1
|
Wamaitha SE, Rojas EJ, Monticolo F, Hsu FM, Sosa E, Mackie AM, Oyama K, Custer M, Murphy M, Laird DJ, Shu J, Hennebold JD, Clark AT. Defining the cell and molecular origins of the primate ovarian reserve. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634052. [PMID: 39896577 PMCID: PMC11785033 DOI: 10.1101/2025.01.21.634052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The primate ovarian reserve is established during late fetal development and consists of quiescent primordial follicles in the ovarian cortex, each composed of granulosa cells surrounding an oocyte in dictate. As late stages of fetal development are not routinely accessible for study with human tissue, we exploited the evolutionary proximity of the rhesus macaque to investigate primate follicle formation. Similar to human prenatal ovaries, the rhesus also develops multiple types of pre-granulosa (PG) cells, with the majority of primordial follicles derived from PG2 with small variable contributions from PG1. We observed that activated medullary follicles recruit fetal theca cells to establish a two-cell system for sex-steroid hormone production prior to birth, providing a cell-based explanation for mini puberty.
Collapse
Affiliation(s)
- Sissy E. Wamaitha
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles; Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles; Los Angeles, CA 90095, USA
- Molecular Biology Institute; University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Ernesto J. Rojas
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research; University of California, San Francisco; San Francisco, CA 94143, United States
| | - Francesco Monticolo
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School; Boston, MA 02114, USA
| | - Fei-man Hsu
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles; Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles; Los Angeles, CA 90095, USA
- Molecular Biology Institute; University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Enrique Sosa
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles; Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles; Los Angeles, CA 90095, USA
- Molecular Biology Institute; University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Amanda M. Mackie
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Kiana Oyama
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center; Beaverton, OR 97006, USA
| | - Maggie Custer
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center; Beaverton, OR 97006, USA
| | - Melinda Murphy
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center; Beaverton, OR 97006, USA
| | - Diana J. Laird
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research; University of California, San Francisco; San Francisco, CA 94143, United States
| | - Jian Shu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School; Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Jon D. Hennebold
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center; Beaverton, OR 97006, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science University; Portland, OR 97239, USA
| | - Amander T. Clark
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles; Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles; Los Angeles, CA 90095, USA
- Molecular Biology Institute; University of California Los Angeles; Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Wamaitha SE, Nie X, Pandolfi EC, Wang X, Yang Y, Stukenborg JB, Cairns BR, Guo J, Clark AT. Single-cell analysis of the developing human ovary defines distinct insights into ovarian somatic and germline progenitors. Dev Cell 2023; 58:2097-2111.e3. [PMID: 37582368 PMCID: PMC10615783 DOI: 10.1016/j.devcel.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 04/03/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Formation of either an ovary or a testis during human embryonic life is one of the most important sex-specific events leading to the emergence of secondary sexual characteristics and sex assignment of babies at birth. Our study focused on the sex-specific and sex-indifferent characteristics of the prenatal ovarian stromal cells, cortical cords, and germline, with the discovery that the ovarian mesenchymal cells of the stroma are transcriptionally indistinguishable from the mesenchymal cells of the testicular interstitium. We found that first-wave pre-granulosa cells emerge at week 7 from early supporting gonadal cells with stromal identity and are spatially defined by KRT19 levels. We also identified rare transient state f0 spermatogonia cells within the ovarian cords between weeks 10 and 16. Taken together, our work illustrates a unique plasticity of the embryonic ovary during human development.
Collapse
Affiliation(s)
- Sissy E Wamaitha
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90033, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xichen Nie
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Erica C Pandolfi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90033, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaoyan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Yang
- NORDFERTIL Research Laboratory Stockholm, Childhood Cancer Research Unit, Bioclinicum J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Solna 17164, Sweden
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Laboratory Stockholm, Childhood Cancer Research Unit, Bioclinicum J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Solna 17164, Sweden
| | - Bradley R Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jingtao Guo
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Amander T Clark
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90033, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
Li J, Gao L, Wang A, Qian H, Zhu J, Ji S, Chen J, Liu Z, Ji C. Forkhead box L2 is a target of miR-133b and plays an important role in the pathogenesis of non-small cell lung cancer. Cancer Med 2023; 12:9826-9842. [PMID: 36846934 PMCID: PMC10166978 DOI: 10.1002/cam4.5746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/21/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Forkhead box L2 (FOXL2) has been recognized as a transcription factor in the progression of many malignancies, but its role in non-small cell lung cancer (NSCLC) remains unclear. This research clarified on the role of FOXL2 and the specific molecular mechanism in NSCLC. METHODS RNA and protein levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting assays. Cell proliferation was examined by cell counting kit-8 (CCK-8) and clonogenic assays. Transwell and wound healing assays were used to detect cell invasion and migration. Cell cycle alterations were assessed by flow cytometry. The relationship between FOXL2 and miR-133b was verified by dual-luciferase reporter assays. In vivo metastasis was monitored in the tail vein-injected mice. RESULTS FOXL2 was upregulated in NSCLC cells and tissues. Downregulation of FOXL2 restrained cell proliferation, migration, and invasion and arrested the cell cycle of NSCLC cells. Moreover, FOXL2 promoted the epithelial-mesenchymal transition (EMT) process of NSCLC cells by inducing the transforming growth factor-β (TGF-β)/Smad signaling pathway. miR-133b directly targeted the 3'-UTR of FOXL2 and negatively regulated FOXL2 expression. Knockdown of FOXL2 blocked metastasis in vivo. CONCLUSIONS miR-133b downregulates FOXL2 by targeting the 3'-UTR of FOXL2, thereby inhibiting cell proliferation, EMT and metastasis induced by the TGF-β/Smad signaling pathway in NSCLC. FOXL2 may be a potential molecular target for treating NSCLC.
Collapse
Affiliation(s)
- Juan Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Lirong Gao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China
| | - Anqi Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China
| | - Huiwen Qian
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Shundong Ji
- Jiangsu Institute of Hematology, MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Cheng Ji
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Overland MR, Li Y, Derpinghaus A, Aksel S, Cao M, Ladwig N, Cunha GR, Himelreich-Perić M, Baskin LS. Development of the human ovary: Fetal through pubertal ovarian morphology, folliculogenesis and expression of cellular differentiation markers. Differentiation 2023; 129:37-59. [PMID: 36347737 DOI: 10.1016/j.diff.2022.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 01/28/2023]
Abstract
A definition of normal human fetal and early postnatal ovarian development is critical to the ability to accurately diagnose the presence or absence of functional ovarian tissue in clinical specimens. Through assembling an extensive histologic and immunohistochemical developmental ontogeny of human ovarian specimens from 8 weeks of gestation through 16 years of postnatal, we present a comprehensive immunohistochemical mapping of normal protein expression patterns in the early fetal through post-pubertal human ovary and detail a specific expression-based definition of the early stages of follicular development. Normal fetal and postnatal ovarian tissue is defined by the presence of follicular structures and characteristic immunohistochemical staining patterns, including granulosa cells expressing Forkhead Box Protein L2 (FOXL2). However, the current standard array of immunohistochemical markers poorly defines ovarian stromal tissue, and additional work is needed to identify new markers to advance our ability to accurately identify ovarian stromal components in gonadal specimens from patients with disorders of sexual differentiation.
