1
|
FULKA H, LOI P, PALAZZESE L, BENC M, FULKA, Jr. J. Nucleus reprogramming/remodeling through selective enucleation (SE) of immature oocytes and zygotes: a nucleolus point of view. J Reprod Dev 2022; 68:165-172. [PMID: 35431279 PMCID: PMC9184824 DOI: 10.1262/jrd.2022-004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is now approximately 25 years since the sheep Dolly, the first cloned mammal where the somatic cell nucleus from an adult donor was used for transfer, was born. So far, somatic cell
nucleus transfer, where G1-phase nuclei are transferred into cytoplasts obtained by enucleation of mature metaphase II (MII) oocytes followed by the activation of the reconstructed cells, is
the most efficient approach to reprogram/remodel the differentiated nucleus. In general, in an enucleated oocyte (cytoplast), the nuclear envelope (NE, membrane) of an injected somatic cell
nucleus breaks down and chromosomes condense. This condensation phase is followed, after subsequent activation, by chromatin decondensation and formation of a pseudo-pronucleus (i) whose
morphology should resemble the natural postfertilization pronuclei (PNs). Thus, the volume of the transferred nuclei increases considerably by incorporating the content released from the
germinal vesicles (GVs). In parallel, the transferred nucleus genes must be reset and function similarly as the relevant genes in normal embryo reprogramming. This, among others, covers the
relevant epigenetic modifications and the appropriate organization of chromatin in pseudo-pronuclei. While reprogramming in SCNT is often discussed, the remodeling of transferred nuclei is
much less studied, particularly in the context of the developmental potential of SCNT embryos. It is now evident that correct reprogramming mirrors appropriate remodeling. At the same time,
it is widely accepted that the process of rebuilding the nucleus following SCNT is instrumental to the overall success of this procedure. Thus, in our contribution, we will mostly focus on
the remodeling of transferred nuclei. In particular, we discuss the oocyte organelles that are essential for the development of SCNT embryos.
Collapse
Affiliation(s)
- Helena FULKA
- Institute of Experimental Medicine, Prague, Czech Republic
| | - Pasqualino LOI
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Luca PALAZZESE
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Michal BENC
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Slovak Republic
| | | |
Collapse
|
2
|
Su G, Wang L, Gao G, Wu S, Yang L, Wu M, Liu X, Yang M, Wei Z, Bai C, Li G. C23 gene regulates the nucleolin structure and biosynthesis of ribosomes in bovine intraspecific and interspecific somatic cell nuclear transfer embryos. FASEB J 2021; 35:e21993. [PMID: 34670005 DOI: 10.1096/fj.202100737rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 01/07/2023]
Abstract
Somatic cell nuclear transfer (SCNT) can reprogram differentiated somatic cells to produce individual animals, thus having advantages in animal breeding and chromatin reprogramming. Interspecies SCNT (iSCNT) provides extreme cases of reprogramming failure that can be used to understand the basic biological mechanism of genome reprogramming. It is important to understand the possible mechanisms for the failure of zygotic genome activation (ZGA) in iSCNT embryos in order to improve the efficiency of SCNT embryos. In the present study, we compared the development of bovine-bovine (B-B), ovine-ovine (O-O) SCNT, and ovine-bovine (O-B) iSCNT embryos and found that a developmental block existed in the 8-cell stage in O-B iSCNT embryos. RNA sequencing and q-PCR analysis revealed that the large ribosomal subunit genes (RPL) or the small ribosomal subunit genes (RPS) were expressed at lower levels in the O-B iSCNT embryos. The nucleolin (C23) gene that regulates the ribosomal subunit generation was transcribed at a lower level during embryonic development in O-B iSCNT embryos. In addition, the nucleolin exhibited a clear circular-ring structure in B-B 8-cell stage embryos, whereas this was shell-like or dot-like in the O-B embryos. Furthermore, overexpression of C23 could increase the blastocyst rate of both SCNT and iSCNT embryos and partly rectify the ring-like nucleolin structure and the expression of ribosomal subunit related genes were upregulation, while knockdown of C23 increased the shell-like nucleolin-structure in B-B cloned embryos and downregulated the expression of ribosomal subunit related genes. These results implied that abnormal C23 and ribosome subunit gene expression would lead to the developmental block of iSCNT embryos and ZGA failure. Overexpression of the C23 gene could partly improve the blastocyst development and facilitate the nucleolin structure in bovine preimplantation SCNT embryos.
