1
|
Zhang Y, Lu Y, Xu F, Zhang X, Wu Y, Zhao J, Luo Q, Liu H, Chen K, Fei S, Cui X, Sun Y, Ou M. Molecular Characterization, Expression Pattern, DNA Methylation and Gene Disruption of Figla in Blotched Snakehead ( Channa maculata). Animals (Basel) 2024; 14:491. [PMID: 38338134 PMCID: PMC10854511 DOI: 10.3390/ani14030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Figla is one of the earliest expressed genes in the oocyte during ovarian development. In this study, Figla was characterized in C. maculata, one of the main aquaculture species in China, and designated as CmFigla. The length of CmFigla cDNA was 1303 bp, encoding 197 amino acids that contained a conserved bHLH domain. CmFigla revealed a female-biased expression patterns in the gonads of adult fish, and CmFigla expression was far higher in ovaries than that in testes at all gonadal development stages, especially at 60~180 days post-fertilization (dpf). Furthermore, a noteworthy inverse relationship was observed between CmFigla expression and the methylation of its promoter in the adult gonads. Gonads at 90 dpf were used for in situ hybridization (ISH), and CmFigla transcripts were mainly concentrated in oogonia and the primary oocytes in ovaries, but undetectable in the testes. These results indicated that Figla would play vital roles in the ovarian development in C. maculata. Additionally, the frame-shift mutations of CmFigla were successfully constructed through the CRISPR/Cas9 system, which established a positive foundation for further investigation on the role of Figla in the ovarian development of C. maculata. Our study provides valuable clues for exploring the regulatory mechanism of Figla in the fish ovarian development and maintenance, which would be useful for the sex control and reproduction of fish in aquaculture.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (Y.Z.); (Y.L.); (X.C.)
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Yuntao Lu
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (Y.Z.); (Y.L.); (X.C.)
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Feng Xu
- Chongqing Fisheries Technical Extension Center, Chongqing 404100, China;
| | - Xiaotian Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Yuxia Wu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Qing Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Haiyang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Kunci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Shuzhan Fei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Xiaojuan Cui
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (Y.Z.); (Y.L.); (X.C.)
| | - Yuandong Sun
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (Y.Z.); (Y.L.); (X.C.)
| | - Mi Ou
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (Y.Z.); (Y.L.); (X.C.)
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| |
Collapse
|
2
|
Cousu C, Mulot E, De Smet A, Formichetti S, Lecoeuche D, Ren J, Muegge K, Boulard M, Weill JC, Reynaud CA, Storck S. Germinal center output is sustained by HELLS-dependent DNA-methylation-maintenance in B cells. Nat Commun 2023; 14:5695. [PMID: 37709749 PMCID: PMC10502085 DOI: 10.1038/s41467-023-41317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
HELLS/LSH (Helicase, Lymphoid Specific) is a SNF2-like chromatin remodelling protein involved in DNA methylation. Its loss-of-function in humans causes humoral immunodeficiency, called ICF4 syndrome (Immunodeficiency, Centromeric Instability, Facial anomalies). Here we show by our newly generated B-cell-specific Hells conditional knockout mouse model that HELLS plays a pivotal role in T-dependent B-cell responses. HELLS deficiency induces accelerated decay of germinal center (GC) B cells and impairs the generation of high affinity memory B cells and circulating antibodies. Mutant GC B cells undergo dramatic DNA hypomethylation and massive de-repression of evolutionary recent retrotransposons, which surprisingly does not directly affect their survival. Instead, they prematurely upregulate either memory B cell markers or the transcription factor ATF4, which is driving an mTORC1-dependent metabolic program typical of plasma cells. Treatment of wild type mice with a DNMT1-specific inhibitor phenocopies the accelerated kinetics, thus pointing towards DNA-methylation maintenance by HELLS being a crucial mechanism to fine-tune the GC transcriptional program and enable long-lasting humoral immunity.
Collapse
Affiliation(s)
- Clara Cousu
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Eléonore Mulot
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Annie De Smet
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Sara Formichetti
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), 00015, Monterotondo, Italy
- Joint PhD degree program, European Molecular Biology Laboratory and Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Damiana Lecoeuche
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Jianke Ren
- Epigenetics Section, Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
- NHC Key Lab of Reproduction Regulation,Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Kathrin Muegge
- Epigenetics Section, Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Matthieu Boulard
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), 00015, Monterotondo, Italy
| | - Jean-Claude Weill
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Claude-Agnès Reynaud
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Sébastien Storck
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France.
| |
Collapse
|
3
|
Yang X, Yang L. Current understanding of the genomic abnormities in premature ovarian failure: chance for early diagnosis and management. Front Med (Lausanne) 2023; 10:1194865. [PMID: 37332766 PMCID: PMC10274511 DOI: 10.3389/fmed.2023.1194865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Premature ovarian failure (POF) is an insidious cause of female infertility and a devastating condition for women. POF also has a strong familial and heterogeneous genetic background. Management of POF is complicated by the variable etiology and presentation, which are generally characterized by abnormal hormone levels, gene instability and ovarian dysgenesis. To date, abnormal regulation associated with POF has been found in a small number of genes, including autosomal and sex chromosomal genes in folliculogenesis, granulosa cells, and oocytes. Due to the complex genomic contributions, ascertaining the exact causative mechanisms has been challenging in POF, and many pathogenic genomic characteristics have yet to be elucidated. However, emerging research has provided new insights into genomic variation in POF as well as novel etiological factors, pathogenic mechanisms and therapeutic intervention approaches. Meanwhile, scattered studies of transcriptional regulation revealed that ovarian cell function also depends on specific biomarker gene expression, which can influence protein activities, thus causing POF. In this review, we summarized the latest research and issues related to the genomic basis for POF and focused on insights gained from their biological effects and pathogenic mechanisms in POF. The present integrated studies of genomic variants, gene expression and related protein abnormalities were structured to establish the role of etiological genes associated with POF. In addition, we describe the design of some ongoing clinical trials that may suggest safe, feasible and effective approaches to improve the diagnosis and therapy of POF, such as Filgrastim, goserelin, resveratrol, natural plant antitoxin, Kuntai capsule et al. Understanding the candidate genomic characteristics in POF is beneficial for the early diagnosis of POF and provides appropriate methods for prevention and drug treatment. Additional efforts to clarify the POF genetic background are necessary and are beneficial for researchers and clinicians regarding genetic counseling and clinical practice. Taken together, recent genomic explorations have shown great potential to elucidate POF management in women and are stepping from the bench to the bedside.
