1
|
Gilchrist RB, Ho TM, De Vos M, Sanchez F, Romero S, Ledger WL, Anckaert E, Vuong LN, Smitz J. A fresh start for IVM: capacitating the oocyte for development using pre-IVM. Hum Reprod Update 2024; 30:3-25. [PMID: 37639630 DOI: 10.1093/humupd/dmad023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/08/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND While oocyte IVM is practiced sporadically it has not achieved widespread clinical practice globally. However, recently there have been some seminal advances in our understanding of basic aspects of oocyte biology and ovulation from animal studies that have led to novel approaches to IVM. A significant recent advance in IVM technology is the use of biphasic IVM approaches. These involve the collection of immature oocytes from small antral follicles from minimally stimulated patients/animals (without hCG-priming) and an ∼24 h pre-culture of oocytes in an advanced culture system ('pre-IVM') prior to IVM, followed by routine IVF procedures. If safe and efficacious, this novel procedure may stand to make a significant impact on human ART practices. OBJECTIVE AND RATIONALE The objectives of this review are to examine the major scientific advances in ovarian biology with a unique focus on the development of pre-IVM methodologies, to provide an insight into biphasic IVM procedures, and to report on outcomes from animal and clinical human data, including safety data. The potential future impact of biphasic IVM on ART practice is discussed. SEARCH METHODS Peer review original and review articles were selected from PubMed and Web of Science searches for this narrative review. Searches were performed using the following keywords: oocyte IVM, pre-IVM, biphasic IVM, CAPA-IVM, hCG-triggered/primed IVM, natural cycle IVF/M, ex-vivo IVM, OTO-IVM, oocyte maturation, meiotic competence, oocyte developmental competence, oocyte capacitation, follicle size, cumulus cell (CC), granulosa cell, COC, gap-junction communication, trans-zonal process, cAMP and IVM, cGMP and IVM, CNP and IVM, EGF-like peptide and IVM, minimal stimulation ART, PCOS. OUTCOMES Minimizing gonadotrophin use means IVM oocytes will be collected from small antral (pre-dominant) follicles containing oocytes that are still developing. Standard IVM yields suboptimal clinical outcomes using such oocytes, whereas pre-IVM aims to continue the oocyte's development ex vivo, prior to IVM. Pre-IVM achieves this by eliciting profound cellular changes in the oocyte's CCs, which continue to meet the oocyte's developmental needs during the pre-IVM phase. The literature contains 25 years of animal research on various pre-IVM and biphasic IVM procedures, which serves as a large knowledge base for new approaches to human IVM. A pre-IVM procedure based on c-type natriuretic peptide (named 'capacitation-IVM' (CAPA-IVM)) has undergone pre-clinical human safety and efficacy trials and its adoption into clinical practice resulted in healthy live birth rates not different from conventional IVF. WIDER IMPLICATIONS Over many decades, improvements in clinical IVM have been gradual and incremental but there has likely been a turning of the tide in the past few years, with landmark discoveries in animal oocyte biology finally making their way into clinical practice leading to improved outcomes for patients. Demonstration of favorable clinical results with CAPA-IVM, as the first clinically tested biphasic IVM system, has led to renewed interest in IVM as an alternative, low-intervention, low-cost, safe, patient-friendly ART approach, and especially for patients with PCOS. The same new approach is being used as part of fertility preservation in patients with cancer and holds promise for social oocyte freezing.
Collapse
Affiliation(s)
- Robert B Gilchrist
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, NSW, Australia
| | - Tuong M Ho
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Michel De Vos
- Brussels IVF, UZ Brussel, Brussels, Belgium
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Flor Sanchez
- Centro de Estudios e Investigaciones en Biología y Medicina Reproductiva, Lima, Peru
| | - Sergio Romero
- Laboratory of Reproductive Biology and Fertility Preservation, Cayetano Heredia University (UPCH), Lima, Peru
- Centro de Fertilidad y Reproducción Asistida, Lima, Peru
| | - William L Ledger
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, NSW, Australia
- City Fertility, Global CHA IVF Partners, Sydney, NSW, Australia
| | - Ellen Anckaert
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lan N Vuong
- Department of Obstetrics and Gynaecology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Johan Smitz
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
2
|
Fang L, Sun YP, Cheng JC. The role of amphiregulin in ovarian function and disease. Cell Mol Life Sci 2023; 80:60. [PMID: 36749397 PMCID: PMC11071807 DOI: 10.1007/s00018-023-04709-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/08/2023]
Abstract
Amphiregulin (AREG) is an epidermal growth factor (EGF)-like growth factor that binds exclusively to the EGF receptor (EGFR). Treatment with luteinizing hormone (LH) and/or human chorionic gonadotropin dramatically induces the expression of AREG in the granulosa cells of the preovulatory follicle. In addition, AREG is the most abundant EGFR ligand in human follicular fluid. Therefore, AREG is considered a predominant propagator that mediates LH surge-regulated ovarian functions in an autocrine and/or paracrine manner. In addition to the well-characterized stimulatory effect of LH on AREG expression, recent studies discovered that several local factors and epigenetic modifications participate in the regulation of ovarian AREG expression. Moreover, aberrant expression of AREG has recently been reported to contribute to the pathogenesis of several ovarian diseases, such as ovarian hyperstimulation syndrome, polycystic ovary syndrome, and epithelial ovarian cancer. Furthermore, increasing evidence has elucidated new applications of AREG in assisted reproductive technology. Collectively, these studies highlight the importance of AREG in female reproductive health and disease. Understanding the normal and pathological roles of AREG and elucidating the molecular and cellular mechanisms of AREG regulation of ovarian functions will inform innovative approaches for fertility regulation and the prevention and treatment of ovarian diseases. Therefore, this review summarizes the functional roles of AREG in ovarian function and disease.