Collapse
Affiliation(s)
- Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lina Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guangqi Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Shanshan Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Meiling Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Miaomiao Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhuying Wei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
3
|
Benc M, Strejcek F, Morovic M, Bartkova A, Murin M, Gad A, Bonnet-Garnier A, Percinic FP, Laurincik J. Improving the Quality of Oocytes with the Help of Nucleolotransfer Therapy. Pharmaceuticals (Basel) 2021; 14:ph14040328. [PMID: 33918523 PMCID: PMC8066131 DOI: 10.3390/ph14040328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
The nucleolus is an important nucleus sub-organelle found in almost all eukaryotic cells. On the one hand, it is known as a differentiated active site of ribosome biogenesis in somatic cells, but on the other hand, in fully grown oocytes, zygotes, and early embryos (up to the major embryonic genome activation), it is in the form of a particular homogenous and compact structure called a fibrillar sphere. Nowadays, thanks to recent studies, we know many important functions of this, no doubt, interesting membraneless nucleus sub-organelle involved in oocyte maturation, embryonic genome activation, rRNA synthesis, etc. However, many questions are still unexplained and remain a mystery. Our aim is to create a comprehensive overview of the recent knowledge on the fibrillar sphere and envision how this knowledge could be utilized in further research in the field of biotechnology and nucleolotransfer therapy.
Collapse
Affiliation(s)
- Michal Benc
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nabrezie mladeze 91, 94974 Nitra, Slovakia; (M.B.); (M.M.); (A.B.); (J.L.)
| | - Frantisek Strejcek
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nabrezie mladeze 91, 94974 Nitra, Slovakia; (M.B.); (M.M.); (A.B.); (J.L.)
- Correspondence: ; Tel.: +421-037-6408-584
| | - Martin Morovic
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nabrezie mladeze 91, 94974 Nitra, Slovakia; (M.B.); (M.M.); (A.B.); (J.L.)
| | - Alexandra Bartkova
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nabrezie mladeze 91, 94974 Nitra, Slovakia; (M.B.); (M.M.); (A.B.); (J.L.)
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, 27721 Libechov, Czech Republic; (M.M.); (A.G.)
| | - Matej Murin
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, 27721 Libechov, Czech Republic; (M.M.); (A.G.)
| | - Ahmed Gad
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, 27721 Libechov, Czech Republic; (M.M.); (A.G.)
| | - Amelie Bonnet-Garnier
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France;
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Florina Popovska Percinic
- Faculty of Veterinary Medicine, St. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia;
| | - Jozef Laurincik
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nabrezie mladeze 91, 94974 Nitra, Slovakia; (M.B.); (M.M.); (A.B.); (J.L.)
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, 27721 Libechov, Czech Republic; (M.M.); (A.G.)
| |
Collapse
|
4
|
The Oocyte’s Nucleolus Precursor Body: The Globe for Life. MACEDONIAN VETERINARY REVIEW 2018. [DOI: 10.2478/macvetrev-2018-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The nucleolus is the cell organelle responsible for ribosome synthesis and, hence, for protein synthesis. In the mammalian oocyte, the nucleolus compacts into a dense sphere with no ribosome synthesis well in advance of ovulation. It seems, that this body is of utmost importance for the development of the embryo. It is unknown, however, how it exerts this essential function. During the last two decades, great attention has been paid to the study of nucleogenesis in oocytes and early embryos, with transcription of ribosomal DNA being evaluated as one of the criteria of normal development. In this review, we summarize some aspects of nucleolus transformation during oocyte growth, as well as during early embryonic development with possible impact on the quality of the embryos used in biomedical research. This knowledge in connection with further observations will substantially contribute to the development of new criteria suitable for evaluation of oocytes and embryos used in biomedical application.