Collapse
Affiliation(s)
- Xu Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Song JL, Sun YJ, Liu GQ, Zhang GL. Deoxynivalenol and zearalenone: Different mycotoxins with different toxic effects in donkey (Equus asinus) endometrial epithelial cells. Theriogenology 2021; 179:162-176. [PMID: 34879314 DOI: 10.1016/j.theriogenology.2021.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/03/2021] [Accepted: 11/28/2021] [Indexed: 11/18/2022]
Abstract
Deoxynivalenol (DON) and zearalenone (ZEA), which are commonly found in feed products, exhibit serious negative effects on the reproductive systems of domestic animals. However, the toxicity of mycotoxins on the uterine function of donkey (Equus asinus) remains unclear. This study investigated the biological effects of DON and ZEA exposure on donkey endometrial epithelial cells (EECs). It was administered 10 μM and 30 μM DON and ZEA to cells cultured in vitro. The results showed that 10 μM DON exposure markedly changed the expression levels of pyroptosis-associated genes and that 30 μM ZEA exposure changed the expression levels of inflammation-associated genes in EECs. The mRNA expression of cancer-promoting genes was markedly upregulated in cells exposed to DON and 30 μM ZEA; in particular, 10 μM and 30 μM DON and ZEA markedly disturbed the expression of androgen and estrogen secretion-related genes. Furthermore, Q-PCR, Western blot, and immunofluorescence analyses verified the different expression patterns of related genes in DON- and ZEA-exposed EECs. Collectively, these results illustrated the impact of exposure to different toxins and concrete toxicity on the mRNA expression of EECs from donkey in vitro.
Collapse
Affiliation(s)
- Jun-Lin Song
- Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yu-Jiang Sun
- Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Gui-Qin Liu
- College of Agronomy, Liaocheng University, Liaocheng, Shandong, 252059, China; Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng, Shandong, 252059, China
| | - Guo-Liang Zhang
- Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
5
|
Song JL, Zhang GL. Deoxynivalenol and Zearalenone: Different Mycotoxins with Different Toxic Effects in the Sertoli Cells of Equus asinus. Cells 2021; 10:cells10081898. [PMID: 34440667 PMCID: PMC8394322 DOI: 10.3390/cells10081898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Deoxynivalenol (DON) and zearalenone (ZEA) are type B trichothecene mycotoxins that exert serious toxic effects on the reproduction of domestic animals. However, there is little information about the toxicity of mycotoxins on testis development in Equus asinus. This study investigated the biological effects of DON and ZEA exposure on Sertoli cells (SCs) of Equus asinus; (2) Methods: We administered 10 μM and 30 μM DON and ZEA to cells cultured in vitro; (3) Results: The results showed that 10 μM DON exposure remarkably changed pyroptosis-associated genes and that 30 μM ZEA exposure changed inflammation-associated genes in SCs. The mRNA expression of cancer-promoting genes was remarkably upregulated in the cells exposed to DON or 30 μM ZEA; in particular, DON and ZEA remarkably disturbed the expression of androgen and oestrogen secretion-related genes. Furthermore, quantitative RT-PCR, Western blot, and immunofluorescence analyses verified the different expression patterns of related genes in DON- and ZEA-exposed SCs; (4) Conclusions: Collectively, these results illustrated the impact of exposure to different toxins and concrete toxicity on the mRNA expression of SCs from Equus asinus in vitro.
Collapse
Affiliation(s)
- Jun-Lin Song
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China;
- Central Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Liang Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China;
- Correspondence:
| |
Collapse
|
6
|
Zhu W, Du J, Chen Q, Zhang Z, Wu B, Xu J, Li T, Bi Y, Shi H, Li R. Association of UHRF1 gene polymorphisms with oligospermia in Chinese males. J Assist Reprod Genet 2019; 36:2563-2573. [PMID: 31802345 DOI: 10.1007/s10815-019-01614-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND UHRF1 plays an important role in maintaining DNA methylation patterns during spermatogenesis. This study was performed to evaluate the association between UHRF1 gene variations and infertility in males with oligozoospermia in a Chinese population. METHODS In this case-control study of 735 Chinese men, single-nucleotide polymorphism (SNP) genotypes and alleles in the UHRF1 gene were assessed by direct sequencing. The effects of the mutations on UHRF1 transcription were investigated using a dual-luciferase reporter gene assay. RESULTS We identified 24 SNPs, including nine SNPs in the promoter region, three in the 5' untranslated region, five in introns, and seven in exons. Interestingly, the genotype frequencies of SNP rs2656927 (P = 0.014) and rs8103849 (P < 0.001) significantly differed between men with oligozoospermia in case group 1 and normozoospermic men. Moreover, four variants (three were novel) were detected only in the patient group, with two in introns and the others in the promoter region. The results of the luciferase assay showed that the -1615C>T-C and -1562A>G-A alleles increased luciferase activity compared with the -1615C>T-T and -1562A>G-G alleles. CONCLUSIONS We detected two SNPs in the UHRF1 gene showing a significant difference between the case and control groups. Two screened SNPs affected UHRF1 promoter activity, improving the understanding of the pathophysiology of oligozoospermia.
Collapse
Affiliation(s)
- Weiqiang Zhu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China.,NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Jing Du
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Qing Chen
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China
| | - Zhaofeng Zhang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Bin Wu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Jianhua Xu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Tianqi Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Yuan Bi
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Huijuan Shi
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China.
| | - Runsheng Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China.
| |
Collapse
|
7
|
Miki Y, Tsukamoto S, Minami N. How does the promoter of an oocyte-specific gene function in male germ cells? J Reprod Dev 2018; 64:463-468. [PMID: 30197401 PMCID: PMC6305850 DOI: 10.1262/jrd.2018-060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studying gene expression in germ cells is useful for elucidating mechanisms of transcriptional regulation, because different genes are activated in male and female germ cells. The promoter regions of an oocyte-specific gene, Oog1, have been characterized. Driving the expression of green fluorescent protein with these different promoter regions provided us with critical information on the regulation of gene expression. The 3.9 kb long promoter functions in both male and female germ cells in transgenic mice. What is the cause of this sexually dimorphic expression? There may be important factors within and perhaps also outside this 3.9 kb promoter region that are required to maintain proper sex-specific gene expression.