Collapse
Affiliation(s)
- Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 40, Daxue Road, Zhengzhou, 450052, Henan, China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 40, Daxue Road, Zhengzhou, 450052, Henan, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 40, Daxue Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
3
|
Shi Y, Shi Y, He G, Wang G, Liu H, Shao X. Association of ADAMTS proteoglycanases downregulation with IVF-ET outcomes in patients with polycystic ovary syndrome: a systematic review and meta-analysis. Reprod Biol Endocrinol 2022; 20:169. [PMID: 36510316 PMCID: PMC9745937 DOI: 10.1186/s12958-022-01035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A disintegrin and metalloproteinase with thrombospondin-like motifs (ADAMTS) is involved in inflammation and fertility in women with polycystic ovary syndrome (PCOS). This study aims to assess the role of ADAMTS level in the outcomes of in vitro fertilization and embryo transfer (IVF-ET) in women with PCOS, using a meta-analytic approach. METHODS We systematically searched Web of Science, PubMed, EmBase, and the Cochrane library to identify potentially eligible studies from inception until December 2021. Study assess the role of ADAMTS levels in patients with PCOS was eligible in this study. The pooled effect estimates for the association between ADAMTS level and IVF-ET outcomes were calculated using the random-effects model. RESULTS Five studies involving a total of 181 patients, were selected for final analysis. We noted that ADAMTS-1 levels were positively correlated to oocyte maturity (r = 0.67; P = 0.004), oocyte recovery (r = 0.74; P = 0.006), and fertilization (r = 0.46; P = 0.041) rates. Moreover, ADAMTS-4 levels were positively correlated to oocyte recovery (r = 0.91; P = 0.001), and fertilization (r = 0.85; P = 0.017) rates. Furthermore, downregulation of ADAMTS-1, ADAMTS-4, ADAMTS-5, and ADAMTS-9 was associated with elevated follicle puncture (ADAMTS-1: weighted mean difference [WMD], 7.24, P < 0.001; ADAMTS-4: WMD, 7.20, P < 0.001; ADAMTS-5: WMD, 7.20, P < 0.001; ADAMTS-9: WMD, 6.38, P < 0.001), oocytes retrieval (ADAMTS-1: WMD, 1.61, P < 0.001; ADAMTS-4: WMD, 3.63, P = 0.004; ADAMTS-5: WMD, 3.63, P = 0.004; ADAMTS-9: WMD, 3.20, P = 0.006), and Germinal vesicle oocytes levels (ADAMTS-1: WMD, 2.89, P < 0.001; ADAMTS-4: WMD, 2.19, P < 0.001; ADAMTS-5: WMD, 2.19, P < 0.001; ADAMTS-9: WMD, 2.89, P < 0.001). Finally, the oocytes recovery rate, oocyte maturity rate, fertilization rate, cleavage rate, good-quality embryos rate, blastocyst formation rate, and clinical pregnancy rate were not affected by the downregulation of ADAMTS-1, ADAMTS-4, ADAMTS-5, and ADAMTS-9 (P > 0.05). CONCLUSIONS This study found that the outcomes of IVF-EF in patients with PCOS could be affected by ADAMTS-1 and ADAMTS-4; further large-scale prospective studies should be performed to verify these results.
Collapse
Affiliation(s)
- Yanbin Shi
- School of Public Health, China Medical University, Shenyang, China
- Reproductive and Genetic Medicine Center, Dalian Women and Children's Medical Center, Dalian, China
| | - Yang Shi
- Reproductive and Genetic Medicine Center, Dalian Women and Children's Medical Center, Dalian, China
| | - Guiyuan He
- Reproductive and Genetic Medicine Center, Dalian Women and Children's Medical Center, Dalian, China
| | - Guang Wang
- Reproductive and Genetic Medicine Center, Dalian Women and Children's Medical Center, Dalian, China
| | - Hongbo Liu
- School of Public Health, China Medical University, Shenyang, China.
| | - Xiaoguang Shao
- Reproductive and Genetic Medicine Center, Dalian Women and Children's Medical Center, Dalian, China.
| |
Collapse
|
4
|
Xu J, Zelinski MB. Oocyte quality following in vitro follicle development†. Biol Reprod 2021; 106:291-315. [PMID: 34962509 PMCID: PMC9004734 DOI: 10.1093/biolre/ioab242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/30/2022] Open
Abstract
In vitro follicle development (IVFD) is an adequate model to obtain basic knowledge of folliculogenesis and provides a tool for ovarian toxicity screening. IVFD yielding competent oocytes may also offer an option for fertility and species preservation. To promote follicle growth and oocyte maturation in vitro, various culture systems are utilized for IVFD in rodents, domestic animals, wild animals, nonhuman primates, and humans. Follicle culture conditions have been improved by optimizing gonadotropin levels, regulatory factors, nutrient supplements, oxygen concentration, and culture matrices. This review summarizes quality assessment of oocytes generated from in vitro-developed antral follicles from the preantral stage, including oocyte epigenetic and genetic profile, cytoplasmic and nuclear maturation, preimplantation embryonic development following in vitro fertilization, as well as pregnancy and live offspring after embryo transfer. The limitations of oocyte quality evaluation following IVFD and the gaps in our knowledge of IVFD to support proper oocyte development are also discussed. The information may advance our understanding of the requirements for IVFD, with a goal of producing competent oocytes with genetic integrity to sustain embryonic development resulting in healthy offspring.