Collapse
|
5
|
Abstract
It is well known that nucleoli of fully grown mammalian oocytes are indispensable for embryonic development. Therefore, the embryos originated from previously enucleolated (ENL) oocytes undergo only one or two cleavages and then their development ceases. In our study the interspecies (mouse/pig) nucleolus transferred embryos (NuTE) were produced and their embryonic development was analyzed by autoradiography, transmission electron microscopy (TEM) and immunofluorescence (C23 and upstream binding factor (UBF)). Our results show that the re-injection of isolated oocyte nucleoli, either from the pig (P + P) or mouse (P + M), into previously enucleolated and subsequently matured porcine oocytes rescues their development after parthenogenetic activation and some of these develop up to the blastocyst stage (P + P, 11.8%; P + M, 13.5%). In nucleolus re-injected 8-cell and blastocyst stage embryos the number of nucleoli labeled with C23 in P + P and P + M groups was lower than in control (non-manipulated) group. UBF was localized in small foci within the nucleoli of blastocysts in control and P + P embryos, however, in P + M embryos the labeling was evenly distributed in the nucleoplasm. The TEM and autoradiographic evaluations showed the formation of functional nucleoli and de novo rRNA synthesis at the 8-cell stage in both, control and P + P group. In the P + M group the formation of comparable nucleoli was delayed. In conclusion, our results indicate that the mouse nucleolus can rescue embryonic development of enucleolated porcine oocytes, but the localization of selected nucleolar proteins, the timing of transcription activation and the formation of the functional nucleoli in NuTE compared with control group show evident aberrations.
Collapse
|
6
|
Lavrentyeva E, Shishova K, Kagarlitsky G, Zatsepina O. Localisation of RNAs and proteins in nucleolar precursor bodies of early mouse embryos. Reprod Fertil Dev 2017; 29:509-520. [PMID: 26376167 DOI: 10.1071/rd15200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/13/2015] [Indexed: 11/23/2022] Open
Abstract
Early embryos of all mammalian species contain morphologically distinct but transcriptionally silent nucleoli called the nucleolar precursor bodies (NPBs), which, unlike normal nucleoli, have been poorly studied at the biochemical level. To bridge this gap, here we examined the occurrence of RNA and proteins in early mouse embryos with two fluorochromes - an RNA-binding dye pyronin Y (PY) and the protein-binding dye fluorescein-5'-isothiocyanate (FITC). The staining patterns of zygotic NPBs were then compared with those of nucleolus-like bodies (NLBs) in fully grown surrounded nucleolus (SN)-type oocytes, which are morphologically similar to NPBs. We show that both entities contain proteins, but unlike NLBs, NPBs are significantly impoverished for RNA. Detectable amounts of RNA appear on the NPB surface only after resumption of rDNA transcription and includes pre-rRNAs and 28S rRNA as evidenced by fluorescence in situ hybridisation with specific oligonucleotide probes. Immunocytochemical assays demonstrate that zygotic NPBs contain rRNA processing factors fibrillarin, nucleophosmin and nucleolin, while UBF (the RNA polymerase I transcription factor) and ribosomal proteins RPL26 and RPS10 are not detectable. Based on the results obtained and data in the contemporary literature, we suggest a scheme of NPB assembly and maturation to normal nucleoli that assumes utilisation of maternally derived nucleolar proteins but of nascent rRNAs.
