arthritis, inflammatory bowel disease, cystic fibrosis, transplant rejection, graft versus host disease and multiple sclerosis. AAT also appears to be antibacterial and an inhibitor of viral infections, such as influenza and human immunodeficiency virus (HIV), and is currently evaluated in clinical trials for type 1 diabetes, cystic fibrosis and graft versus host disease. Thus, AAT therapy appears to have advanced from replacement therapy, to a safe and potential treatment for a broad spectrum of inflammatory and immune-mediated diseases.
Collapse
Affiliation(s)
- Eli C Lewis
- Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
12
|
Oliva K, Barker G, Riley C, Bailey MJ, Permezel M, Rice GE, Lappas M. The effect of pre-existing maternal obesity on the placental proteome: two-dimensional difference gel electrophoresis coupled with mass spectrometry. J Mol Endocrinol 2012; 48:139-49. [PMID: 22301947 DOI: 10.1530/jme-11-0123] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Our aim was to study the protein expression profiles of placenta obtained from lean and obese pregnant women with normal glucose tolerance at the time of term Caesarean section. We used two-dimensional difference gel electrophoresis (2D-DIGE), utilising narrow-range immobilised pH gradient strips that encompassed the broad pH range of 4-5 and 5-6, followed by MALDI-TOF mass spectrometry of selected protein spots. Western blot and quantitative RT-PCR (qRT-PCR) analyses were performed to validate representative findings from the 2D-DIGE analysis. Eight proteins were altered (six down-regulated and two up-regulated on obese placentas). Annexin A5 (ANXA5), ATP synthase subunit beta, mitochondria (ATPB), brain acid soluble protein 1 (BASP1), ferritin light chain (FTL), heterogeneous nuclear ribonucleoprotein C (HNRPC) and vimentin (VIME) were all lower in obese patients. Alpha-1-antitrypsin (A1AT) and stress-70 protein, mitochondrial (GRP75) were higher in obese patients. Western blot analysis of ANXA5, ATPB, FTL, VIME, A1AT and GRP75 confirmed the findings from the 2D-DIGE analysis. For brain acid soluble protein 1 and HNRPC, qRT-PCR analysis also confirmed the findings from the 2D-DIGE analysis. Immunohistochemical analysis was also used to determine the localisation of the proteins in human placenta. In conclusion, proteomic analysis of placenta reveals differential expression of several proteins in patients with pre-existing obesity. These proteins are implicated in a variety of cellular functions such as regulation of growth, cytoskeletal structure, oxidative stress, inflammation, coagulation and apoptosis. These disturbances may have significant implications for fetal growth and development.
Collapse
Affiliation(s)
- Karen Oliva
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
13
|
Kim J, Zhao K, Jiang P, Lu ZX, Wang J, Murray JC, Xing Y. Transcriptome landscape of the human placenta. BMC Genomics 2012; 13:115. [PMID: 22448651 PMCID: PMC3368734 DOI: 10.1186/1471-2164-13-115] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/27/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The placenta is a key component in understanding the physiological processes involved in pregnancy. Characterizing genes critical for placental function can serve as a basis for identifying mechanisms underlying both normal and pathologic pregnancies. Detailing the placental tissue transcriptome could provide a valuable resource for genomic studies related to placental disease. RESULTS We have conducted a deep RNA sequencing (RNA-Seq) study on three tissue components (amnion, chorion, and decidua) of 5 human placentas from normal term pregnancies. We compared the placental RNA-Seq data to that of 16 other human tissues and observed a wide spectrum of transcriptome differences both between placenta and other human tissues and between distinct compartments of the placenta. Exon-level analysis of the RNA-Seq data revealed a large number of exons with differential splicing activities between placenta and other tissues, and 79% (27 out of 34) of the events selected for RT-PCR test were validated. The master splicing regulator ESRP1 is expressed at a proportionately higher level in amnion compared to all other analyzed human tissues, and there is a significant enrichment of ESRP1-regulated exons with tissue-specific splicing activities in amnion. This suggests an important role of alternative splicing in regulating gene function and activity in specific placental compartments. Importantly, genes with differential expression or splicing in the placenta are significantly enriched for genes implicated in placental abnormalities and preterm birth. In addition, we identified 604-1007 novel transcripts and 494-585 novel exons expressed in each of the three placental compartments. CONCLUSIONS Our data demonstrate unique aspects of gene expression and splicing in placental tissues that provide a basis for disease investigation related to disruption of these mechanisms. These data are publicly available providing the community with a rich resource for placental physiology and disease-related studies.
Collapse
Affiliation(s)
- Jinsil Kim
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA52242, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Baron J, Sheiner E, Abecassis A, Ashkenazi E, Shahaf G, Salem SY, Madar T, Twina G, Wiznitzer A, Holcberg G, Lewis EC. α1-Antitrypsin insufficiency is a possible contributor to preterm premature rupture of membranes. J Matern Fetal Neonatal Med 2011; 25:934-7. [DOI: 10.3109/14767058.2011.600369] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|