Collapse
Affiliation(s)
- Jing Xu
- Correspondence: Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA. Tel: +1 5033465411; Fax: +1 5033465585; E-mail:
| | - Mary B Zelinski
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA,Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
5
|
Akin N, Le AH, Ha UDT, Romero S, Sanchez F, Pham TD, Nguyen MHN, Anckaert E, Ho TM, Smitz J, Vuong LN. Positive effects of amphiregulin on human oocyte maturation and its molecular drivers in patients with polycystic ovary syndrome. Hum Reprod 2021; 37:30-43. [PMID: 34741172 DOI: 10.1093/humrep/deab237] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/03/2021] [Indexed: 01/19/2023] Open
Abstract
STUDY QUESTION Does use of medium containing amphiregulin improve meiotic maturation efficiency in oocytes of women with polycystic ovary syndrome (PCOS) undergoing in vitro maturation (IVM) preceded by a capacitation culture step capacitation IVM (CAPA-IVM)? SUMMARY ANSWER Use of medium containing amphiregulin significantly increased the maturation rate from oocytes retrieved from follicles with diameters <6 or ≥6 mm pre-cultured in capacitation medium. WHAT IS KNOWN ALREADY Amphiregulin concentration in follicular fluid is correlated with human oocyte developmental competence. Amphiregulin added to the meiotic trigger has been shown to improve outcomes of IVM in a range of mammalian species. STUDY DESIGN, SIZE, DURATION This prospective, randomized cohort study included 30 patients and was conducted at an academic infertility centre in Vietnam from April to December 2019. Patients with PCOS were included. PARTICIPANTS/MATERIALS, SETTING, METHODS In the first stage, sibling oocytes from each patient (671 in total) were allocated in equal numbers to maturation in medium with (CAPA-AREG) or without (CAPA-Control) amphiregulin 100 ng/ml. After a maturation check and fertilization using intracytoplasmic sperm injection (ICSI), all good quality Day 3 embryos were vitrified. Cumulus cells (CCs) from both groups were collected at the moment of ICSI denudation and underwent a molecular analysis to quantify key transcripts of oocyte maturation and to relate these to early embryo development. On return for frozen embryo transfer (second stage), patients were randomized to have either CAPA-AREG or CAPA-Control embryo(s) implanted. Where no embryo(s) from the randomized group were available, embryo(s) from the other group were transferred. The primary endpoint of the study was meiotic maturation efficiency (proportion of metaphase II [MII] oocytes; maturation rate). MAIN RESULTS AND THE ROLE OF CHANCE In the per-patient analysis, the number of MII oocytes was significantly higher in the CAPA-AREG group versus the CAPA-Control group (median [interquartile range] 7.0 [5.3, 8.0] versus 6.0 [4.0, 7.0]; P = 0.01). When each oocyte was evaluated, the maturation rate was also significantly higher in the CAPA-AREG group versus the CAPA-Control group (67.6% versus 55.2%; relative risk [RR] 1.22 [95% confidence interval (CI) 1.08-1.38]; P = 0.001). No other IVM or embryology outcomes differed significantly between the two groups. Rates of clinical pregnancy (66.7% versus 42.9%; RR 1.56 [95% CI 0.77-3.14]), ongoing pregnancy (53.3% versus 28.6%; RR 1.87 [95% CI 0.72-4.85]) and live birth (46.7% versus 28.6%; RR 1.63 [95% CI 0.61-4.39]) were numerically higher in the patients who had CAPA-AREG versus CAPA-Control embryos implanted, but each fertility and obstetric outcome did not differ significantly between the groups. In the CAPA-AREG group, there were significant shifts in CC expression of genes involved in steroidogenesis (STAR, 3BHSD), the ovulatory cascade (DUSP16, EGFR, HAS2, PTGR2, PTGS2, RPS6KA2), redox and glucose metabolism (CAT, GPX1, SOD2, SLC2A1, LDHA) and transcription (NRF2). The expression of three genes (TRPM7, VCAN and JUN) in CCs showed a significant correlation with embryo quality. LIMITATIONS, REASONS FOR CAUTION This study included only Vietnamese women with PCOS, limiting the generalizability. Although 100 ng/ml amphiregulin addition to the maturation culture step significantly improved the MII rate, the sample size in this study was small, meaning that these findings should be considered as exploratory. Therefore, a larger patient cohort is needed to confirm whether the positive effects of amphiregulin translate into improved fertility outcomes in patients undergoing IVM. WIDER IMPLICATIONS OF THE FINDINGS Data from this study confirm the beneficial effects of amphiregulin during IVM with respect to the trigger of oocyte maturation. The gene expression findings in cumulus indicate that multiple pathways might contribute to these beneficial effects and confirm the key role of the epidermal growth factor system in the stepwise acquisition of human oocyte competence. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED; grant number FWO.106-YS.2017.02) and by the Fund for Research Flanders (FWO; grant number G.OD97.18N). L.N.V. has received speaker and conference fees from Merck, grants, speaker and conference fees from Merck Sharpe and Dohme, and speaker, conference and scientific board fees from Ferring. T.M.H. has received speaker fees from Merck, Merck Sharp and Dohme and Ferring. J.S. reports speaker fees from Ferring Pharmaceuticals and Biomérieux Diagnostics and grants from FWO Flanders, is co-inventor on granted patents on CAPA-IVM methodologies in USA (US10392601B2), Europe (EP3234112B1) and Japan (JP 6806683 registered 08-12-2020) and is a co-shareholder of Lavima Fertility Inc., a spin-off company of the Vrije Universiteit Brussel (VUB, Brussels, Belgium). NA, TDP, AHL, MNHN, SR, FS, EA and UDTH report no financial relationships with any organizations that might have an interest in the submitted work in the previous three years, and no other relationships or activities that could appear to have influenced the submitted work. TRIAL REGISTRATION NUMBER NCT03915054.
Collapse
Affiliation(s)
- Nazli Akin
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - Anh H Le
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam.,HOPE Research Center, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Uyen D T Ha
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam.,HOPE Research Center, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Sergio Romero
- Laboratory of Reproductive Biology and Fertility Preservation, Cayetano Heredia University (UPCH), Lima, Peru
| | - Flor Sanchez
- Laboratory of Reproductive Biology and Fertility Preservation, Cayetano Heredia University (UPCH), Lima, Peru
| | - Toan D Pham
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam.,HOPE Research Center, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Minh H N Nguyen
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam.,HOPE Research Center, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Ellen Anckaert
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - Tuong M Ho
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam.,HOPE Research Center, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Johan Smitz
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - Lan N Vuong
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam.,HOPE Research Center, My Duc Hospital, Ho Chi Minh City, Vietnam.,Department of Obstetrics and Gynecology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
6
|
Cadenas J, Nikiforov D, Pors SE, Zuniga LA, Wakimoto Y, Ghezelayagh Z, Mamsen LS, Kristensen SG, Andersen CY. A threshold concentration of FSH is needed during IVM of ex vivo collected human oocytes. J Assist Reprod Genet 2021; 38:1341-1348. [PMID: 34050448 DOI: 10.1007/s10815-021-02244-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/23/2021] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To investigate the effect of different FSH concentrations on human oocyte maturation in vitro and its impact on gene expression of key factors in the surrounding cumulus cells. METHODS The study included 32 patients who underwent unilateral oophorectomy for ovarian tissue cryopreservation (OTC) (aged 28 years on average). Immature oocytes were collected from surplus medulla tissue. A total of 587 immature oocytes were divided into three categories according to the size of the cumulus mass: large (L-COCs), small (S-COCs), and naked oocytes (NOs), and submitted to 44-h IVM with one of the following concentrations of recombinant FSH: 0 IU/L, 20 IU/L, 40 IU/L, 70 IU/L, or 250 IU/L. After IVM, oocyte nuclear maturation stage and diameter were recorded. The relative gene expression of FSHR, LHCGR, and CYP19A1 in cumulus cells before (day 0; D0) and after IVM were evaluated. RESULTS Addition of 70 or 250 IU/L FSH to the IVM medium improved oocyte nuclear maturation compared to 0, 20, and 40 IU/L FSH by upregulating LHCGR and downregulating FSHR in the cumulus cells. CONCLUSION FSH improved oocyte nuclear maturation at concentrations above 70 IU/L suggesting a threshold for FSH during IVM of ex vivo collected human oocytes from small antral follicles. Moreover, current results for the first time highlight that FSH function in vitro is mediated via cumulus cells by downregulating FSHR and upregulating LHCGR, which was also observed when the immature oocytes progressed in meiosis from the GV to the MII stage.