Collapse
Affiliation(s)
- Elena Lavrentyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow, 117997, Russian Federation
| | - Kseniya Shishova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow, 117997, Russian Federation
| | - German Kagarlitsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow, 117997, Russian Federation
| | - Olga Zatsepina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow, 117997, Russian Federation
| |
Collapse
|
7
|
Østrup O, Pedersen HS, Holm HM, Hyttel P. Analysis of nucleolar morphology and protein localization as an indicator of nuclear reprogramming. Methods Mol Biol 2015; 1222:161-174. [PMID: 25287345 DOI: 10.1007/978-1-4939-1594-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
When a cell is reprogrammed to a new phenotype, the nucleolus undergoes more or less dramatic modulations, which can be used as a marker for the occurrence of the reprogramming. This phenomenon is most pronounced when differentiated cells are reprogrammed to totipotency when they are submitted to cloning by somatic cell nuclear transfer. However, when cells are reprogrammed by less fundamental means, as for example treatment by Xenopus extract or expression of pluripotency genes, more subtle nucleolar modulations can also be noted. The monitoring and understanding of the reprogramming-related nucleolar modulations are based upon detailed knowledge about the nucleolar changes that occur during normal development from the developing oocyte over oocyte maturation and fertilization to the activation of the embryonic genome in the early embryo. Below, the ultrastructural and molecular modulations of the nucleolus are summarized in this developmental context, but also as they occur in assisted reproductive technologies such as in vitro fertilization and somatic cell nuclear transfer. Moreover, detailed protocols for monitoring the nucleolar changes by transmission electron microscopy and immunocytochemistry are presented.
Collapse
Affiliation(s)
- Olga Østrup
- Department of Tumor Biology, Oslo University Hospital RH, Oslo, Norway,
| | | | | | | |
Collapse
|
8
|
Lian HY, Jiao GZ, Wang HL, Tan XW, Wang TY, Zheng LL, Kong QQ, Tan JH. Role of cytoskeleton in regulating fusion of nucleoli: a study using the activated mouse oocyte model. Biol Reprod 2014; 91:56. [PMID: 25061094 DOI: 10.1095/biolreprod.114.120188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although fusion of nucleoli was observed during pronuclear development of zygotes and the behavior of nucleoli in pronuclei has been suggested as an indicator of embryonic developmental potential, the mechanism for nucleolar fusion is unclear. Although both cytoskeleton and the nucleolus are important cellular entities, there are no special reports on the relationship between the two. Role of cytoskeleton in regulating fusion of nucleoli was studied using the activated mouse oocyte model. Mouse oocytes were cultured for 6 h in activating medium (Ca²⁺-free CZB medium containing 10 mM SrCl₂) supplemented with or without inhibitors for cytoskeleton or protein synthesis before pronuclear formation, nucleolar fusion, and the activity of maturation-promoting factor (MPF) were examined. Whereas treatment with microfilament inhibitor cytochalasin D or B or intermediate filament inhibitor acrylamide suppressed nucleolar fusion efficiently, treatment with microtubule inhibitor demecolcine or nocodazole or protein synthesis inhibitor cycloheximide had no effect. The cytochalasin D- or acrylamide-sensitive temporal window coincided well with the reported temporal window for nucleolar fusion in activated oocytes. Whereas a continuous incubation with demecolcine prevented pronuclear formation, pronuclei formed normally when demecolcine was excluded during the first hour of activation treatment when the MPF activity dropped dramatically. The results suggest that 1) microfilaments and intermediate filaments but not microtubules support nucleolar fusion, 2) proteins required for nucleolar fusion including microfilaments and intermediate filaments are not de novo synthesized, and 3) microtubule disruption prevents pronuclear formation by activating MPF.