Collapse
Affiliation(s)
- Maya R Overland
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Yi Li
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Amber Derpinghaus
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Sena Aksel
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Nicholas Ladwig
- Department of Pathology, University of California, 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Marta Himelreich-Perić
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
5
|
Zhang J, Sun ZH, Liu BZ, Su WY, Chang YQ. Sexually dimorphic expression of foxl2 in the sea urchin (Mesocentrotus nudus). Gene Expr Patterns 2022; 46:119280. [PMID: 36202345 DOI: 10.1016/j.gep.2022.119280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022]
Abstract
Sea urchin (Mesocentrotus nudus) is an important economically mariculture species in several Asian countries, and gonads are the sole edible parts for people. In addition to commercial value, it is an excellent model for studying gonadal development, sex determination and sex differentiation. Identify sex-related genes is an effective way to reveal the molecular mechanism of gonadal development. In the present study, the foxl2 homologous gene was identified in M. nudus. Foxl2 is not a maternal factor, and is detected for the first time in two-arm stages. Additionally, the expression of foxl2 in the testis is higher than in the ovaries at the same developmental stages. The foxl2 transcripts were specifically enriched in the cytoplasm of germ cellsboth in the ovary and testis, but their proteins were more concentrated in the area near the oocyte nucleus. Overall, this study contributes to our understanding of the dynamic and sexually dimorphic expression pattern of foxl2 and provide a useful germ cell marker during gametogenesis in sea urchin.
Collapse
Affiliation(s)
- Jian Zhang
- School of Life Science, Liaoning Normal University, Dalian, 116029, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Zhi-Hui Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| | - Bing-Zheng Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Wei-Yi Su
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Ya-Qing Chang
- School of Life Science, Liaoning Normal University, Dalian, 116029, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
6
|
Loup B, Poumerol E, Jouneau L, Fowler PA, Cotinot C, Mandon-Pépin B. BPA disrupts meiosis I in oogonia by acting on pathways including cell cycle regulation, meiosis initiation and spindle assembly. Reprod Toxicol 2022; 111:166-177. [PMID: 35667523 DOI: 10.1016/j.reprotox.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
The negative in utero effects of bisphenol A (BPA) on female reproduction are of concern since the ovarian reserve of primordial follicles is constituted during the fetal period. This time-window is difficult to access, particularly in humans. Animal models and explant culture systems are, therefore, vital tools for investigating EDC impacts on primordial germ cells (PGCs). Here, we investigated the effects of BPA on prophase I meiosis in the fetal sheep ovary. We established an in vitro model of early gametogenesis through retinoic acid (RA)-induced differentiation of sheep PGCs that progressed through meiosis. Using this system, we demonstrated that BPA (3×10-7 M & 3×10-5M) exposure for 20 days disrupted meiotic initiation and completion in sheep oogonia and induced transcriptomic modifications of exposed explants. After exposure to the lowest concentrations of BPA (3×10-7M), only 2 probes were significantly up-regulated corresponding to NR2F1 and TMEM167A transcripts. In contrast, after exposure to 3×10-5M BPA, 446 probes were deregulated, 225 were down- and 221 were up-regulated following microarray analysis. Gene Ontology (GO) annotations of differentially expressed genes revealed that pathways mainly affected were involved in cell-cycle phase transition, meiosis and spindle assembly. Differences in key gene expression within each pathway were validated by qRT-PCR. This study provides a novel model for direct examination of the molecular pathways of environmental toxicants on early female gametogenesis and novel insights into the mechanisms by which BPA affects meiosis I. BPA exposure could thereby disrupt ovarian reserve formation by inhibiting meiotic progression of oocytes I and consequently by increasing atresia of primordial follicles containing defective oocytes.
Collapse
Affiliation(s)
- Benoit Loup
- Université Paris-Saclay, UVSQ, ENVA, INRAE, BREED, 78350, Jouy-en-Josas, France.
| | - Elodie Poumerol
- Université Paris-Saclay, UVSQ, ENVA, INRAE, BREED, 78350, Jouy-en-Josas, France.
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, ENVA, INRAE, BREED, 78350, Jouy-en-Josas, France.
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Corinne Cotinot
- Université Paris-Saclay, UVSQ, ENVA, INRAE, BREED, 78350, Jouy-en-Josas, France.
| | | |
Collapse
|
7
|
Roberts JF, Jeff Huang CC. Bovine models for human ovarian diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:101-154. [PMID: 35595347 DOI: 10.1016/bs.pmbts.2022.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During early embryonic development, late fetal growth, puberty, adult reproductive years, and advanced aging, bovine and human ovaries closely share molecular pathways and hormonal signaling mechanisms. Other similarities between these species include the size of ovaries, length of gestation, ovarian follicular and luteal dynamics, and pathophysiology of ovarian diseases. As an economically important agriculture species, cattle are a foundational species in fertility research with decades of groundwork using physiologic, genetic, and therapeutic experimental techniques. Many technologies used in modern reproductive medicine, such as ovulation induction using hormonal therapy, were first used in cows before human trials. Human ovarian diseases with naturally occurring bovine correlates include premature ovary insufficiency (POI), polycystic ovarian syndrome (PCOS), and sex-cord stromal tumors (SCSTs). This article presents an overview of bovine ovary research related to causes of infertility, ovarian diseases, diagnostics, and therapeutics, emphasizing where the bovine model can offer advantages over other lab animals for translational applications.
Collapse
Affiliation(s)
- John F Roberts
- Department of Comparative, Diagnostic & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.
| | - Chen-Che Jeff Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
8
|
Tucker EJ. The Genetics and Biology of FOXL2. Sex Dev 2021; 16:184-193. [PMID: 34727551 DOI: 10.1159/000519836] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/22/2021] [Indexed: 11/19/2022] Open
Abstract
FOXL2 encodes a transcription factor that regulates a wide array of target genes including those involved in sex development, eyelid development, ovarian function and maintenance, genomic integrity as well as cellular pathways such as cell-cycle progression, proliferation, and apoptosis. The role of FOXL2 has been widely studied in humans and animals. Consistent with its role in ovarian and eyelid development, over 100 germline variants in FOXL2 are associated with blepharophimosis, ptosis, and epicanthus inversus syndrome in humans, an autosomal dominant condition characterised by ovarian dysgenesis/premature ovarian insufficiency, as well as defective eyelid development. Reflecting its role in apoptosis and proliferation, a somatic variant in FOXL2 causes adult granulosa cell tumours in humans. Despite being widely studied and having clear relevance to human disease, much remains unknown about the genes FOXL2 regulates and how it exerts its wide-reaching effect on multiple organs. This review focuses on FOXL2 and its varied roles as a transcription factor in sex determination, ovarian maintenance and function, eyelid development, genome integrity, and cell regulation, followed by discussion of the in vivo disruption of FOXL2 in humans and other species.