Collapse
Affiliation(s)
- Jesús Cadenas
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark.
| | - Dmitry Nikiforov
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Lenin Arturo Zuniga
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Yu Wakimoto
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Zeinab Ghezelayagh
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Stine Gry Kristensen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
7
|
Vesztergom D, Segers I, Mostinckx L, Blockeel C, De Vos M. Live births after in vitro maturation of oocytes in women who had suffered adnexal torsion and unilateral oophorectomy following conventional ovarian stimulation. J Assist Reprod Genet 2021; 38:1323-1329. [PMID: 33826051 DOI: 10.1007/s10815-021-02171-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/22/2021] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To report the first successful application of in vitro maturation (IVM) of oocytes resulting in live births in two anovulatory women who had suffered oophorectomy following ovarian torsion after stimulation with gonadotropins. METHODS Data abstraction was performed from medical records of two subfertile women with excessive functional ovarian reserve. Both women had previously received gonadotropins for ovulation induction or ovarian stimulation, resulting in ovarian torsion. They were offered IVM of oocytes retrieved from antral follicles after mild ovarian stimulation, insemination of mature oocytes using ICSI, and embryo transfer. Outcome measures were the incidence of complications and live birth after fertility treatment. RESULTS Transvaginal retrieval of cumulus-oocyte complexes from a unique ovary was conducted. One patient had a singleton live birth after vitrified-warmed embryo transfer in the second IVM cycle. The other patient had a singleton live birth after transfer of a fresh blastocyst in her first IVM cycle. CONCLUSIONS Although approaches have been developed to prevent ovarian hyperstimulation syndrome (OHSS) and to increase the safety profile of fertility treatment in predicted high responders, women with an excessive functional ovarian reserve may have a non-negligible risk of ovarian torsion. For these patients, IVM should be considered as a safer alternative approach.
Collapse
Affiliation(s)
- Dóra Vesztergom
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 109, Brussels, Belgium
- Centre for Assisted Reproduction, Clinic of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary
| | - Ingrid Segers
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 109, Brussels, Belgium
| | - Linde Mostinckx
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 109, Brussels, Belgium
| | - Christophe Blockeel
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 109, Brussels, Belgium
- Department of Obstetrics and Gynaecology, University of Zagreb-School of Medicine, Zagreb, Croatia
| | - Michel De Vos
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 109, Brussels, Belgium.
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel (VUB), 1090, Brussels, Belgium.
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, Institute of Professional Education, Sechenov University, Moscow, Russia.
| |
Collapse
|
8
|
Wyse BA, Fuchs Weizman N, Kadish S, Balakier H, Sangaralingam M, Librach CL. Transcriptomics of cumulus cells - a window into oocyte maturation in humans. J Ovarian Res 2020; 13:93. [PMID: 32787963 PMCID: PMC7425158 DOI: 10.1186/s13048-020-00696-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cumulus cells (CC) encapsulate growing oocytes and support their growth and development. Transcriptomic signatures of CC have the potential to serve as valuable non-invasive biomarkers for oocyte competency and potential. The present sibling cumulus-oocyte-complex (COC) cohort study aimed at defining functional variations between oocytes of different maturity exposed to the same stimulation conditions, by assessing the transcriptomic signatures of their corresponding CC. CC were collected from 18 patients with both germinal vesicle and metaphase II oocytes from the same cycle to keep the biological variability between samples to a minimum. RNA sequencing, differential expression, pathway analysis, and leading-edge were performed to highlight functional differences between CC encapsulating oocytes of different maturity. RESULTS Transcriptomic signatures representing CC encapsulating oocytes of different maturity clustered separately on principal component analysis with 1818 genes differentially expressed. CCs encapsulating mature oocytes were more transcriptionally synchronized when compared with CCs encapsulating immature oocytes. Moreover, the transcriptional activity was lower, albeit not absent, in CC encapsulating mature oocytes, with 2407 fewer transcripts detected than in CC encapsulating immature (germinal vesicle - GV) oocytes. Hallmark pathways and ovarian processes that were affected by oocyte maturity included cell cycle regulation, steroid metabolism, apoptosis, extracellular matrix remodeling, and inflammation. CONCLUSIONS Herein we review our findings and discuss how they align with previous literature addressing transcriptomic signatures of oocyte maturation. Our findings support the available literature and enhance it with several genes and pathways, which have not been previously implicated in promoting human oocyte maturation. This study lays the ground for future functional studies that can enhance our understanding of human oocyte maturation.
Collapse
Affiliation(s)
- Brandon A Wyse
- CReATe Fertility Centre, 790 Bay St. Suite 420, Toronto, ON, M5G 1N8, Canada.
| | - Noga Fuchs Weizman
- CReATe Fertility Centre, 790 Bay St. Suite 420, Toronto, ON, M5G 1N8, Canada
| | - Seth Kadish
- CReATe Fertility Centre, 790 Bay St. Suite 420, Toronto, ON, M5G 1N8, Canada
| | - Hanna Balakier
- CReATe Fertility Centre, 790 Bay St. Suite 420, Toronto, ON, M5G 1N8, Canada
| | | | - Clifford L Librach
- CReATe Fertility Centre, 790 Bay St. Suite 420, Toronto, ON, M5G 1N8, Canada
- Department of Obstetrics and Gynecology; Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Physiology; Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Obstetrics and Gynecology, Women's College Hospital, Toronto, Canada
| |
Collapse
|
9
|
Elshewy N, Ji D, Zhang Z, Chen D, Chen B, Xue R, Wu H, Wang J, Zhou P, Cao Y. Association between mild stimulated IVF/M cycle and early embryo arrest in sub fertile women with/without PCOS. Reprod Biol Endocrinol 2020; 18:71. [PMID: 32669130 PMCID: PMC7362506 DOI: 10.1186/s12958-020-00622-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The in vitro maturation (IVM) technique has physical and financial benefits, but a lower efficiency and outcome that is still unclear whether it is related to polycystic ovary syndrome (PCOS) itself or the IVM procedure. In this study, we analyzed the clinical and laboratory outcomes of an optimized IVM protocol in patients with and without PCOS. We also discussed the possible reasons for early embryo arrest in the IVM cycle. METHODS This prospective study involved 58 PCOS patients and 56 non-PCOS patients who underwent mild stimulated IVF combined IVM (IVF/M) cycles. The clinical and laboratory outcomes were compared between the two groups. Also, metaphase II (MII) oocytes were obtained after IVM from the two groups, and in vivo MII oocytes randomly collected from IVF patients were examined for mitochondrial function using a laser scanning confocal microscope (LSCM). The aneuploidy rate for arrested cleavage embryos from IVM and IVF oocytes were screened using Next Generation Sequencing (NGS). RESULTS Mildly stimulated IVF/M resulted in cumulative clinical pregnancy and implantation rates (40.2, 28.7% in the PCOS group vs. 41.9, 36% in the non-PCOS group), respectively. The blastocyst formation rates were comparable (28% vs. 28.2%) in PCOS and non-PCOS groups, respectively. Using LSCM, there was a significant decrease in the mitochondrial membrane potential of IVM oocytes compared with the control IVF oocytes (P < 0.001), but no significant difference between the PCOS and non-PCOS groups. The NGS showed that the aneuploidy rates were comparable (75, 75, and 66.6%) in IVM-PCOS, IVM-non-PCOS, and control IVF arrested embryos, respectively. CONCLUSIONS The mildly stimulated IVF/M protocol produced acceptable clinical outcomes in PCOS and non-PCOS patients. IVM itself rather than the PCOS condition adversely affected the embryo development through its effect on mitochondrial function, which appeared to be a possible cause for the embryo arrest in the IVM cycles rather than chromosomal aneuploidy.