Collapse
Affiliation(s)
- Yuka Miki
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Satoshi Tsukamoto
- Laboratory Animal and Genome Sciences Section, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Zhang GL, Song JL, Ji CL, Feng YL, Yu J, Nyachoti CM, Yang GS. Zearalenone Exposure Enhanced the Expression of Tumorigenesis Genes in Donkey Granulosa Cells via the PTEN/ PI3K/ AKT Signaling Pathway. Front Genet 2018; 9:293. [PMID: 30108608 PMCID: PMC6079390 DOI: 10.3389/fgene.2018.00293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/13/2018] [Indexed: 01/17/2023] Open
Abstract
Zearalenone (ZEA) is a natural contaminant existing in food and feed products that exhibits a negative effect on domestic animals’ reproduction. Donkeys possess high economic value in China and are at risk of exposure to ZEA. However, few information is available on ZEA-induced toxicity and no report on toxicity in donkeys can be found in scientific literature. We investigated the biological effects of ZEA exposure on donkey granulosa cells (dGCs) by using RNA-seq analysis. ZEA at 10 and 30 μM were administered to GCs within 72 h of in vitro culture. ZEA at 10 μM significantly altered the tumorigenesis associated genes in dGCs. Exposure to 10 and 30 μM ZEA treatment significantly reduced mRNA expression of PTEN, TGFβ, ATM, and CDK2 genes, particularly, the ZEA treatment significantly increased the expression of PI3K and AKT genes. Furthermore, immunofluorescence, RT-qPCR, and Western blot analysis verified the gene expression of ZEA-exposed GCs. Collectively, these results demonstrated the deleterious effect of ZEA exposure on the induction of ovarian cancer related genes via the PTEN/PI3K/AKT signaling pathway in dGCs in vitro.
Collapse
Affiliation(s)
- Guo-Liang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng, China
| | - Jun-Lin Song
- Central Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Chuan-Liang Ji
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng, China
| | - Yu-Long Feng
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng, China
| | - Jie Yu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng, China
| | - Charles M Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Gong-She Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
Zhang GL, Song JL, Zhou Y, Zhang RQ, Cheng SF, Sun XF, Qin GQ, Shen W, Li L. Differentiation of sow and mouse ovarian granulosa cells exposed to zearalenone in vitro using RNA-seq gene expression. Toxicol Appl Pharmacol 2018; 350:78-90. [PMID: 29758222 DOI: 10.1016/j.taap.2018.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/24/2018] [Accepted: 05/03/2018] [Indexed: 12/27/2022]
Abstract
Zearalenone (ZEA), a natural contaminant found in feed, has been shown to have a negative impact on domestic animal reproduction, particularly in pigs. There are species-specific differences in the ZEA-induced toxicity pattern. Here, we investigated the different biological effects of ZEA exposure on porcine and mouse granulosa cells, using RNA-seq analysis. We treated murine and porcine granulosa cells with 10 μM and 30 μM ZEA during 72 h of culturing, in vitro. The results showed that 10 μM ZEA exposure significantly altered mitosis associated genes in porcine granulosa cells, while the same treatment significantly altered the steroidogenesis associated genes in mouse granulosa cells. Exposure to 30 μM ZEA resulted in significantly up-regulated expression of inflammatory related genes in porcine granulosa cells as well as the cancer related genes in mouse granulosa cells. Similarly, 30 μM ZEA exposure significantly decreased the expression of tumor suppressor factors in the mouse granulosa cells. Furthermore, immunofluorescence, RT-qPCR as well as western-blot analysis verified the different expression of related genes in ZEA exposed porcine and mouse granulosa cells. Collectively, these results illustrate the presence of species differences with regards to ZEA effects between porcine and mouse ovarian granulosa cells, in vitro.
Collapse
Affiliation(s)
- Guo-Liang Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun-Lin Song
- Central Laboratory, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yi Zhou
- Center for Reproductive Medicine, Qingdao Women's and Children's Hospital, Qingdao University, Qingdao 266034, China
| | - Rui-Qian Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Feng Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Qing Qin
- Institute of Research & Development, Yongda Food, Hebi 458030, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
10
|
Li Y, Zhang L, Hu Y, Chen M, Han F, Qin Y, Chen M, Cui X, Duo S, Tang F, Gao F. β-Catenin directs the transformation of testis Sertoli cells to ovarian granulosa-like cells by inducing Foxl2 expression. J Biol Chem 2017; 292:17577-17586. [PMID: 28900034 DOI: 10.1074/jbc.m117.811349] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/11/2017] [Indexed: 12/31/2022] Open
Abstract
Sertoli and granulosa cells are two major types of somatic cells in male and female gonads, respectively. Previous studies have shown that Sertoli and granulosa cells are derived from common progenitor cells and that differentiation of these two cell types is regulated by sex differentiation genes. The signaling pathway including the adhesion and transcription factor Ctnnb1 (cadherin-associated protein, β1, also known as β-catenin) regulates differentiation of granulosa cells in the absence of the transcription factor Sry, and overactivation of β-catenin in the presence of Sry leads to granulosa prior to sex determination. Surprisingly, our previous study found that β-catenin overactivation in Sertoli cells after sex determination can also cause disruption of the testicular cord and aberrant testis development. However, the underlying molecular mechanism was unclear. In this study, we found that constitutive activation of Ctnnb1 in Sertoli cells led to ectopic expression of the granulosa cell-specific marker FOXL2 in testes. Co-staining experiments revealed that FOXL2-positive cells were derived from Sertoli cells, and Sertoli cells were transformed into granulosa-like cells after Ctnnb1 overactivation. Further studies demonstrated that CTNNB1 induced Foxl2 expression by directly binding to transcription factor Tcf/Lef-binding sites in the FOXL2 promoter region. We also found that direct overexpression of Foxl2 decreased the expression of Sertoli cell-specific genes in primary Sertoli cells. Taken together, these results demonstrate that repression of β-catenin (CTNNB1) signaling is required for lineage maintenance of Sertoli cells. Our study provides a new mechanism for Sertoli cell lineage maintenance during gonad development.