Collapse
Affiliation(s)
- Elena J Tucker
- Reproductive Development, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Yu Y, Ji M, Xu W, Zhang L, Qi M, Shu J. Confrontment and solution to gonadotropin resistance and low oocyte retrieval in in vitro fertilization for type I BPES: a case series with review of literature. J Ovarian Res 2021; 14:143. [PMID: 34711234 PMCID: PMC8555206 DOI: 10.1186/s13048-021-00900-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/15/2021] [Indexed: 02/03/2023] Open
Abstract
Background FOXL2 mutations in human cause Blepharophimosis, ptosis, and epicanthus inversus syndrome (BPES). While type II BPES solely features eyelid abnormality, type I BPES involves not only eyelid but also ovary, leading to primary ovarian insufficiency (POI) and female infertility. Current mainstream reproductive option for type I BPES is embryo or oocyte donation. Attempts on assisted reproductive technology (ART) aiming biological parenthood in this population were sparse and mostly unsuccessful. Case presentation Two Chinese type I BPES patients with low anti-müllerian hormone (AMH) and elevated follicle stimulating hormone (FSH) presented with primary infertility in their early 30s. Genetic studies confirmed two heterozygous duplication mutations that were never reported previously in East Asian populations. They received in vitro fertilization (IVF) treatment and both exhibited resistance to gonadotropin and difficulty in retrieving oocytes in repeated cycles. Doubled to quadrupled total gonadotropin doses were required to awaken follicular response. Patient 1 delivered a baby girl with the same eyelid phenotype and patient 2 had ongoing live intrauterine pregnancy at the time of manuscript submission. Conclusions This is the second reported live birth of biological offspring in type I BPES patients, and first success using IVF techniques. It confirmed that ART is difficult but feasible in type I BPES. It further alerts clinicians and genetic counsellors to type female BPES patients with caution in view of the precious and potentially narrowed reproductive window. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00900-2.
Collapse
Affiliation(s)
- Yiqi Yu
- Department of Reproductive Endocrinology, Reproductive Medicine Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Mengxia Ji
- Department of Reproductive Endocrinology, Reproductive Medicine Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Weihai Xu
- Department of Reproductive Endocrinology, Reproductive Medicine Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Ling Zhang
- Department of Reproductive Endocrinology, Reproductive Medicine Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Ming Qi
- Department of Cell Biology and Medical Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Shu
- Department of Reproductive Endocrinology, Reproductive Medicine Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
10
|
Oliver E, Alves-Lopes JP, Harteveld F, Mitchell RT, Åkesson E, Söder O, Stukenborg JB. Self-organising human gonads generated by a Matrigel-based gradient system. BMC Biol 2021; 19:212. [PMID: 34556114 PMCID: PMC8461962 DOI: 10.1186/s12915-021-01149-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/09/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Advances in three-dimensional culture technologies have led to progression in systems used to model the gonadal microenvironment in vitro. Despite demonstrating basic functionality, tissue organisation is often limited. We have previously detailed a three-dimensional culture model termed the three-layer gradient system to generate rat testicular organoids in vitro. Here we extend the model to human first-trimester embryonic gonadal tissue. RESULTS Testicular cell suspensions reorganised into testis-like organoids with distinct seminiferous-like cords situated within an interstitial environment after 7 days. In contrast, tissue reorganisation failed to occur when mesonephros, which promotes testicular development in vivo, was included in the tissue digest. Organoids generated from dissociated female gonad cell suspensions formed loosely organised cords after 7 days. In addition to displaying testis-specific architecture, testis-like organoids demonstrated evidence of somatic cell differentiation. Within the 3-LGS, we observed the onset of AMH expression in the cytoplasm of SOX9-positive Sertoli cells within reorganised testicular cords. Leydig cell differentiation and onset of steroidogenic capacity was also revealed in the 3-LGS through the expression of key steroidogenic enzymes StAR and CYP17A1 within the interstitial compartment. While the 3-LGS generates a somatic cell environment capable of supporting germ cell survival in ovarian organoids germ cell loss was observed in testicular organoids. CONCLUSION The 3-LGS can be used to generate organised whole gonadal organoids within 7 days. The 3-LGS brings a new opportunity to explore gonadal organogenesis and contributes to the development of more complex in vitro models in the field of developmental and regenerative medicine.
Collapse
Affiliation(s)
- Elizabeth Oliver
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden
| | - João Pedro Alves-Lopes
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden.,Present address: Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Femke Harteveld
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, EH16 4TJ, UK.,Royal Hospital for Children and Young People, 9 Sciennes Road, Edinburgh, EH9 1LF, Scotland, UK
| | - Elisabet Åkesson
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden.,The R&D Unit, Stockholms Sjukhem, Stockholm, Sweden
| | - Olle Söder
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden.
| |
Collapse
|
11
|
Lamothe S, Bernard V, Christin-Maitre S. Gonad differentiation toward ovary. ANNALES D'ENDOCRINOLOGIE 2020; 81:83-88. [PMID: 32340851 DOI: 10.1016/j.ando.2020.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gonad differentiation depends on a set of cellular and hormonal signals interacting in a specific order, with very precise windows of action, to contribute to the establishment of the genital tract and a male or female phenotype. Research initially focused on the stages of gonad differentiation toward testis, in particular following the identification in 1990 of the SRY factor on chromosome Y. The mechanisms involved in gonad differentiation toward ovary took longer to identify. Thanks to patients with different sexual development (DSD) and animal knock-out models, description of the cascades involved in the activation and maintenance of ovarian development has progressed considerably in recent years.
Collapse
Affiliation(s)
- Sophie Lamothe
- Service d'endocrinologie, hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, 75012 Paris, France; Sorbonne université, Paris, France
| | - Valérie Bernard
- Service d'endocrinologie, hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, 75012 Paris, France; Sorbonne université, Paris, France
| | - Sophie Christin-Maitre
- Service d'endocrinologie, hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, 75012 Paris, France; Sorbonne université, Paris, France; UMR 933 75012 Paris, France.
| |
Collapse
|
12
|
Hummitzsch K, Hatzirodos N, Irving-Rodgers HF, Hartanti MD, Perry VEA, Anderson RA, Rodgers RJ. Morphometric analyses and gene expression related to germ cells, gonadal ridge epithelial-like cells and granulosa cells during development of the bovine fetal ovary. PLoS One 2019; 14:e0214130. [PMID: 30901367 PMCID: PMC6430378 DOI: 10.1371/journal.pone.0214130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/07/2019] [Indexed: 12/24/2022] Open
Abstract
Cells on the surface of the mesonephros give rise to replicating Gonadal Ridge Epithelial-Like (GREL) cells, the first somatic cells of the gonadal ridge. Later germ cells associate with the GREL cells in the ovigerous cords, and the GREL cells subsequently give rise to the granulosa cells in follicles. To examine these events further, 27 bovine fetal ovaries of different gestational ages were collected and prepared for immunohistochemical localisation of collagen type I and Ki67 to identify regions of the ovary and cell proliferation, respectively. The non-stromal cortical areas (collagen-negative) containing GREL cells and germ cells and later in development, the follicles with oocytes and granulosa cells, were analysed morphometrically. Another set of ovaries (n = 17) were collected and the expression of genes associated with germ cell lineages and GREL/granulosa cells were quantitated by RT-PCR. The total volume of non-stromal areas in the cortex increased significantly and progressively with ovarian development, plateauing at the time the surface epithelium developed. However, the proportion of non-stromal areas in the cortex declined significantly and progressively throughout gestation, largely due to a cessation in growth of the non-stroma cells and the continued growth of stroma. The proliferation index in the non-stromal area was very high initially and then declined substantially at the time follicles formed. Thereafter, it remained low. The numerical density of the non-stromal cells was relatively constant throughout ovarian development. The expression levels of a number of genes across gestation either increased (AMH, FSHR, ESR1, INHBA), declined (CYP19A1, ESR2, ALDH1A1, DSG2, OCT4, LGR5) or showed no particular pattern (CCND2, CTNNB1, DAZL, FOXL2, GATA4, IGFBP3, KRT19, NR5A1, RARRES1, VASA, WNT2B). Many of the genes whose expression changed across gestation, were positively or negatively correlated with each other. The relationships between these genes may reflect their roles in the important events such as the transition of ovigerous cords to follicles, oogonia to oocytes or GREL cells to granulosa cells.