Collapse
Affiliation(s)
- Nagwa Elshewy
- grid.412679.f0000 0004 1771 3402Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dongmei Ji
- grid.412679.f0000 0004 1771 3402Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- grid.186775.a0000 0000 9490 772XKey Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
| | - Zhiguo Zhang
- grid.412679.f0000 0004 1771 3402Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
- grid.186775.a0000 0000 9490 772XNHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| | - Dawei Chen
- grid.412679.f0000 0004 1771 3402Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
- grid.186775.a0000 0000 9490 772XNHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| | - Beili Chen
- grid.412679.f0000 0004 1771 3402Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- grid.186775.a0000 0000 9490 772XKey Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
| | - Rufeng Xue
- grid.412679.f0000 0004 1771 3402Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- grid.186775.a0000 0000 9490 772XKey Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
| | - Huan Wu
- grid.412679.f0000 0004 1771 3402Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
| | - Jianye Wang
- grid.412679.f0000 0004 1771 3402Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
| | - Ping Zhou
- grid.412679.f0000 0004 1771 3402Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- grid.186775.a0000 0000 9490 772XKey Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
- grid.186775.a0000 0000 9490 772XNHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Engineering Technology Research center for Bio preservation and Artificial Organs, Hefei, China
| | - Yunxia Cao
- grid.412679.f0000 0004 1771 3402Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- grid.186775.a0000 0000 9490 772XKey Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
- grid.186775.a0000 0000 9490 772XNHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Engineering Technology Research center for Bio preservation and Artificial Organs, Hefei, China
| |
Collapse
|
10
|
Ma Y, Jin J, Tong X, Yang W, Ren P, Dai Y, Pan Y, Zhang Y, Zhang S. ADAMTS1 and HSPG2 mRNA levels in cumulus cells are related to human oocyte quality and controlled ovarian hyperstimulation outcomes. J Assist Reprod Genet 2020; 37:657-667. [PMID: 31974739 PMCID: PMC7125252 DOI: 10.1007/s10815-019-01659-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The study investigated potential correlations between the expression levels of ADAMTS1 and HSPG2 in cumulus cells (CCs) and controlled ovarian hyperstimulation (COH) outcomes. METHODS RT-PCR was used to determine ADAMTS1 and HSPG2 mRNA levels in mice CCs at different timepoints (0, 4, 8, 12, and 16 h) after human chorionic gonadotropin (hCG) injection, and in CCs after RNAi treatment. Women with polycystic ovary syndrome (PCOS) (n = 45) and normal ovulatory controls (n = 103) undergoing IVF/ICSI were recruited. Relative ADAMTS1 and HSPG2 mRNA levels were measured by RT-PCR. Moreover, correlations of ADAMTS1 and HSPG2 levels with COH outcomes were analyzed. RESULTS At different timepoints after hCG treatment, ADAMTS1 mRNA had the highest level at 12 h, whereas HSPG2 showed opposite profiles to ADAMTS1 with the lowest level at 12 h. HSPG2 expression was upregulated after ADAMTS1 RNAi treatment The PCOS group had higher HSPG2 and lower ADAMTS1 expression levels than controls. In normal ovulatory women (control group), a higher expression of ADAMTS1 and lower expression of HSPG2 were associated with more mature oocytes, transplantable embryos, and good quality embryos, whereas higher transplantable embryo rates and good quality embryo rates were obtained only with lower HSPG2 expression. ROC curves showed the co-measurement of ADAMTS1 and HSPG2 had a better predictive power than separate analyses. CONCLUSION The dynamic profiles of ADAMTS1 and HSPG2 were inversely correlated in CCs. In PCOS and normal ovulatory patients, higher ADAMTS1 and lower HSPG2 expression levels in CCs were related to better COH outcomes.
Collapse
Affiliation(s)
- Yerong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Jiamin Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Peipei Ren
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - YinLi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
| |
Collapse
|
11
|
Kordus RJ, Hossain A, Corso MC, Chakraborty H, Whitman-Elia GF, LaVoie HA. Cumulus cell pappalysin-1, luteinizing hormone/choriogonadotropin receptor, amphiregulin and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 mRNA levels associate with oocyte developmental competence and embryo outcomes. J Assist Reprod Genet 2019; 36:1457-1469. [PMID: 31187330 DOI: 10.1007/s10815-019-01489-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/16/2019] [Indexed: 01/02/2023] Open
Abstract
PURPOSE To determine whether a selected set of mRNA biomarkers expressed in individual cumulus granulosa cell (CC) masses show association with oocyte developmental competence, embryo ploidy status, and embryo outcomes. METHODS This prospective observational cohort pilot study assessed levels of mRNA biomarkers in 163 individual CC samples from 15 women stimulated in antagonist cycles. Nineteen mRNA biomarker levels were measured by real-time PCR and related to the development of their corresponding individually cultured oocytes and subsequent embryos, embryo ploidy status, and live birth outcomes. RESULTS PAPPA mRNA levels were significantly higher in CC from oocytes that led to euploid embryos resulting in live births and aneuploid embryos compared to immature oocytes by ANOVA. LHCGR mRNA levels were significantly higher in CC of oocytes resulting in embryos associated with live birth compared to immature oocytes and oocytes resulting in arrested embryos by ANOVA. Using a general linearized mixed model to assess ploidy status, CC HSD3B mRNA levels in oocytes producing euploid embryos were significantly lower than other oocyte outcomes, collectively. When transferred euploid embryos outcomes were analyzed by ANOVA, AREG mRNA levels were significantly lower and PAPPA mRNA levels significantly higher in CC from oocytes that produced live births compared to transferred embryos that did not form a pregnancy. CONCLUSIONS Collectively, PAPPA, LHCGR, and AREG mRNA levels in CC may be able to identify oocytes with the best odds of resulting in a live birth, and HSD3B1 mRNA levels may be able to identify oocytes capable of producing euploid embryos.