Collapse
Affiliation(s)
- Yaqiong Li
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101.,the University of Chinese Academy of Sciences, Beijing 101408, and
| | - Lianjun Zhang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101.,the University of Chinese Academy of Sciences, Beijing 101408, and
| | - Yuqiong Hu
- the Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Min Chen
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
| | - Feng Han
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101.,the University of Chinese Academy of Sciences, Beijing 101408, and
| | - Yan Qin
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101.,the University of Chinese Academy of Sciences, Beijing 101408, and
| | - Min Chen
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101.,the University of Chinese Academy of Sciences, Beijing 101408, and
| | - Xiuhong Cui
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
| | - Shuguang Duo
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
| | - Fuchou Tang
- the Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fei Gao
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, .,the University of Chinese Academy of Sciences, Beijing 101408, and
| |
Collapse
|
11
|
Zhang GL, Zhang RQ, Sun XF, Cheng SF, Wang YF, Ji CL, Feng YZ, Yu J, Ge W, Zhao Y, Sun SD, Shen W, Li L. RNA-seq based gene expression analysis of ovarian granulosa cells exposed to zearalenone in vitro: significance to steroidogenesis. Oncotarget 2017; 8:64001-64014. [PMID: 28969048 PMCID: PMC5609980 DOI: 10.18632/oncotarget.19699] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 06/20/2017] [Indexed: 11/25/2022] Open
Abstract
Zearalenone (ZEA) is a natural contaminant of various food and feed products representing a significant problem worldwide. Since the occurrence of ZEA in grains and feeds is frequent, the present study was carried out to evaluate the possible effects of ZEA on steroid production and gene expression of porcine granulosa cells, using RNA-seq analysis. Porcine granulosa cells were administered 10 μM and 30 μM ZEA during 72 h of culture in vitro. Following ZEA treatment the gene expression profile of control and exposed granulosa cells was compared using RNA-seq analysis. The results showed that in the exposed granulosa cells ZEA significantly altered the transcript levels, particularly steroidogenesis associated genes. Compared with the control group, 10 μM and 30 μM ZEA treatment significantly increased the mRNA expression of EDN1, IER3, TGFβ and BDNF genes and significantly reduced the mRNA expression of IGF-1 and SFRP2 genes. In particular, ZEA significantly decreased the expression of genes essential for estrogen synthesis including FSHR, CYP19A1 and HSD17β in granulosa cells. Furthermore, Q-PCR and Western-blot analysis also confirmed reduced expression of these genes in ZEA exposed granulosa cells. These effects were associated with a significant reduction of 17β-estradiol concentrations in the culture medium of granulosa cells. Collectively, these results demonstrated a concretely deleterious effect of ZEA exposure on the mRNA expression of steroidogenesis related genes and the production of steroid hormones in porcine ovarian granulosa cells in vitro.
Collapse
Affiliation(s)
- Guo-Liang Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao Shandong 266109, China.,National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd, Liaocheng Shandong 252000, China.,College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Rui-Qian Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao Shandong 266109, China
| | - Xiao-Feng Sun
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao Shandong 266109, China
| | - Shun-Feng Cheng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao Shandong 266109, China
| | - Yu-Feng Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao Shandong 266109, China
| | - Chuan-Liang Ji
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd, Liaocheng Shandong 252000, China
| | - Yan-Zhong Feng
- Institute of Animal Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin Heilongjiang 150086, China
| | - Jie Yu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd, Liaocheng Shandong 252000, China
| | - Wei Ge
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao Shandong 266109, China
| | - Yong Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao Shandong 266109, China
| | - Shi-Duo Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Wei Shen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao Shandong 266109, China
| | - Lan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao Shandong 266109, China
| |
Collapse
|
12
|
Wang LQ, Liu JC, Chen CL, Cheng SF, Sun XF, Zhao Y, Yin S, Hou ZM, Pan B, Ding C, Shen W, Zhang XF. Regulation of primordial follicle recruitment by cross-talk between the Notch and phosphatase and tensin homologue (PTEN)/AKT pathways. Reprod Fertil Dev 2017; 28:700-12. [PMID: 25344626 DOI: 10.1071/rd14212] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/11/2014] [Indexed: 12/22/2022] Open
Abstract
The growth of oocytes and the development of follicles require certain pathways involved in cell proliferation and survival, such as the phosphatidylinositol 3-kinase (PI3K) pathway and the Notch signalling pathway. The aim of the present study was to investigate the interaction between Notch and the PI3K/AKT signalling pathways and their effects on primordial follicle recruitment. When the Notch pathway was inhibited by L-685,458 or N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycinet-butyl ester (DAPT) in vitro, the expression of genes in the pathway and the percentage of oocytes in growing follicles decreased significantly in mouse ovaries. By 2 days postpartum, ovaries exposed to DAPT, short interference (si) RNA against Notch1 or siRNA against Hairy and enhancer of split-1 (Hes1) had significantly decreased expression of HES1, the target protein of the Notch signalling pathway. In contrast, expression of phosphatase and tensin homologue (Pten), a negative regulator of the AKT signalling pathway, was increased significantly. Co immunoprecipitation (Co-IP) revealed an interaction between HES1 and PTEN. In addition, inhibition of the Notch signalling pathway suppressed AKT phosphorylation and the proliferation of granulosa cells. In conclusion, the recruitment of primordial follicles was affected by the proliferation of granulosa cells and regulation of the interaction between the Notch and PI3K/AKT signalling pathways.
Collapse
Affiliation(s)
- Lin-Qing Wang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Jing-Cai Liu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Chun-Lei Chen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Shun-Feng Cheng
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Xiao-Feng Sun
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Yong Zhao
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Shen Yin
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Zhu-Mei Hou
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Bo Pan
- Department of Animal and Poultry Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Cheng Ding
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Xi-Feng Zhang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| |
Collapse
|
13
|
Fu XF, Yang F, Cheng SF, Feng YN, Li L, Dyce PW, Shen W, Sun XF. The epigenetic modifications and the anterior to posterior characterization of meiotic entry during mouse oogenesis. Histochem Cell Biol 2017; 148:61-72. [DOI: 10.1007/s00418-017-1545-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2017] [Indexed: 12/31/2022]
|
14
|
Zhang GL, Sun XF, Feng YZ, Li B, Li YP, Yang F, Nyachoti CM, Shen W, Sun SD, Li L. Zearalenone exposure impairs ovarian primordial follicle formation via down-regulation of Lhx8 expression in vitro. Toxicol Appl Pharmacol 2017; 317:33-40. [PMID: 28089945 DOI: 10.1016/j.taap.2017.01.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/14/2016] [Accepted: 01/08/2017] [Indexed: 11/24/2022]
Abstract
Zearalenone (ZEA) is an estrogenic mycotoxin mainly produced as a secondary metabolite by numerous species of Fusarium. Previous work showed that ZEA had a negative impact on domestic animals with regard to reproduction. The adverse effects and the mechanisms of ZEA on mammalian ovarian folliculogenesis remain largely unknown, particularly its effect on primordial follicle formation. Thus, we investigated the biological effects of ZEA exposure on murine ovarian germ cell cyst breakdown and primordial follicle assembly. Our results demonstrated that newborn mouse ovaries exposed to 10 or 30μM ZEA in vitro had significantly less germ cell numbers compared to the control group. Moreover, the presence of ZEA in vitro increased the numbers of TUNEL and γH2AX positive cells within mouse ovaries and the ratio of mRNA levels of the apoptotic genes Bax/Bcl-2. Furthermore, ZEA exposure reduced the mRNA of oocyte specific genes such as LIM homeobox 8 (Lhx8), newborn ovary homeobox (Nobox), spermatogenesis and oogenesis helix-loop-helix (Sohlh2), and factor in the germline alpha (Figlα) in a dose dependent manner. Exposure to ZEA led to remarkable changes in the Lhx8 3'-UTR DNA methylation dynamics in oocytes and severely impaired folliculogenesis in ovaries after transplantation under the kidney capsules of immunodeficient mice. In conclusion, ZEA exposure impairs mouse primordial follicle formation in vitro.