Collapse
Affiliation(s)
- Katja Hummitzsch
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Nicholas Hatzirodos
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Helen F. Irving-Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- School of Medical Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Monica D. Hartanti
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Viv E. A. Perry
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
| | - Richard A. Anderson
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Raymond J. Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
13
|
Mamsen LS, Ernst EH, Borup R, Larsen A, Olesen RH, Ernst E, Anderson RA, Kristensen SG, Andersen CY. Temporal expression pattern of genes during the period of sex differentiation in human embryonic gonads. Sci Rep 2017; 7:15961. [PMID: 29162857 PMCID: PMC5698446 DOI: 10.1038/s41598-017-15931-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022] Open
Abstract
The precise timing and sequence of changes in expression of key genes and proteins during human sex-differentiation and onset of steroidogenesis was evaluated by whole-genome expression in 67 first trimester human embryonic and fetal ovaries and testis and confirmed by qPCR and immunohistochemistry (IHC). SRY/SOX9 expression initiated in testis around day 40 pc, followed by initiation of AMH and steroidogenic genes required for androgen production at day 53 pc. In ovaries, gene expression of RSPO1, LIN28, FOXL2, WNT2B, and ETV5, were significantly higher than in testis, whereas GLI1 was significantly higher in testis than ovaries. Gene expression was confirmed by IHC for GAGE, SOX9, AMH, CYP17A1, LIN28, WNT2B, ETV5 and GLI1. Gene expression was not associated with the maternal smoking habits. Collectively, a precise temporal determination of changes in expression of key genes involved in human sex-differentiation is defined, with identification of new genes of potential importance.
Collapse
Affiliation(s)
- Linn S Mamsen
- Laboratory of Reproductive Biology, Section 5712, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Emil H Ernst
- Department of Biomedicine - Pharmacology, Aarhus University, Bartholins Allé 6, 8000, Aarhus C, Denmark
- Randers Regional Hospital, 8930, Randers, NØ, Denmark
| | - Rehannah Borup
- Microarray Center of Righshospitalet, Genomic Medicine, University Hospital of Copenhagen, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Functional Genomics and Reproductive Health Group, Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Agnete Larsen
- Department of Biomedicine - Pharmacology, Aarhus University, Bartholins Allé 6, 8000, Aarhus C, Denmark
| | - Rasmus H Olesen
- Department of Biomedicine - Pharmacology, Aarhus University, Bartholins Allé 6, 8000, Aarhus C, Denmark
| | - Erik Ernst
- Randers Regional Hospital, 8930, Randers, NØ, Denmark
- Department of Obstetrics and Gynaecology, University Hospital of Aarhus, Skejby Sygehus, 8200, Aarhus N, Denmark
| | - Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, United Kingdom
| | - Stine G Kristensen
- Laboratory of Reproductive Biology, Section 5712, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Claus Y Andersen
- Laboratory of Reproductive Biology, Section 5712, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
14
|
Abstract
The germ cell lineage originates early in development and undergoes a series of complex developmental processes that culminate in the generation of fully matured gametes, the spermatozoa and the oocytes. Remarkably, researchers have been recapitulating these developmental pathways using mouse and human pluripotent stem cells (PSCs). With further studies, including those involving non-human primate models, human gametogenesis may be fully reconstituted from PSCs, which would profoundly facilitate our understanding of human germ cell development and infertility. Here we discuss groundbreaking studies that lay the foundation for this achievement, the current state of the field, and challenges for deriving gametes from hPSCs.
Collapse
Affiliation(s)
- Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for Induced Pluripotent Stem Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Hidetaka Miyauchi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
Han Y, Wang T, Sun S, Zhai Z, Tang S. Cloning of the promoter region of a human gene, FOXL2, and its regulation by STAT3. Mol Med Rep 2017; 16:2856-2862. [PMID: 28677787 DOI: 10.3892/mmr.2017.6914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 05/05/2017] [Indexed: 11/05/2022] Open
Abstract
Forkhead box L2 (FOXL2) is a transcription factor, which is involved in blepharophimosis, ptosis, and epicanthus in versus syndrome (BPES), premature ovarian failure (POF), as well as almost all stages of ovarian development and function. FOXL2 has various target genes, which are implicated in numerous processes, including sex determination, cell cycle regulation and apoptosis and stress response regulation in mammals. However, studies regarding the upstream regulation of FOXL2 are limited. In the present study, the promoter of FOXL2 was successfully cloned and registered in Gen Bank, and a dual luciferase reporter (DLR) analysis demonstrated that the luciferase activity was significantly induced by the promoter of FOXL2. Subsequently, bioinformatics analysis indicated that FOXL2 may be regulated by STAT3, and this was confirmed by a DLR analysis and western blotting, using STAT3 inhibitors. Further study using real‑time cellular analysis indicated that the viability of He La cells was markedly suppressed by STAT3 inhibitors. The present study demonstrated novel findings regarding the upstream regulation of FOXL2 expression and provide a new perspective for future studies in the field.
Collapse
Affiliation(s)
- Yangyang Han
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Tianxiao Wang
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Shudong Sun
- Department of Burns, Weifang People's Hospital, Weifang, Shandong 261053, P.R. China
| | - Zhaohui Zhai
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Shengjian Tang
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
16
|
Truman AM, Tilly JL, Woods DC. Ovarian regeneration: The potential for stem cell contribution in the postnatal ovary to sustained endocrine function. Mol Cell Endocrinol 2017; 445:74-84. [PMID: 27743990 PMCID: PMC5604433 DOI: 10.1016/j.mce.2016.10.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/26/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023]
Abstract
The endocrine function of the ovary is dependent upon the ovarian follicle, which on a cellular basis consists of an oocyte surrounded by adjacent somatic cells responsible for generating sex steroid hormones and maintenance of hormonal stasis with the hypothalamic-pituitary axis. As females age, both fertility and the endocrine function of the ovary decline due to waning follicle numbers as well as aging-related cellular dysfunction. Although there is currently no cure for ovarian failure and endocrine disruption, recent advances in ovarian biology centered on ovarian stem cell and progenitor cell populations have brought the prospects of cell- or tissue-based therapeutic strategies closer to fruition. Herein, we review the relative contributions of ovarian stem cells to ovarian function during the reproductive lifespan, and postulate steps toward the development of ovarian stem cell-based approaches to advance fertility treatments, and also importantly to provide a physiological long-term means of endocrine support.