Collapse
Affiliation(s)
- Richard J Kordus
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Fertility Center of the Carolinas, Department of Obstetrics and Gynecology, Prisma Health - Upstate, Greenville, SC, USA
| | - Akhtar Hossain
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | - Michael C Corso
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | - Gail F Whitman-Elia
- Advanced Fertility and Reproductive Endocrinology Institute, LLC, Columbia, SC, USA
- Piedmont Reproductive Endocrinology Group, Columbia, SC, USA
| | - Holly A LaVoie
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
12
|
GohariTaban S, Amiri I, Soleimani Asl S, Saidijam M, Yavangi M, Khanlarzadeh E, Mohammadpour N, Shabab N, Artimani T. Abnormal expressions of ADAMTS-1, ADAMTS-9 and progesterone receptors are associated with lower oocyte maturation in women with polycystic ovary syndrome. Arch Gynecol Obstet 2018; 299:277-286. [PMID: 30446843 DOI: 10.1007/s00404-018-4967-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE ADAMTS-1 and 9 play a crucial role in the ovulation and their altered levels may play a role in the pathogenesis of polycystic ovary syndrome (PCOS). The aim of this study was to assess ADAMTS-1 and 9 expression and their correlation with the oocyte quality and maturity in the cumulus cells (CCs) of PCOS patients and normovulatory women during an IVF procedure. METHODS Expression of ADAMTS-1 and 9 and progesterone receptors (PRs) in the CCs containing MII and germinal vesicle (GV) oocytes of 37 PCOS patients and 37 women with normal ovulatory function who underwent IVF treatment was evaluated using qRT-PCR. Moreover, correlation between ADAMTS-1 and 9 expression and oocyte quality were also investigated. RESULTS mRNA expression levels of ADAMTS-1 and ADAMTS-9 were significantly reduced in the women with PCOS compared to the normovulatory women. ADAMTS-1 and ADAMTS-9 mRNA expression levels in the CCs showed a considerable correlation. Lower expression levels of ADAMTS-1 and ADAMTS-9 in PCOS patients were strongly correlated with diminished oocyte maturation. There was a remarkable association between ADAMTS-1 and ADAMTS-9 mRNA expression levels and oocyte quality. PRs (PRA and PRB) were dramatically decreased in PCOS patients when compared with the control group. CONCLUSIONS The results of the present study indicated that ADAMTS-1 and ADAMTS-9 as well as PRs are downregulated in the human CCs in PCOS patients, which could be associated with impaired oocyte maturation and may result in a lower oocyte recovery and oocyte maturity rates, as well as lower fertilization rate.
Collapse
Affiliation(s)
- Sepide GohariTaban
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Amiri
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahnaz Yavangi
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Nooshin Mohammadpour
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nooshin Shabab
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tayebe Artimani
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
13
|
Walls ML, Hart RJ. In vitro maturation. Best Pract Res Clin Obstet Gynaecol 2018; 53:60-72. [PMID: 30056110 DOI: 10.1016/j.bpobgyn.2018.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022]
Abstract
In vitro maturation (IVM) is an in vitro fertilisation (IVF) technique modified to collect immature oocytes from antral follicles, with the final stages of meiosis completed during in vitro culture. The primary benefit of IVM is that it reduces gonadotrophin stimulation in the patient, thereby eliminating the risk of ovarian hyperstimulation syndrome (OHSS) in high-risk patients such as those with polycystic ovaries (PCO) and polycystic ovary syndrome (PCOS). IVM has additional benefits for fertility preservation, particularly in oncofertility patients. IVM research has progressed in recent years to significantly improve success rates and to provide evidence of safety in terms of neonatal and childhood outcomes. More recently, pre-maturation protocols and the discovery of new culture media additives have demonstrated potential to maximise maturation and oocyte developmental competence. In this chapter, we discuss current methodologies used in clinics routinely performing IVM, target patient populations and areas of future research that may improve IVM success.
Collapse
Affiliation(s)
- Melanie L Walls
- Fertility North, Suite 213, Specialist Medical Centre, Joondalup Health Campus, Shenton Avenue, Joondalup, Western Australia, 6027, Australia; Fertility Specialists of Western Australia, Bethesda Hospital, 25 Queenslea Drive, Claremont, Perth, Western Australia, 6010, Australia
| | - Roger J Hart
- Fertility Specialists of Western Australia, Bethesda Hospital, 25 Queenslea Drive, Claremont, Perth, Western Australia, 6010, Australia; Division of Obstetrics and Gynaecology, University of Western Australia, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, Perth, Western Australia, 6008, Australia.