Collapse
Affiliation(s)
- Guo-Liang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao-Feng Sun
- Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yan-Zhong Feng
- Institute of Animal Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang 150086, China
| | - Bo Li
- Chengguo Station of Animal Husbandry and Veterinary, Laizhou 261437, China
| | - Ya-Peng Li
- Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Fan Yang
- Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | | | - Wei Shen
- Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Shi-Duo Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Lan Li
- Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| |
Collapse
|
15
|
Zhang LJ, Chen B, Feng XL, Ma HG, Sun LL, Feng YM, Liang GJ, Cheng SF, Li L, Shen W. Exposure to Brefeldin A promotes initiation of meiosis in murine female germ cells. Reprod Fertil Dev 2015; 27:294-303. [PMID: 24209976 DOI: 10.1071/rd13281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/10/2013] [Indexed: 12/13/2022] Open
Abstract
In mammals, ontogenesis starts from a fusion of spermatozoon and oocyte, which are produced by reductive nuclear division of a diploid germ cell in a specialised but complex biological process known as meiosis. However, little is known about the mechanism of meiotic initiation in germ cells, although many factors may be responsible for meiosis both in male and female gonads. In this study, 11.5 days post coitum (dpc) female fetal mouse genital ridges were cultured in vitro with exposure to Brefeldin A (BFA) for 6h, and the changes in meiosis were detected. Synaptonemal-complex analysis implied that BFA played a positive role in meiosis initiation and this hypothesis was confirmed by quantitative PCR of meiosis-specific genes: stimulated by retinoic acid gene 8 (Stra8) and deleted in a zoospermia-like (DAZL). At the same time, mRNA expression of retinoic acid synthetase (Raldh2) and retinoic acid (RA) receptors increased in female gonads with in vitro exposure to BFA. Transplanting genital ridges treated with BFA into the kidney capsule of immunodeficient mice demonstrated that the development capacity of female germ cells was normal, while formation of primordial follicles was seen to be a result of accelerated meiosis after exposure to BFA. In conclusion, the study indicated that BFA stimulated meiosis initiation partly by RA signalling and then promoted the development of follicles.
Collapse
Affiliation(s)
- Lian-Jun Zhang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Bo Chen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin-Lei Feng
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hua-Gang Ma
- Center for Reproductive Biology, Weifang People's Hospital, Weifang, 261041, China
| | - Li-Lan Sun
- Center for Reproductive Biology, Weifang People's Hospital, Weifang, 261041, China
| | - Yan-Min Feng
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Gui-Jin Liang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun-Feng Cheng
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
16
|
Zhang X, Liu R, Su Z, Zhang Y, Zhang W, Liu X, Wang F, Guo Y, Li C, Hao J. Immunohistochemical Study of Expression of Sohlh1 and Sohlh2 in Normal Adult Human Tissues. PLoS One 2015; 10:e0137431. [PMID: 26375665 PMCID: PMC4574203 DOI: 10.1371/journal.pone.0137431] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 08/17/2015] [Indexed: 12/24/2022] Open
Abstract
The expression pattern of Sohlh1 (spermatogenesis and oogenesis specific basic helix-loop-helix 1) and Sohlh2 in mice has been reported in previous studies. Sohlh1 and Sohlh2 are specifically expressed in spermatogonia, prespermatogonia in male mice and oocytes of primordial and primary follicles in female mice. In this report, we studied the expression pattern of Sohlh1 and Sohlh2 in human adult tissues. Immunohistochemical staining of Sohlh1 and Sohlh2 was performed in 5 samples of normal ovaries and testes, respectively. The results revealed that Sohlh genes are not only expressed in oocytes and spermatogonia, but also in granular cells, theca cells, Sertoli cells and Leydig cells, and in smooth muscles of blood vessel walls. To further investigate the expression of Sohlh genes in other adult human tissues, we collected representative normal adult tissues developed from three embryonic germ layers. Compared with the expression in mice, Sohlhs exhibited a much more extensive expression pattern in human tissues. Sohlhs were detected in testis, ovary and epithelia developed from embryonic endoderm, ectoderm and tissues developed from embryonic mesoderm. Sohlh signals were found in spermatogonia, Sertoli cells and also Leydig cells in testis, while in ovary, the expression was mainly in oocytes of primordial and primary follicles, granular cells and theca cells of secondary follicles. Compared with Sohlh2, the expression of Sohlh1 was stronger and more extensive. Our study explored the expression of Sohlh genes in human tissues and might provide insights for functional studies of Sohlh genes.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Ruihua Liu
- Department of Ultrasound, Yantai Yuhuangding Hospital, Yantai, China
| | - Zhongxue Su
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yuecun Zhang
- Department of Gynecology and Obstetrics, Nanjing Tongren Hospital Affiliated to School of Medicine of Dongnan University, Nanjing, China
| | - Wenfang Zhang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Xinyu Liu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Fuwu Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Yuji Guo
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Chuangang Li
- Department of Anesthesiology, The Second Affiliated Hospital to Shandong University, Jinan, China
| | - Jing Hao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
17
|
Liang GJ, Zhang XF, Wang JJ, Sun YC, Sun XF, Cheng SF, Li L, De Felici M, Shen W. Activin A accelerates the progression of fetal oocytes throughout meiosis and early oogenesis in the mouse. Stem Cells Dev 2015; 24:2455-65. [PMID: 26083127 DOI: 10.1089/scd.2015.0068] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Activins can exert several roles in ovary development. However, little is known about their involvement in early mammalian oogenesis. In this study, we reported that activin receptors (including ActRIA, ActRIB, ActRIIA, and ActRIIB) are expressed throughout the development of the mouse ovaries from 12.5 days postcoitum (dpc) to 21 days postparturition (dpp). Moreover, we found that in vitro, the addition of activin A (ActA) to the culture medium of 12.5 dpc ovarian tissues accelerated the progression of oocytes throughout meiotic prophase I stages. This result was reproduced in vivo following administration of ActA to pregnant mice. The in vitro effect of ActA was associated with increased expression of premeiotic and meiotic genes (including Dazl, Spo11, Stra8, Scp3, and Rec8) in the ovarian tissues. Mechanistically, ActA-dependent SMAD3 signaling modulated the expression of members of the retinoic acid (RA) system, including the RA degradation CYP26B1 enzyme and the RA receptors. Finally, ActA promoted the survival and growth of fetal and early postnatal oocytes and primordial follicle assembly both in vitro and in vivo. In conclusion, the present study identifies new roles of ActA in early oogenesis and suggested that ActA and RA might cooperate in promoting meiosis in female germ cells.