Collapse
Affiliation(s)
- Alisha M Truman
- Department of Biology, Laboratory of Aging and Infertility Research, Northeastern University, Boston, MA, USA
| | - Jonathan L Tilly
- Department of Biology, Laboratory of Aging and Infertility Research, Northeastern University, Boston, MA, USA
| | - Dori C Woods
- Department of Biology, Laboratory of Aging and Infertility Research, Northeastern University, Boston, MA, USA.
| |
Collapse
|
17
|
Pannetier M, Chassot AA, Chaboissier MC, Pailhoux E. Involvement of FOXL2 and RSPO1 in Ovarian Determination, Development, and Maintenance in Mammals. Sex Dev 2016; 10:167-184. [PMID: 27649556 DOI: 10.1159/000448667] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 11/19/2022] Open
Abstract
In mammals, sex determination is a process through which the gonad is committed to differentiate into a testis or an ovary. This process relies on a delicate balance between genetic pathways that promote one fate and inhibit the other. Once the gonad is committed to the female pathway, ovarian differentiation begins and, depending on the species, is completed during gestation or shortly after birth. During this step, granulosa cell precursors, steroidogenic cells, and primordial germ cells start to express female-specific markers in a sex-dimorphic manner. The germ cells then arrest at prophase I of meiosis and, together with somatic cells, assemble into functional structures. This organization gives the ovary its definitive morphology and functionality during folliculogenesis. Until now, 2 main genetic cascades have been shown to be involved in female sex differentiation. The first is driven by FOXL2, a transcription factor that also plays a crucial role in folliculogenesis and ovarian fate maintenance in adults. The other operates through the WNT/CTNNB1 canonical pathway and is regulated primarily by R-spondin1. Here, we discuss the roles of FOXL2 and RSPO1/WNT/ CTNNB1 during ovarian development and homeostasis in different models, such as humans, goats, and rodents.
Collapse
Affiliation(s)
- Maëlle Pannetier
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | | | | | | |
Collapse
|
18
|
Bertho S, Pasquier J, Pan Q, Le Trionnaire G, Bobe J, Postlethwait JH, Pailhoux E, Schartl M, Herpin A, Guiguen Y. Foxl2 and Its Relatives Are Evolutionary Conserved Players in Gonadal Sex Differentiation. Sex Dev 2016; 10:111-29. [PMID: 27441599 DOI: 10.1159/000447611] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 11/19/2022] Open
Abstract
Foxl2 is a member of the large family of Forkhead Box (Fox) domain transcription factors. It emerged during the last 15 years as a key player in ovarian differentiation and oogenesis in vertebrates and especially mammals. This review focuses on Foxl2 genes in light of recent findings on their evolution, expression, and implication in sex differentiation in animals in general. Homologs of Foxl2 and its paralog Foxl3 are found in all metazoans, but their gene evolution is complex, with multiple gains and losses following successive whole genome duplication events in vertebrates. This review aims to decipher the evolutionary forces that drove Foxl2/3 gene specialization through sub- and neo-functionalization during evolution. Expression data in metazoans suggests that Foxl2/3 progressively acquired a role in both somatic and germ cell gonad differentiation and that a certain degree of sub-functionalization occurred after its duplication in vertebrates. This generated a scenario where Foxl2 is predominantly expressed in ovarian somatic cells and Foxl3 in male germ cells. To support this hypothesis, we provide original results showing that in the pea aphid (insects) foxl2/3 is predominantly expressed in sexual females and showing that in bovine ovaries FOXL2 is specifically expressed in granulosa cells. Overall, current results suggest that Foxl2 and Foxl3 are evolutionarily conserved players involved in somatic and germinal differentiation of gonadal sex.
Collapse
Affiliation(s)
- Sylvain Bertho
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ming-Ch'eng Adams CI, Baker JE, Kjellerup BV. Toxicological effects of polychlorinated biphenyls (PCBs) on freshwater turtles in the United States. CHEMOSPHERE 2016; 154:148-154. [PMID: 27043381 DOI: 10.1016/j.chemosphere.2016.03.102] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/15/2015] [Accepted: 03/22/2016] [Indexed: 05/18/2023]
Abstract
Prediction of vertebrate health effects originating from persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) has remained a challenge for decades thus making the identification of bioindicators difficult. POPs are predominantly present in soil and sediment, where they adhere to particles due to their hydrophobic characteristics. Animals inhabiting soil and sediment can be exposed to PCBs via dermal exposure while others may obtain PCBs through contaminated trophic interaction. Freshwater turtles can serve as bioindicators due to their strong site fidelity, longevity and varied diet. Previous research observed the health effects of PCBs on turtles such as decreased bone mass, changed sexual development and decreased immune responses through studying both contaminated sites along with laboratory experimentation. Higher deformity rates in juveniles, increased mortality and slower growth have also been observed. Toxicological effects of PCBs vary between species of freshwater turtles and depend on the concertation and configuration of PCB congeners. Evaluation of ecotoxicological effects of PCBs in non-endangered turtles could provide important knowledge about the health effects of endangered turtle species thus inform the design of remediation strategies. In this review, the PCB presence in freshwater turtle habitats and the ecotoxicological effects were investigated with the aim of utilizing the health status to identify areas of focus for freshwater turtle conservation.
Collapse
Affiliation(s)
- Clare Isabel Ming-Ch'eng Adams
- Iowa State University, 353 Bessey Hall, Department of Ecology, Evolution, and Organismal Biology, Ames, IA 50011-1020, USA
| | - Joel E Baker
- University of Washington Tacoma, The Center for Urban Waters, 1900 Commerce Street, Tacoma, WA 98402-3100, USA
| | - Birthe V Kjellerup
- University of Maryland at College Park, A. James Clark School of Engineering, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, USA.
| |
Collapse
|
20
|
Zannoni GF, Improta G, Petrillo M, Pettinato A, Scambia G, Fraggetta F. FOXL2 molecular status in adult granulosa cell tumors of the ovary: A study of primary and metastatic cases. Oncol Lett 2016; 12:1159-1163. [PMID: 27446412 DOI: 10.3892/ol.2016.4711] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 04/29/2016] [Indexed: 01/04/2023] Open
Abstract
Granulosa cell tumors (GCTs) of the ovary are uncommon neoplasms, accounting for ~5% of all malignant ovarian tumors. GCTs are a relatively homogeneous group of tumors, categorized into two distinct subtypes, juvenile GCT and adult GCT (AGCT), likely arising from a limited set of molecular events usually involving the disruption of pathways that regulate granulosa cell proliferation. In the present study, the presence of forkheadbox L2 (FOXL2) c.402C>G mutation was investigated in a series of 42 samples of primary and metastatic AGCT of the ovary. The samples consisted of 37 primary and 5 metastatic ovarian AGCTs from 37 patients. FOXL2 mutational status was evaluated using a pyrosequencing approach on 2.5-µm sections of formalin-fixed paraffin-embedded tissue. FOXL2 c.402C>G mutation was found in 33/37 (89.2%) primary AGCTs and in 4/5 (80.0%) metastases, with the molecular status of the metastases recapitulating that of the primary tumors (4 mutated cases and 1 wild-type case). Overall, FOXL2 mutation is present in the majority of primary and metastatic AGCTs, and could be used as a valid tool in the diagnosis of the disease and in cases of metastatic lesions from an unknown primary origin. Moreover the concordance of FOXL2 molecular status in primary and associated metastases suggests its early appearance and genomic stability in AGCT tumorigenesis.