| |
Collapse
|
14
|
Richani D, Gilchrist RB. The epidermal growth factor network: role in oocyte growth, maturation and developmental competence. Hum Reprod Update 2018; 24:1-14. [PMID: 29029246 DOI: 10.1093/humupd/dmx029] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The LH surge induces great physiological changes within the preovulatory follicle, which culminate in the ovulation of a mature oocyte that is capable of supporting embryo and foetal development. However, unlike mural granulosa cells, the oocyte and its surrounding cumulus cells are not directly responsive to LH, indicating that the LH signal is mediated by secondary factors produced by the granulosa cells. The mechanisms by which the oocyte senses the ovulatory LH signal and hence prepares for ovulation has been a subject of considerable controversy for the past four decades. Within the last 15 years several significant insights have been made into the molecular mechanisms orchestrating oocyte development, maturation and ovulation. These findings centre on the epidermal growth factor (EGF) pathway and the role it plays in the complex signalling network that finely regulates oocyte maturation and ovulation. OBJECTIVE AND RATIONALE This review outlines the role of the EGF network during oocyte development and regulation of the ovulatory cascade, and in particular focuses on the effect of the EGF network on oocyte developmental competence. Application of this new knowledge to advances in ART is examined. SEARCH METHODS The PubMed database was used to search for peer-reviewed original and review articles concerning the EGF network. Publications offering a comprehensive description of the role of the EGF network in follicle and oocyte development were used. OUTCOMES It is now clear that acute upregulation of the EGF network is an essential component of the ovulatory cascade as it transmits the LH signal from the periphery of the follicle to the cumulus-oocyte complex (COC). More recent findings have elucidated new roles for the EGF network in the regulation of oocyte development. EGF signalling downregulates the somatic signal 3'5'-cyclic guanine monophosphate that suppresses oocyte meiotic maturation and simultaneously provides meiotic inducing signals. The EGF network also controls translation of maternal transcripts in the quiescent oocyte, a process that is integral to oocyte competence. As a means of restricting the ovulatory signal to the Graffian follicle, most COCs in the ovary are unresponsive to EGF-ligands. Recent studies have revealed that development of a functional EGF signalling network in cumulus cells requires dual endocrine (FSH) and oocyte paracrine cues (growth differentiation factor 9 and bone morphogenetic protein 15), and this occurs progressively in COCs during the last stages of folliculogenesis. Hence, a new concept to emerge is that cumulus cell acquisition of EGF receptor responsiveness represents a developmental hallmark in folliculogenesis, analogous to FSH-induction of LH receptor signalling in mural granulosa cells. Likewise, this event represents a major milestone in the oocyte's developmental progression and acquisition of developmental competence. It is now clear that EGF signalling is perturbed in COCs matured in vitro. This has inspired novel concepts in IVM systems to ameliorate this perturbation, resulting in improved oocyte developmental competence. WIDER IMPLICATIONS An oocyte of high quality is imperative for fertility. Elucidating the fundamental molecular and cellular mechanims by which the EGF network regulates oocyte maturation and ovulation can be expected to open new opportunities in ART. This knowledge has already led to advances in oocyte IVM in animal models. Translation of such advances into a clinical setting should increase the efficacy of IVM, making it a viable treatment option for a wide range of patients, thereby simplifying fertility treatment and bringing substantial cost and health benefits.
Collapse
Affiliation(s)
- Dulama Richani
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales Sydney, NSW 2052, Australia
| | - Robert B Gilchrist
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales Sydney, NSW 2052, Australia
| |
Collapse
|
15
|
Canosa S, Adriaenssens T, Coucke W, Dalmasso P, Revelli A, Benedetto C, Smitz J. Zona pellucida gene mRNA expression in human oocytes is related to oocyte maturity, zona inner layer retardance and fertilization competence. Mol Hum Reprod 2018; 23:292-303. [PMID: 28204536 DOI: 10.1093/molehr/gax008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/09/2017] [Indexed: 12/23/2022] Open
Abstract
STUDY QUESTION Do the mRNA expression levels of zona pellucida (ZP) genes, ZP1, 2, 3 and 4 in oocyte and cumulus cells (CC) reveal relevant information on the oocyte? SUMMARY ANSWER The ZP mRNA expression in human oocytes is related to oocyte maturity, zona inner layer (IL) retardance and fertilization capacity. WHAT IS KNOWN ALREADY ZP structure and birefringence provide useful information on oocyte cytoplasmic maturation, developmental competence for embryonic growth, blastocyst formation and pregnancy. In order to understand the molecular basis of morphological changes in the ZP, in the current study, the polarized light microscopy (PLM) approach was combined with analysis of the expression of the genes encoding ZP1, 2, 3 and 4, both in the oocytes and in the surrounding CC. STUDY DESIGN, SIZE, DURATION This is a retrospective study comprising 98 supernumerary human cumulus oocyte complexes (COC) [80 Metaphase II (MII), 10 Metaphase I (MI) and 8 germinal vesicle (GV)] obtained from 39 patients (median age 33.4 years, range 22-42) after controlled ovarian stimulation. PARTICIPANTS/MATERIALS, SETTING, METHODS Single oocytes and their corresponding CC were analysed. Oocytes were examined using PLM, and quantitative RT-PCR was performed for ZP1, 2, 3 and 4 in these individual oocytes and their CC. Ephrin-B2 (EFNB2) mRNA was measured in CC as a control. Presence of ZP3 protein in CC and oocytes was investigated using immunocytochemistry. Data were analysed using one-parametric and multivariate analysis and were corrected for the potential impact of patient and cycle characteristics. MAIN RESULTS AND THE ROLE OF CHANCE Oocytes contained ZP1/2/3 and 4 mRNA while in CC only ZP3 was quantifiable. Also ZP3 protein was detected in human CC. When comparing mature (MII) and immature oocytes (MI/GV) or their corresponding CC, ZP1/2 and 4 expression was lower in mature oocytes compared to the expression in immature oocytes (all P < 0.05) and ZP3 expression was lower in the CC of mature oocytes compared to the expression in CC of immature oocytes (P < 0.05). This coincided with a significantly smaller IL-ZP area and thickness in mature oocytes than in immature oocytes (all P < 0.05). In mature oocytes, IL-ZP retardance was significantly correlated with the expression of all four ZP mRNAs (all P < 0.05). The oocyte ZP3 expression was the main predictor of the fertilization capacity, next to IL-retardance and IL-thickness. Using stepwise regression analysis, IL-thickness combined with EFNB2 expression in CC and the patient's ovarian response resulted in a noninvasive oocyte fertilization prediction model. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION This is a retrospective study and the relation of oocyte mRNA levels to fertilization capacity is indirect as oocyte gene expression analysis required lysis of the oocyte. WIDER IMPLICATIONS OF THE FINDINGS Overall relations between PLM observations, mRNA expression changes and intrinsic oocyte competence were successfully documented. As such PLM and CC gene expression are confirmed as valuable noninvasive techniques to evaluate oocyte competence. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by University of Torino, Italy, WFWG UZ-Brussel and Agentschap voor Innovatie door Wetenschap en Technologie IWT 110680, Belgium. All authors declare that their participation in the study did not involve actual or potential conflicts of interests.