Collapse
Affiliation(s)
- Gui-Jin Liang
- 1 Institute of Reproductive Sciences, Qingdao Agricultural University , Qingdao, China .,2 Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University , Qingdao, China
| | - Xi-Feng Zhang
- 1 Institute of Reproductive Sciences, Qingdao Agricultural University , Qingdao, China .,2 Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University , Qingdao, China
| | - Jun-Jie Wang
- 1 Institute of Reproductive Sciences, Qingdao Agricultural University , Qingdao, China .,2 Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University , Qingdao, China
| | - Yuan-Chao Sun
- 1 Institute of Reproductive Sciences, Qingdao Agricultural University , Qingdao, China .,2 Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University , Qingdao, China
| | - Xiao-Feng Sun
- 1 Institute of Reproductive Sciences, Qingdao Agricultural University , Qingdao, China .,3 College of Life Science, Qingdao Agricultural University , Qingdao, China
| | - Shun-Feng Cheng
- 1 Institute of Reproductive Sciences, Qingdao Agricultural University , Qingdao, China .,2 Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University , Qingdao, China
| | - Lan Li
- 1 Institute of Reproductive Sciences, Qingdao Agricultural University , Qingdao, China .,2 Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University , Qingdao, China
| | - Massimo De Felici
- 4 Department of Biomedicine and Prevention, University of Rome Tor Vergata , Rome, Italy
| | - Wei Shen
- 1 Institute of Reproductive Sciences, Qingdao Agricultural University , Qingdao, China .,2 Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University , Qingdao, China
| |
Collapse
|
18
|
Chu Z, Niu B, Li N, Hu Y, Li J, Yu P, Wu C, Yan X, Lei A, Hua J. A lentiviral vector visualizing the germ cell specification in vitro under the control of Figla promoter. Appl Biochem Biotechnol 2015; 176:66-75. [PMID: 25652828 DOI: 10.1007/s12010-015-1523-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 01/21/2015] [Indexed: 01/30/2023]
Abstract
Premature ovarian failure (POF) is affecting more and more women, which is the loss of function of the ovaries before age 40. To elucidate the underlying mechanisms of the oogenesis is of importance to understand the causes of impaired fertility and POF. However, mammalian oogenesis in vivo is a complex process. Thus, building an oogenesis visualizing system is beneficial for the study of oogenesis. In this study, we found that Figla is specifically expressed in female mice oocyte. Then, we constructed a lentiviral vector (pTRIP-Figla-EGFP-puro) under the control of Figla promoter, which drived enhanced green fluorescent protein (EGFP) as an indicator and used the lentiviral vector transduction the ovarian cells and induced germ cells derived from human umbilical cord mesenchymal stem cells (hUC-MSCs), and the results showed that the lentiviral vector we constructed was able to specifically express green fluorescent protein (GFP) in the ovarian oocyte and induced oocyte-like cells derived from hUC-MSCs, which was Figla-positive cells. These results suggest that pTRIP-Figla-EGFP vector provides a new system to study the role of Figla in oogenesis, and an approach to study the development and the differentiation of germ cells derived from stem cells.
Collapse
Affiliation(s)
- Zhili Chu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang XF, Zhang T, Han Z, Liu JC, Liu YP, Ma JY, Li L, Shen W. Transgenerational inheritance of ovarian development deficiency induced by maternal diethylhexyl phthalate exposure. Reprod Fertil Dev 2015; 27:1213-21. [DOI: 10.1071/rd14113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/05/2014] [Indexed: 12/20/2022] Open
Abstract
Diethylhexyl phthalate (DEHP) is a widely used industrial additive for increasing plastic flexibility. It disrupts the physiological functions of endogenous hormones and induces abnormal development of mammals. The objectives of the present study were to evaluate the effects of DEHP exposure on ovarian development of pregnant mice and whether the effects are inheritable. We found that the synthesis of oestradiol in pregnant mice after DEHP exposure was significantly decreased, and that the first meiotic progression of female fetal germ cells was delayed. Furthermore, the DNA methylation level of Stra8 was increased and the expression levels of Stra8 were significantly decreased. An accelerated rate of follicle recruitment in F1 mice was responsible for the depletion of the primordial-follicle pool. Maternal DEHP exposure also significantly accelerated the recruitment of primordial follicles in F2 mice. In conclusion, our results indicated that maternal DEHP exposure induced ovarian development deficiency, which was transgenerational in mice.
Collapse
|
20
|
Zhang T, Li L, Qin XS, Zhou Y, Zhang XF, Wang LQ, De Felici M, Chen H, Qin GQ, Shen W. Di-(2-ethylhexyl) phthalate and bisphenol A exposure impairs mouse primordial follicle assembly in vitro. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:343-353. [PMID: 24458533 DOI: 10.1002/em.21847] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 06/03/2023]
Abstract
Bisphenol-A (BPA) and diethylhexyl phthalate (DEHP) are estrogenic compounds widely used in commercial plastic products. Previous studies have shown that exposure to such compounds have adverse effects on various aspects of mammalian reproduction including folliculogenesis. The objective of this study was to examine the effects of BPA and DEHP exposure on primordial follicle formation. We found that germ cell nest breakdown and primordial follicle assembly were significantly reduced when newborn mouse ovaries were exposed to 10 or 100 μM BPA and DEHP in vitro. Moreover, BPA and DEHP exposure increased the number of TUNEL positive oocytes and the mRNA level of the pro-apoptotic gene Bax in oocytes. These effects were associated with decreased expression of oocyte specific genes such as LIM homeobox 8 (Lhx8), factor in the germline alpha (Figla), spermatogenesis and oogenesis helix-loop-helix (Sohlh2), and newborn ovary homeobox (Nobox). Interestingly, BPA and DEHP exposure also prevented DNA demethylation of CpG sites of the Lhx8 gene in oocytes, a process normally associated with folliculogenesis. Finally, folliculogenesis was severely impaired in BPA and DEHP exposed ovaries after transplantation into the kidney capsules of immunodeficient mice. In conclusion, BPA and DEHP exposures impair mouse primordial follicle assembly in vitro.