Collapse
Affiliation(s)
- Gian Franco Zannoni
- Department of Pathology, Catholic University of The Sacred Heart, I-00168 Rome, Italy
| | - Giuseppina Improta
- Laboratory of Clinical Research and Advanced Diagnostics, Hospitalization and Treatment Institute Scientific-Oncological Referral Center of Basilicata, I-85028 Potenza, Italy
| | - Marco Petrillo
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, I-00168 Rome, Italy
| | - Angela Pettinato
- Department of Pathology, Cannizzaro Hospital, I-95126 Catania, Italy
| | - Giovanni Scambia
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, I-00168 Rome, Italy
| | - Filippo Fraggetta
- Department of Pathology, Cannizzaro Hospital, I-95126 Catania, Italy
| |
Collapse
|
21
|
Cooperative Effects of FOXL2 with the Members of TGF-β Superfamily on FSH Receptor mRNA Expression and Granulosa Cell Proliferation from Hen Prehierarchical Follicles. PLoS One 2015; 10:e0141062. [PMID: 26496659 PMCID: PMC4619702 DOI: 10.1371/journal.pone.0141062] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/01/2015] [Indexed: 11/19/2022] Open
Abstract
Forkhead box L2 (FOXL2) is a member of the forkhead nuclear factor 3 gene family and plays an essential role in ovarian growth and maturation in mammals. However, its potential effects and regulative mechanism in development of chicken ovarian prehierarchical follicles remain unexplored. In this study, the cooperative effects of FOXL2 with activin A, growth differentiation factor-9 (GDF9) and follistatin, three members of the transforming growth factor beta (TGF-β) superfamily that were previously suggested to exert a critical role in follicle development was investigated. We demonstrated herein, using in-situ hybridization, Northern blot and immunohistochemical analyses of oocytes and granulosa cells in various sizes of prehierarchical follicles that both FOXL2 transcripts and FOXL2 proteins are predominantly expressed in a highly similar expression pattern to that of GDF9 gene. In addition, the FOXL2 transcript was found at lower levels in theca cells in the absence of GDF9. Furthermore, culture of granulosa cells (GCs) from the prehierarchical follicles (6–8 mm) in conditioned medium revealed that in the pcDNA3.0-FOXL2 transfected GCs, there was a more dramatic increase in FSHR mRNA expression after treatment with activin A (10 ng/ml) or GDF9 (100 ng/ml) for 24 h which caused a stimulatory effect on the GC proliferation. In contrast, a significant decrease of FSHR mRNA was detected after treatment with follistatin (50 ng/ml) and resulted in an inhibitory effect on the cell proliferation. The results of this suggested that FOXL2 plays a bidirectional modulating role involved in the intracellular FSHR transcription and GC proliferation via an autocrine regulatory mechanism in a positive or negative manner through cooperation with activin A and/or GDF9, and follistatin in the hen follicle development. This cooperative action may be mediated by the examined Smad signals and simultaneously implicated in modulation of the StAR, CCND2, and CYP11A1 expression.
Collapse
|
22
|
Qin N, Liu Q, Zhang YY, Fan XC, Xu XX, Lv ZC, Wei ML, Jing Y, Mu F, Xu RF. Association of novel polymorphisms of forkhead box L2 and growth differentiation factor-9 genes with egg production traits in local Chinese Dagu hens. Poult Sci 2015; 94:88-95. [PMID: 25577797 DOI: 10.3382/ps/peu023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription factor forkhead box L2 (FOXL2) and growth differentiation factor-9 (GDF9) genes have critical roles in the regulation of hen ovarian development. In the present study, these genes were explored as possible molecular markers associated with BW, hen-housed egg production, and egg weight in Chinese Dagu hens. Samples were analyzed using the PCR-single strand conformation polymorphism (PCR-SSCP) technique followed by sequencing analysis, and two novel single nucleotide polymorphisms (SNPs) were identified within these candidate genes. Among them, an A/G transition at base position 238 in the coding region of the FOXL2 gene and a G/T transversion at base position 1609 in exon 2 of the GDF9 gene were found to be polymorphic and named SNPs A238G and G1609T, respectively. The SNP A238G (FOXL2) leads to a nonsynonymous substitution (isoleucine77-to-valine), and when the 360 Dagu hen samples were divided into genotypes AA and AB, allele A was found to be present at a higher frequency. Furthermore, the AA genotype correlated with significantly higher hen-housed egg production at 30, 43, 57, and 66 wk of age and with a higher egg weight at 43 wk (P<0.05). For the SNP G1609T (GDF9), the hens were typed into TT and TC genotypes, with the T allele shown to be dominant. The TC genotype was also markedly correlated with higher hen-housed egg production and a higher egg weight (P<0.05). Moreover, four haplotypes were reconstructed based on these two SNPs, with the AATC haplotype found to be correlated with the highest hen-housed egg production at 30 to 66 wk of age and with higher egg weights at 43 wk (P<0.05). Collectively, the two SNPs identified in this study might be used as possible genetic molecular markers to aid in the improvement of egg production traits in chicken breeding.
Collapse
Affiliation(s)
- N Qin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Q Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Y Y Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - X C Fan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - X X Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 130118, Hubei, China
| | - Z C Lv
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - M L Wei
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Y Jing
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - F Mu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - R F Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| |
Collapse
|
23
|
Jørgensen A, Lindhardt Johansen M, Juul A, Skakkebaek NE, Main KM, Rajpert-De Meyts E. Pathogenesis of germ cell neoplasia in testicular dysgenesis and disorders of sex development. Semin Cell Dev Biol 2015; 45:124-37. [PMID: 26410164 DOI: 10.1016/j.semcdb.2015.09.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/21/2015] [Indexed: 12/29/2022]
Abstract
Development of human gonads is a sex-dimorphic process which evolved to produce sex-specific types of germ cells. The process of gonadal sex differentiation is directed by the action of the somatic cells and ultimately results in germ cells differentiating to become functional gametes through spermatogenesis or oogenesis. This tightly controlled process depends on the proper sequential expression of many genes and signalling pathways. Disturbances of this process can be manifested as a large spectrum of disorders, ranging from severe disorders of sex development (DSD) to - in the genetic male - mild reproductive problems within the testicular dysgenesis syndrome (TDS), with large overlap between the syndromes. These disorders carry an increased but variable risk of germ cell neoplasia. In this review, we discuss the pathogenesis of germ cell neoplasia associated with gonadal dysgenesis, especially in individuals with 46,XY DSD. We summarise knowledge concerning development and sex differentiation of human gonads, with focus on sex-dimorphic steps of germ cell maturation, including meiosis. We also briefly outline the histopathology of germ cell neoplasia in situ (GCNIS) and gonadoblastoma (GDB), which are essentially the same precursor lesion but with different morphological structure dependent upon the masculinisation of the somatic niche. To assess the risk of germ cell neoplasia in different types of DSD, we have performed a PubMed search and provide here a synthesis of the evidence from studies published since 2006. We present a model for pathogenesis of GCNIS/GDB in TDS/DSD, with the risk of malignancy determined by the presence of the testis-inducing Y chromosome and the degree of masculinisation. The associations between phenotype and the risk of neoplasia are likely further modulated in each individual by the constellation of the gene polymorphisms and environmental factors.