Collapse
Affiliation(s)
- Hua-Yu Lian
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Guang-Zhong Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Hui-Li Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Xiu-Wen Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Tian-Yang Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Liang-Liang Zheng
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Qiao-Qiao Kong
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| |
Collapse
|
9
|
Langerova A, Fulka H, Fulka J. Somatic Cell Nuclear Transfer–Derived Embryonic Stem Cell Lines in Humans: Pros and Cons. Cell Reprogram 2013; 15:481-3. [DOI: 10.1089/cell.2013.0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
| | - Helena Fulka
- Institute of Animal Science, 104 00 Prague 10, Czech Republic
| | - Josef Fulka
- Institute of Animal Science, 104 00 Prague 10, Czech Republic
| |
Collapse
|
10
|
Deshmukh RS, Østrup O, Strejcek F, Vejlsted M, Lucas-Hahn A, Petersen B, Li J, Callesen H, Niemann H, Hyttel P. Early aberrations in chromatin dynamics in embryos produced under in vitro conditions. Cell Reprogram 2012; 14:225-34. [PMID: 22468997 DOI: 10.1089/cell.2011.0069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In vitro production of porcine embryos by means of in vitro fertilization (IVF) or somatic cell nuclear transfer (SCNT) is limited by great inefficienciy. The present study investigated chromatin and nucleolar dynamics in porcine embryos developed in vivo (IV) and compared this physiological standard to that of embryos produced by IVF, parthenogenetic activation (PA), or SCNT. In contrast to IV embryos, chromatin spatial and temporal dynamics in PA, IVF, and SCNT embryos were altered; starting with aberrant chromatin-nuclear envelope interactions at the two-cell stage, delayed chromatin decondensation and nucleolar development at the four-cell stage, and ultimately culminating in failure of proper first lineage segregation at the blastocyst stage, demonstrated by poorly defined inner cell mass. Interestingly, in vitro produced (IVP) embryos also lacked a heterochromatin halo around nucleolar precursors, indicating imperfections in global chromatin remodeling after fertilization/activation. Porcine IV-produced zygotes and embryos display a well-synchronized pattern of chromatin dynamics compatible with genome activation and regular nucleolar formation at the four-cell stage. Production of porcine embryos under in vitro conditions by IVF, PA, or SCNT is associated with altered chromatin remodeling, delayed nucleolar formation, and poorly defined lineage segregation at the blastocyst stage, which in turn may impair their developmental capacity.
Collapse
Affiliation(s)
- Rahul S Deshmukh
- Department of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fulka H, Martinkova S, Kyogoku H, Langerova A, Fulka J. Production of giant mouse oocyte nucleoli and assessment of their protein content. J Reprod Dev 2012; 58:371-6. [PMID: 22293324 DOI: 10.1262/jrd.2011-004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Compared with advanced developmental stage embryos and somatic cells, fully grown mammalian oocytes contain specific nucleolus-like structures (NPB - nucleolus precursor bodies). It is commonly accepted that they serve as a store of material(s) from which typical nucleoli are gradually formed. Whilst nucleoli from somatic cells can be collected relatively easily for further biochemical analyses, a sufficient number of oocyte nucleoli is very difficult to obtain. We have found that isolated oocytes nucleoli fuse very efficiently when contact is established between them. Thus, well visible giant nucleoli can be obtained, relatively easily handled and then used for further biochemical analyses. With the use of colloidal gold staining, we estimated that a single fully grown mouse oocyte nucleolus contains approximately 1.6 ng of protein. We do believe that this approach will accelerate further research aiming at analyzing the composition of oocyte nucleoli in more detail.
Collapse
Affiliation(s)
- Helena Fulka
- Institute of Animal Science, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
12
|
Kyogoku H, Ogushi S, Miyano T, Fulka J. Nucleoli from growing oocytes inhibit the maturation of enucleolated, full-grown oocytes in the pig. Mol Reprod Dev 2011; 78:426-35. [PMID: 21542050 DOI: 10.1002/mrd.21320] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 04/09/2011] [Indexed: 12/21/2022]
Abstract
In mammals, the nucleolus of full-grown oocyte is essential for embryonic development but not for oocyte maturation. In our study, the role of the growing oocyte nucleolus in oocyte maturation was examined by nucleolus removal and/or transfer into previously enucleolated, growing (around 100 µm in diameter) or full-grown (120 µm) pig oocytes. In the first experiment, the nucleoli were aspirated from growing oocytes whose nucleoli had been compacted by actinomycin D treatment, and the enucleolated oocytes were matured in vitro. Most of non-treated or actinomycin D-treated oocytes did not undergo germinal vesicle breakdown (GVBD; 13% and 12%, respectively). However, the GVBD rate of enucleolated, growing oocytes significantly increased to 46%. The low GVBD rate of enucleolated, growing oocytes was restored again by the re-injection of nucleoli from growing oocytes (23%), but not when nucleoli from full-grown oocytes were re-injected into enucleolated, growing oocytes (49%). When enucleolated, full-grown oocytes were injected with nucleoli from growing or full-grown oocytes, the nucleolus in the germinal vesicle was reassembled (73% and 60%, respectively). After maturation, the enucleolated, full-grown oocytes injected with nucleoli from full-grown oocytes matured to metaphase II (56%), whereas injection with growing-oocyte nucleoli reduced this maturation to 21%. These results suggest that the growing-oocyte nucleolus is involved in the oocyte's meiotic arrest, and that the full-grown oocyte nucleolus has lost the ability.