Collapse
Affiliation(s)
- Teng Zhang
- Laboratory of Germ Cell Biology, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yuan C, Wu T, Zhang Y, Gao J, Yang Y, Qin F, Liu S, Zheng Y, Wang Z. Responsiveness of four gender-specific genes, figla, foxl2, scp3 and sox9a to 17α-ethinylestradiol in adult rare minnow Gobiocypris rarus. Gen Comp Endocrinol 2014; 200:44-53. [PMID: 24631545 DOI: 10.1016/j.ygcen.2014.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 11/16/2022]
Abstract
Proteins encoded by figla, foxl2, scp3 and sox9a play important roles in gonad differentiation and reproduction. In the present study, we aimed to determine the responsiveness of figla, foxl2, scp3 and sox9a to 17α-ethinylestradiol (EE2) in the gonads of adult Gobiocypris rarus. Full-length cDNAs of figla, scp3 and sox9a were cloned and characterized by RT-PCR and RACE methods. Expression patterns in adult tissues were investigated. Results indicated that figla was predominantly expressed in adult ovaries and scp3 was restrictively expressed in the male testes and sox9a was principally expressed in the brains of both genders and the testes of males. Gene expression profiles of figla, foxl2, scp3 and sox9a were analyzed in the gonads of adult G. rarus exposed to EE2 at 1, 5, 25, and 125ng/L for 3 and 6days. Three-day EE2 treatment at 1-125ng/L all caused a significant increase of figla transcript in testes and foxl2 transcript in ovaries. However, six-day EE2 exposure at 1-125ng/L repressed figla and scp3 transcript in testes and foxl2 transcript in ovaries. The present study indicates that the testicular transcripts of figla and scp3 in males and the ovarian foxl2 transcript in females have high responsiveness to EE2 and they can be used as sensitive molecular biomarkers for early warning to monitor the environmental estrogenic chemicals in fresh water environment. The present study also suggests that the effective EE2 dosage for feminization in male G. rarus might be at least 25ng/L.
Collapse
Affiliation(s)
- Cong Yuan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Tingting Wu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Jiancao Gao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yanping Yang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Fang Qin
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Shaozhen Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yao Zheng
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
22
|
Qin Y, Jiao X, Dalgleish R, Vujovic S, Li J, Simpson JL, Al-Azzawi F, Chen ZJ. Novel variants in the SOHLH2 gene are implicated in human premature ovarian failure. Fertil Steril 2014; 101:1104-1109.e6. [DOI: 10.1016/j.fertnstert.2014.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/02/2014] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
|
23
|
Primordial follicle assembly was regulated by notch signaling pathway in the mice. Mol Biol Rep 2014; 41:1891-9. [DOI: 10.1007/s11033-014-3038-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/04/2014] [Indexed: 01/07/2023]
|
24
|
Ishida M, Okazaki E, Tsukamoto S, Kimura K, Aizawa A, Kito S, Imai H, Minami N. The promoter of the oocyte-specific gene, Oog1, functions in both male and female meiotic germ cells in transgenic mice. PLoS One 2013; 8:e68686. [PMID: 23894331 PMCID: PMC3718783 DOI: 10.1371/journal.pone.0068686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/02/2013] [Indexed: 12/05/2022] Open
Abstract
Oog1 is an oocyte-specific gene whose expression is turned on in mouse oocytes at embryonic day (E) 15.5, concomitant with the time when most of the female germ cells stop proliferating and enter meiotic prophase. Here, we characterize the Oog1 promoter, and show that transgenic GFP reporter expression driven by the 2.7 kb and 3.9 kb regions upstream of the Oog1 transcription start site recapitulates the intrinsic Oog1 expression pattern. In addition, the 3.9 kb upstream region exhibits stronger transcriptional activity than does the 2.7 kb region, suggesting that regulatory functions might be conserved in the additional 1.2 kb region found within the 3.9 kb promoter. Interestingly, the longer promoter (3.9 kb) also showed strong activity in male germ cells, from late pachytene spermatocytes to elongated spermatids. This is likely due to the aberrant demethylation of two CpG sites in the proximal promoter region. One was highly methylated in the tissues in which GFP expression was suppressed, and another was completely demethylated only in Oog1pro3.9 male and female germ cells. These results suggest that aberrant demethylation of the proximal promoter region induced ectopic expression in male germ cells under the control of 3.9 kb Oog1 promoter. This is the first report indicating that sex-dependent gene expression is altered according to the length and the methylation status of the promoter region. Additionally, our results show that individual CpG sites are differentially methylated and play different roles in regulating promoter activity and gene transcription.
Collapse
Affiliation(s)
- Miya Ishida
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Eriko Okazaki
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Satoshi Tsukamoto
- Laboratory of Animal and Genome Science Section, National Institute of Radiological Sciences, Chiba, Japan
| | - Koji Kimura
- Animal Reproduction Laboratory, National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Japan
| | | | - Seiji Kito
- Laboratory of Animal and Genome Science Section, National Institute of Radiological Sciences, Chiba, Japan
| | - Hiroshi Imai
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
25
|
Panigrahi SK, Vasileva A, Wolgemuth DJ. Sp1 transcription factor and GATA1 cis-acting elements modulate testis-specific expression of mouse cyclin A1. PLoS One 2012; 7:e47862. [PMID: 23112860 PMCID: PMC3480434 DOI: 10.1371/journal.pone.0047862] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 09/18/2012] [Indexed: 01/16/2023] Open
Abstract
Cyclin A1 is a male germ cell-specific cell cycle regulator that is essential for spermatogenesis. It is unique among the cyclins by virtue of its highly restricted expression in vivo, being present in pachytene and diplotene spermatocytes and not in earlier or later stages of spermatogenesis. To begin to understand the molecular mechanisms responsible for this narrow window of expression of the mouse cyclin A1 (Ccna1) gene, we carried out a detailed analysis of its promoter. We defined a 170-bp region within the promoter and showed that it is involved in repression of Ccna1 in cultured cells. Within this region we identified known cis-acting transcription factor binding sequences, including an Sp1-binding site and two GATA1-binding sites. Neither Sp1 nor GATA1 is expressed in pachytene spermatocytes and later stages of germ cell differentiation. Sp1 is readily detected at earlier stages of spermatogenesis. Site-directed mutagenesis demonstrated that neither factor alone was sufficient to significantly repress expression driven by the Ccna1 promoter, while concurrent binding of Sp1, and most likely GATA1 and possibly additional factors was inhibitory. Occupancy of Sp1 on the Ccna1 promoter and influence of GATA1-dependent cis-acting elements was confirmed by ChIP analysis in cell lines and most importantly, in spermatogonia. In contrast with many other testis-specific genes, the CpG island methylation status of the Ccna1 promoter was similar among various tissues examined, irrespective of whether Ccna1 was transcriptionally active, suggesting that this regulatory mechanism is not involved in the restricted expression of Ccna1.