Collapse
Affiliation(s)
- Anne Jørgensen
- Department of Growth & Reproduction and International Center for Research and Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark.
| | - Marie Lindhardt Johansen
- Department of Growth & Reproduction and International Center for Research and Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark.
| | - Anders Juul
- Department of Growth & Reproduction and International Center for Research and Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark.
| | - Niels E Skakkebaek
- Department of Growth & Reproduction and International Center for Research and Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark.
| | - Katharina M Main
- Department of Growth & Reproduction and International Center for Research and Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark.
| | - Ewa Rajpert-De Meyts
- Department of Growth & Reproduction and International Center for Research and Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark.
| |
Collapse
|
24
|
Rosario R, Cohen PA, Shelling AN. The role of FOXL2 in the pathogenesis of adult ovarian granulosa cell tumours. Gynecol Oncol 2014; 133:382-7. [DOI: 10.1016/j.ygyno.2013.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/05/2013] [Accepted: 12/09/2013] [Indexed: 12/12/2022]
|
25
|
FOXL2, GATA4, and SMAD3 co-operatively modulate gene expression, cell viability and apoptosis in ovarian granulosa cell tumor cells. PLoS One 2014; 9:e85545. [PMID: 24416423 PMCID: PMC3887065 DOI: 10.1371/journal.pone.0085545] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/04/2013] [Indexed: 12/23/2022] Open
Abstract
Aberrant ovarian granulosa cell proliferation and apoptosis may lead to granulosa cell tumors (GCT), the pathogenesis of which involves transcription factors GATA4, FOXL2, and SMAD3. FOXL2 gene harbors a point mutation (C134W) in a vast majority of GCTs. GATA4 is abundantly expressed in GCTs and its expression correlates with poor prognosis. The TGF-β mediator SMAD3 promotes GCT cell survival through NF-κB activation, and interacts with FOXL2. Here, we find that the expression patterns of these factors overlap in the normal human ovary and 90 GCTs, and positively correlate with each other and with their mutual target gene CCND2, which is a key factor for granulosa cell proliferation. We have explored the molecular interactions of FOXL2, GATA4, and SMAD3 and their roles in the regulation of CCND2 using co-immunoprecipitation, promoter transactivation, and cell viability assays in human GCT cells. We found that not only SMAD3, but also GATA4 physically interact with both wild type and C134W-mutated FOXL2. GATA4 and SMAD3 synergistically induce a 8-fold increase in CCND2 promoter transactivation, which is 50% reduced by both FOXL2 types. We confirmed that wild type FOXL2 significantly decreases cell viability. Interestingly, GATA4 and SMAD3 caused a marked reduction of GCT cell apoptosis induced by wild type FOXL2. Thus, the effects of GATA4 and SMAD3 on both cell viability and apoptosis are distinct from those of wild type FOXL2; a perturbation of this balance due to the oncogenic FOXL2 mutation is likely to contribute to GCT pathogenesis.
Collapse
|
26
|
A new model of development of the mammalian ovary and follicles. PLoS One 2013; 8:e55578. [PMID: 23409002 PMCID: PMC3567121 DOI: 10.1371/journal.pone.0055578] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/03/2013] [Indexed: 01/15/2023] Open
Abstract
Ovarian follicular granulosa cells surround and nurture oocytes, and produce sex steroid hormones. It is believed that during development the ovarian surface epithelial cells penetrate into the ovary and develop into granulosa cells when associating with oogonia to form follicles. Using bovine fetal ovaries (n = 80) we identified a novel cell type, termed GREL for Gonadal Ridge Epithelial-Like. Using 26 markers for GREL and other cells and extracellular matrix we conducted immunohistochemistry and electron microscopy and chronologically tracked all somatic cell types during development. Before 70 days of gestation the gonadal ridge/ovarian primordium is formed by proliferation of GREL cells at the surface epithelium of the mesonephros. Primordial germ cells (PGCs) migrate into the ovarian primordium. After 70 days, stroma from the underlying mesonephros begins to penetrate the primordium, partitioning the developing ovary into irregularly-shaped ovigerous cords composed of GREL cells and PGCs/oogonia. Importantly we identified that the cords are always separated from the stroma by a basal lamina. Around 130 days of gestation the stroma expands laterally below the outermost layers of GREL cells forming a sub-epithelial basal lamina and establishing an epithelial-stromal interface. It is at this stage that a mature surface epithelium develops from the GREL cells on the surface of the ovary primordium. Expansion of the stroma continues to partition the ovigerous cords into smaller groups of cells eventually forming follicles containing an oogonium/oocyte surrounded by GREL cells, which become granulosa cells, all enclosed by a basal lamina. Thus in contrast to the prevailing theory, the ovarian surface epithelial cells do not penetrate into the ovary to form the granulosa cells of follicles, instead ovarian surface epithelial cells and granulosa cells have a common precursor, the GREL cell.
Collapse
|
27
|
Abstract
We report the case of a primary serous ovarian borderline tumour developed in an inguinal lymph node. No primary ovarian borderline tumour was observed within the ovaries after bilateral ovariectomy and complete pathological examination. We considered the diagnosis of ectopic ovarian tissue because the tumour was completely surrounded by normal ovarian tissue with positive FOXL2 staining. The whole ovarian tissue was itself entirely surrounded by lymphatic tissue. Two other hypotheses should be considered: primary retroperitoneal borderline tumour or retroperitoneal nodal involvement by an ovarian serous borderline tumour. Ectopic ovarian tissue can be observed in lymph node. We don't believe ectopic location of ovarian tissue increase the risk of neoplastic change.
Collapse
|
28
|
He J, Childs AJ, Zhou J, Anderson RA. Immunohistochemical approaches to the study of human fetal ovarian development. Methods Mol Biol 2013; 957:59-75. [PMID: 23138944 DOI: 10.1007/978-1-62703-191-2_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of primordial germ cells into oocytes within primordial follicles involves a complex sequence of proliferation, developmental commitment, entry and arrest in meiosis, and association with surrounding somatic cells. These processes occur over the first few months of development in the human, with multiple stages of development present at any one time point. Immunohistochemistry has been hugely instructive in identifying the various key stages in ovarian development, by allowing simultaneous visualization of different stages of germ cell development, and their spatial arrangement. These studies allow comparison with other species and have identified key differences between human and murine ovarian development as well as giving a basis for functional studies. In this chapter we describe the main methodologies used in immunohistochemistry, using both chromogen and fluorescence approaches, and both single and double antigen detection.
Collapse
Affiliation(s)
- Jing He
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
29
|
Morohashi K, Baba T, Tanaka M. Steroid Hormones and the Development of Reproductive Organs. Sex Dev 2013; 7:61-79. [DOI: 10.1159/000342272] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
30
|
Nelson SM, Telfer EE, Anderson RA. The ageing ovary and uterus: new biological insights. Hum Reprod Update 2012; 19:67-83. [PMID: 23103636 DOI: 10.1093/humupd/dms043] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Advanced maternal age is associated with reduced fertility and adverse pregnancy outcomes. This review details recent developments in our understanding of the biology and mechanisms underlying reproductive ageing in women and the implications for fertility and pregnancy. METHODS Sociological online libraries (IBSS, SocINDEX), PubMed and Google Scholar were searched for relevant demographic, epidemiological, clinical and biological studies, using key words and hierarchical MeSH terms. From this, we identified and focused on key topics where it was judged that there had been clinically relevant advances in the understanding of ovarian and uterine ageing with implications for improved diagnostics and novel interventions. RESULTS Mapping of the ovarian reserve, follicular dynamics and associated biomarkers, across the reproductive lifespan has recently been performed. This now allows an assessment of the effects of environmental, lifestyle and prenatal exposures on follicular dynamics and the identification of their impact during periods of germ cell vulnerability and may also facilitate early identification of individuals with shorter reproductive lifespans. If women choose to time their family based on their ovarian reserve this would redefine the meaning of family planning. Despite recent reports of the potential existence of stem cells which may be used to restore the primordial follicle and thereby the oocyte pool, therapeutic interventions in female reproductive ageing at present remain limited. Maternal ageing has detrimental effects on decidual and placental development, which may be related to repeated exposure to sex steroids and underlie the association of ageing with adverse perinatal outcomes. CONCLUSIONS Ageing has incontrovertible detrimental effects on the ovary and the uterus. Our enhanced understanding of ovarian ageing will facilitate early identification of individuals at greatest risk, and novel therapeutic interventions. Changes in both ovary and uterus are in addition to age-related co-morbidities, which together have synergistic effects on reducing the probability of a successful pregnancy outcome.