Collapse
Affiliation(s)
- Hirohisa Kyogoku
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | | | | | | |
Collapse
|
13
|
Fulka J, Langerova A, Loi P, Martinkova S, Fulka H. Transplantation of nucleoli into human zygotes: not as simple as expected? J Assist Reprod Genet 2011; 28:385-9. [PMID: 21476142 PMCID: PMC3151366 DOI: 10.1007/s10815-011-9565-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/29/2011] [Indexed: 10/18/2022] Open
Affiliation(s)
- Josef Fulka
- Institute of Animal Science, Pratelstvi 815, CS-104 00 Prague 10, Czech Republic.
| | | | | | | | | |
Collapse
|
14
|
Luciano AM, Lodde V, Franciosi F, Ceciliani F, Peluso JJ. Progesterone receptor membrane component 1 expression and putative function in bovine oocyte maturation, fertilization, and early embryonic development. Reproduction 2010; 140:663-72. [PMID: 20739377 DOI: 10.1530/rep-10-0218] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although the mRNA that encodes progesterone receptor membrane component 1 (PGRMC1) is present in mammalian oocytes, nothing is known about either PGRMC1's expression pattern or function in oocytes during maturation, fertilization, and subsequent embryonic development. As PGRMC1 associates with the mitotic spindle in somatic cells, we hypothesized that PGRMC1 is involved in oocyte maturation (meiosis). Western blot analysis confirmed the presence of PGRMC1 in bovine oocytes. This study also shows that PGRMC1 is present at the germinal vesicle (GV)- and MII-stage oocytes and is associated with male and female pronucleus formation of the zygote and is highly expressed in blastocysts. A more detailed examination of PGRMC1 localization using confocal imaging demonstrated that in GV-stage oocytes, PGRMC1 was concentrated throughout the GV but did not localize to the chromatin. With the resumption of meiosis in vitro, PGRMC1 concentrated in the centromeric region of metaphase I chromosomes, while in the anaphase I/telophase I stages the majority of PGRMC1 concentrated between the separating chromosomes. At the metaphase II stage, PGRMC1 re-associated with the centromeric region of the chromosomes. A colocalization study demonstrated that PGRMC1 associated with the phosphorylated form of aurora kinase B, which localizes to the centromeres at metaphase. Finally, PGRMC1 antibody injection significantly lowered the percentage of oocytes that matured and reached the metaphase II stage after 24 h of culture. The majority of the PGRMC1 antibody-injected oocytes arrested in the prometaphase I stage of meiosis. Furthermore, in most of the PGRMC1 antibody-injected oocytes, the chromosomes were disorganized and scattered. Taken together, these data demonstrate that PGRMC1 is expressed in bovine oocytes and its localization changes at specific stages of oocyte maturation. These observations suggest an important role for PGRMC1 in oocyte maturation, which may be specifically related to the mechanism by which chromosomes segregate.
Collapse
Affiliation(s)
- Alberto M Luciano
- Division of Veterinary Anatomy and Histology, Department of Animal Sciences, University of Milan, Via Celoria 10, 20133 Milan, Italy.
| | | | | | | | | |
Collapse
|