Collapse
Affiliation(s)
- Sunil K. Panigrahi
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| | - Ana Vasileva
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
- Center for Radiological Research, Columbia University Medical Center, New York, New York, United States of America
| | - Debra J. Wolgemuth
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, New York, United States of America
- Institute of Human Nutrition, Columbia University Medical Center, New York, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Hu Y, Sun J, Wang J, Wang L, Bai Y, Yu M, Lian Z, Zhang S, Hua J. Characterization of female germ-like cells derived from mouse embryonic stem cells through expression of GFP under the control of Figla promoter. J Cell Biochem 2012; 113:1111-21. [PMID: 22213070 DOI: 10.1002/jcb.24044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous studies have demonstrated that germ cells can be derived from mouse embryonic stem cells (ESCs). However, there is still no efficient system, which can visualize the stage of germ cell specification in vitro, and further to identify and enrich germ cells derived from ESCs. Figla (factor in the germline, alpha) gene encodes a germ cell specific transcription factor that coordinates the expression of the oocyte-specific zona pellucida (Zp) genes and is essential for folliculogenesis in mouse. Here, we first constructed a pFigla-EGFP recombinant plasmid that expressed enhanced green fluorescent protein (EGFP) under the control of Figla promoter, and generated and characterized an ESC line stably carrying this pFigla-EGFP reporter construct. Then the ESCs were induced to differentiate into female germ-like cells by culturing adherent embryoid bodies (EBs) in retinoic acid (RA) induction medium or transplanting ESCs under the kidney capsule with ovarian cells. A population of differentiated ESCs expressed GFP, and these cells were analyzed by RT-PCR and immunofluorescence. The GFP positive cells showed the expression of germ cell markers Vasa, meiotic specific gene Stra8, Scp3, oocyte markers Gdf9, Zp3 and Figla, indicating that this method could be used for the purification and selection of female germ cells. Our study establishes a new selective system of female germ-like cell derivation and offers an approach for further research on the development and the differentiation of germ cells derived from stem cells.
Collapse
Affiliation(s)
- Yue Hu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang LJ, Pan B, Chen B, Zhang XF, Liang GJ, Feng YN, Wang LQ, Ma JM, Li L, Shen W. Expression and epigenetic dynamics of transcription regulator Lhx8 during mouse oogenesis. Gene 2012; 506:1-9. [PMID: 22796561 DOI: 10.1016/j.gene.2012.06.093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/23/2012] [Accepted: 06/28/2012] [Indexed: 12/22/2022]
Abstract
The spatial and temporal specific activation and inhibition of numerous genes are required for successful oogenesis which is precisely regulated by germ cell-related transcription factors, and appropriate epigenetic modifications, including DNA methylation, histone modification and other mechanisms that closely regulate the functional exertion of these transcription factors. In this study, we characterized the correlation between the expression and epigenetic dynamics of Lhx8, a germ cell specific transcription factor during mouse oogenesis. Immunohistochemistry, quantitative PCR and western blots were performed to localize and quantify the expressional characteristics of Lhx8 in oocytes of 13.5 dpc (day post coitum), 17.5 dpc, 0 dpp (day post partum), 3 dpp, 7 dpp and 14 dpp. The results showed that LHX8 protein was located in the nucleus of oocytes, and increasingly expressed during primordial follicle activation. Sequencing of bisulfite-converted genomic DNAs revealed that the methylation dynamics of Lhx8-3' was highly changeable but almost no change occurred in Lhx8-5'. ChIP-QPCR analysis showed that histone H3 acetylation of Lhx8 was also increased during primordial follicle assembly and activation. In conclusion, Lhx8 expression is related with the activation of primordial follicles, which is highly correlated with the demethylation of Lhx8-3' untranslated region and the high acetylation of histone H3.
Collapse
Affiliation(s)
- Lian-Jun Zhang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang XF, Zhang LJ, Feng YN, Chen B, Feng YM, Liang GJ, Li L, Shen W. Bisphenol A exposure modifies DNA methylation of imprint genes in mouse fetal germ cells. Mol Biol Rep 2012; 39:8621-8. [DOI: 10.1007/s11033-012-1716-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 06/06/2012] [Indexed: 12/26/2022]
|
29
|
Sun XF, Sun ZY, Pan B, Li L, Shen W. Alteration in methylation pattern of oncogene Akt1 promoter region in bladder cancer. Mol Biol Rep 2011; 39:5631-6. [PMID: 22189542 DOI: 10.1007/s11033-011-1369-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 12/12/2011] [Indexed: 01/08/2023]
Abstract
The oncogene Akt1 plays a pivotal role in regulating growth factor-associated cell survival. The activity of Akt must be carefully regulated as it has been reported that an increase in Akt signaling is frequently associated with cancer. Phosphorylated Akt, as the constitutively activated form of Akt, has been observed in many kinds of cancer, but the clinical relevance of the (DNA) methylation profile of Akt1 in cancer is not well understood. This study aims to investigate the methylation level of Akt1 in bladder cancer tissues and their clinical significance. Methylation of the oncogene Akt1 transcriptional regulation region (TRR) was detected using bisulfite-specific (BSP) PCR-based sequencing analysis in cases of bladder cancer and the normal tissues, including 15 bladder cancer tissues, and five normal bladder tissues. BSP cloning-based sequencing analysis was also performed in selected cases. Clinicopathological data from the cancer patients were collected and analyzed. Analysis of Akt1 gene TRR methylation showed decreased methylation level in bladder cancer than normal. Methylation level of Akt1 has clinical relevance (P = 0.0043 by unpaired student's t test) with bladder cancer. Abnormal methylation of the Akt1 gene may be an early event during urocystic tumorigenesis and should be further evaluated as a tumorigenesis marker for early detection of bladder cancer.
Collapse
Affiliation(s)
- Xiao-Feng Sun
- Laboratory of Germ Cell Biology, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | | | | | | | | |
Collapse
|