Collapse
Affiliation(s)
- S M Nelson
- School of Medicine, University of Glasgow, McGregor Building, Western Infirmary, Glasgow, UK.
| | | | | |
Collapse
|
31
|
Childs AJ, Kinnell HL, He J, Anderson RA. LIN28 is selectively expressed by primordial and pre-meiotic germ cells in the human fetal ovary. Stem Cells Dev 2012; 21:2343-9. [PMID: 22296229 DOI: 10.1089/scd.2011.0730] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Germ cell development requires timely transition from primordial germ cell (PGC) self-renewal to meiotic differentiation. This is associated with widespread changes in gene expression, including downregulation of stem cell-associated genes, such as OCT4 and KIT, and upregulation of markers of germ cell differentiation and meiosis, such as VASA, STRA8, and SYCP3. The stem cell-expressed RNA-binding protein Lin28 has recently been demonstrated to be essential for PGC specification in mice, and LIN28 is expressed in human germ cell tumors with phenotypic similarities to human fetal germ cells. We have therefore examined the expression of LIN28 during normal germ cell development in the human fetal ovary, from the PGC stage, through meiosis to the initiation of follicle formation. LIN28 transcript levels were highest when the gonad contained only PGCs, and decreased significantly with increasing gestation, coincident with the onset of germ cell differentiation. Immunohistochemistry revealed LIN28 protein expression to be germ cell-specific at all stages examined. All PGCs expressed LIN28, but at later gestations expression was restricted to a subpopulation of germ cells, which we demonstrate to be primordial and premeiotic germ cells based on immunofluorescent colocalization of LIN28 and OCT4, and absence of overlap with the meiosis marker SYCP3. We also demonstrate the expression of the LIN28 target precursor pri-microRNA transcripts pri-LET7a/f/d and pri-LET-7g in the human fetal ovary, and that expression of these is highest at the PGC stage, mirroring that of LIN28. The spatial and temporal restriction of LIN28 expression and coincident peaks of expression of LIN28 and target pri-microRNAs suggest important roles for this protein in the maintenance of the germline stem cell state and the regulation of microRNA activity in the developing human ovary.
Collapse
Affiliation(s)
- Andrew J Childs
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | |
Collapse
|
32
|
Cools M, Wolffenbuttel KP, Drop SLS, Oosterhuis JW, Looijenga LHJ. Gonadal development and tumor formation at the crossroads of male and female sex determination. Sex Dev 2011; 5:167-80. [PMID: 21791949 DOI: 10.1159/000329477] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2011] [Indexed: 01/19/2023] Open
Abstract
Malignant germ cell tumor (GCT) formation is a well-known complication in the management of patients with a disorder of sex development (DSD). DSDs are defined as congenital conditions in which development of chromosomal, gonadal, or anatomical sex is atypical. DSD patients in whom the karyotype - at least at the gonadal level - contains (a part of) the Y chromosome are at increased risk for neoplastic transformation of germ cells, leading to the development of the so-called 'type II germ cell tumors'. However, tumor risk in the various forms of DSD varies considerably between the different diagnostic groups. This contribution integrates our actual knowledge on the pathophysiology of tumor development in DSDs, recent findings on gonadal (mal)development in DSD patients, and possible correlations between the patient's phenotype and his/her risk for germ cell tumor development.
Collapse
Affiliation(s)
- M Cools
- Division of Pediatric Endocrinology, Department of Pediatrics, University Hospital Ghent and Ghent University, Belgium. martine.cools @ ugent.be
| | | | | | | | | |
Collapse
|
33
|
Childs AJ, Kinnell HL, Collins CS, Hogg K, Bayne RAL, Green SJ, McNeilly AS, Anderson RA. BMP signaling in the human fetal ovary is developmentally regulated and promotes primordial germ cell apoptosis. Stem Cells 2011; 28:1368-78. [PMID: 20506112 PMCID: PMC2964513 DOI: 10.1002/stem.440] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Primordial germ cells (PGCs) are the embryonic precursors of gametes in the adult organism, and their development, differentiation, and survival are regulated by a combination of growth factors collectively known as the germ cell niche. Although many candidate niche components have been identified through studies on mouse PGCs, the growth factor composition of the human PGC niche has not been studied extensively. Here we report a detailed analysis of the expression of components of the bone morphogenetic protein (BMP) signaling apparatus in the human fetal ovary, from postmigratory PGC proliferation to the onset of primordial follicle formation. We find developmentally regulated and reciprocal patterns of expression of BMP2 and BMP4 and identify germ cells to be the exclusive targets of ovarian BMP signaling. By establishing long-term cultures of human fetal ovaries in which PGCs are retained within their physiological niche, we find that BMP4 negatively regulates postmigratory PGC numbers in the human fetal ovary by promoting PGC apoptosis. Finally, we report expression of both muscle segment homeobox (MSX)1 and MSX2 in the human fetal ovary and reveal a selective upregulation of MSX2 expression in human fetal ovary in response to BMP4, suggesting this gene may act as a downstream effector of BMP-induced apoptosis in the ovary, as in other systems. These data reveal for the first time growth factor regulation of human PGC development in a physiologically relevant context and have significant implications for the development of cultures systems for the in vitro maturation of germ cells, and their derivation from pluripotent stem cells.
Collapse
Affiliation(s)
- Andrew J Childs
- Medical Research Council Human Reproductive Sciences Unit, Queen's Medical Research Institute,Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
In the human ovary, early in pre-natal life, oocytes are surrounded by pre-granulosa follicular cells to form primordial follicles. These primordial oocytes remain dormant, often for decades, until recruited into the growing pool throughout a woman's adult reproductive years. Activation of follicle growth and subsequent development of growing oocytes in pre-antral follicles are major biological checkpoints that determine an individual females reproductive potential. In the past decade, great strides have been made in the elucidation of the molecular and cellular mechanisms underpinning maintenance of the quiescent primordial follicle pool and initiation and development of follicle growth. Gaining an in-depth knowledge of the intracellular signalling systems that control oocyte preservation and follicle activation has significant implications for improving female reproductive productivity and alleviating infertility. It also has application in domestic animal husbandry, feral animal population control and contraception in women.
Collapse
Affiliation(s)
- Eileen A McLaughlin
- Reproductive Science Group, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.
| | | |
Collapse
|