Collapse
Affiliation(s)
- S Canosa
- Chair Gynecology and Obstetrics 1, Physiopathology of Reproduction and IVF Unit, University Department of Surgical Sciences, S. Anna Hospital, Via Ventimiglia 3, 10126 Torino, Italy
| | - T Adriaenssens
- Follicle Biology Laboratory, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - W Coucke
- Department of Clinical Biology, Scientific Institute of Public Health, 1050 Brussels, Belgium
| | - P Dalmasso
- Medical Statistics Unit, Department of Public Health and Paediatrics, University of Torino, Via Santena 5b, 10126 Torino, Italy
| | - A Revelli
- Chair Gynecology and Obstetrics 1, Physiopathology of Reproduction and IVF Unit, University Department of Surgical Sciences, S. Anna Hospital, Via Ventimiglia 3, 10126 Torino, Italy
| | - C Benedetto
- Chair Gynecology and Obstetrics 1, Physiopathology of Reproduction and IVF Unit, University Department of Surgical Sciences, S. Anna Hospital, Via Ventimiglia 3, 10126 Torino, Italy
| | - J Smitz
- Follicle Biology Laboratory, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
16
|
Julania S, Walls ML, Hart R. The Place of In Vitro Maturation in PCO/PCOS. Int J Endocrinol 2018; 2018:5750298. [PMID: 30154841 PMCID: PMC6091445 DOI: 10.1155/2018/5750298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/13/2018] [Accepted: 07/03/2018] [Indexed: 11/29/2022] Open
Abstract
In vitro maturation (IVM) of human oocytes is an emerging treatment option for women with polycystic ovary/polycystic ovary syndrome (PCO/PCOS) in addition to the standard in vitro fertilization (IVF) treatment. There has been significant improvements in pregnancy rates with IVM over the last two decades. This article reviews the place of IVM for women with PCO/PCOS, placing an emphasis on the predictors of successful pregnancy, optimization of culture media, IVM protocols, pregnancy rates, and neonatal outcomes following IVM treatment.
Collapse
Affiliation(s)
- Shital Julania
- King Edward Memorial Hospital, 374 Bagot Road, Subiaco, WA 6008, Australia
| | - Melanie L. Walls
- Fertility North, Suite 213, Specialist Medical Centre, Joondalup Health Campus, Shenton Avenue, Joondalup, WA 6027, Australia
- Fertility Specialists of Western Australia, Bethesda Hospital, 25 Queenslea Drive, Claremont, Perth, WA 6010, Australia
| | - Roger Hart
- Fertility Specialists of Western Australia, Bethesda Hospital, 25 Queenslea Drive, Claremont, Perth, WA 6010, Australia
- Division of Obstetrics and Gynaecology, University of Western Australia, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, Perth, WA 6008, Australia
| |
Collapse
|
17
|
Luciano AM, Sirard MA. Successful in vitro maturation of oocytes: a matter of follicular differentiation. Biol Reprod 2017; 98:162-169. [DOI: 10.1093/biolre/iox149] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/17/2017] [Indexed: 01/08/2023] Open
Affiliation(s)
- Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Sciences and Food Safety, University of Milan, Milan, Italy
| | - Marc-André Sirard
- Centre de Recherche en reproduction, Développement et Santé Intergénérationnelle, Département des Sciences Animales, Université Laval, Québec, Québec, Canada
| |
Collapse
|
18
|
Shirasawa H, Terada Y. In vitro maturation of human immature oocytes for fertility preservation and research material. Reprod Med Biol 2017; 16:258-267. [PMID: 29259476 PMCID: PMC5715881 DOI: 10.1002/rmb2.12042] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/22/2017] [Indexed: 01/10/2023] Open
Abstract
Aim In recent years, the importance of fertility preservation (FP) has increased. In vitro maturation (IVM), an important technique in FP, has started to be used in the clinic, but controversies persist regarding this technique. Here, a survey of IVM for FP is provided. Methods Based on a literature review, the applications of FP, methods of FP, IVM of oocytes that had been collected in vivo and ex vivo, maturation of oocytes after IVM for FP, cryopreservation of oocytes for FP, explanation of the procedures to patients, and recent research on FP using IVM were investigated. Results Although IVM for FP remains controversial, the application of FP is expected to expand. Depending on the age and disease status of the patient, various methods of oocyte collection and ovarian stimulation, as well as various needle types and aspiration pressures, have been reported. The maturation rate of IVM in FP ranges widely and requires optimization in the future. In regard to cryopreservation for matured oocytes, the vitrification method is currently recommended. Conclusion Regarding FP for patients with cancer, the treatment of cancer is prioritized; thus, the time and use of medicines are often constrained. As several key points regarding IVM remain unclear, well‐designed and specific counseling for patients is necessary.
Collapse
Affiliation(s)
- Hiromitsu Shirasawa
- Department of Obstetrics and Gynecology Akita University Graduate School of Medicine Akita Japan
| | - Yukihiro Terada
- Department of Obstetrics and Gynecology Akita University Graduate School of Medicine Akita Japan
| |
Collapse
|
19
|
Zahmel J, Mundt H, Jewgenow K, Braun BC. Analysis of gene expression in granulosa cells post-maturation to evaluate oocyte culture systems in the domestic cat. Reprod Domest Anim 2017; 52 Suppl 2:65-70. [PMID: 28120353 DOI: 10.1111/rda.12927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Maturation of oocytes is a prerequisite for successful embryo development. The fertilization competence of in vivo derived oocytes is significantly higher than that of oocytes matured in vitro. Commonly evaluated morphological criteria for oocyte maturation do not reflect the complexity and quality of maturation processes. Oocytes and granulosa cells are communicating closely in a bidirectional way during follicular growth and maturation. Assessing the mRNA expression of specific genes in granulosa cells could be a non-invasive way to evaluate the conditions of in vitro oocyte maturation. The objective of this study was to elucidate the influence of two different FSH additives on the in vitro maturation rate and gene expression of cumulus-oocytes complexes in domestic cat. Feline oocytes were matured in a medium, supplemented with LH and 0.02 IU/ml porcine FSH versus 0.02 IU or 1.06 IU/ml human FSH. Granulosa cells were separated from oocytes directly after 24 hr of maturation or after additional 12 hr of in vitro fertilization. Gene expression levels were analysed by quantitative PCR for aromatase, antimullerian hormone, follicle stimulating hormone receptor (FSHR), luteinizing hormone/choriogonadotropin receptor (LHCGR) and prostaglandin E synthase. Neither oocyte maturation rate nor gene expression levels differed after 24 or 36 hr in all three groups. However, variations were discovered in correlations of expression levels, for instance for FSHR and LHCG, indicating differences in the fine-tuning of in vitro maturation processes under varying FSH supplementations. We suppose that correlation between gene expressions of selected genes suggests a superior maturation quality of feline oocytes.
Collapse
Affiliation(s)
- J Zahmel
- Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - H Mundt
- Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - K Jewgenow
- Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - B C Braun
- Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| |
Collapse
|
20
|
De Vos M, Smitz J, Thompson JG, Gilchrist RB. The definition of IVM is clear—variations need defining. Hum Reprod 2016; 31:2411-2415. [DOI: 10.1093/humrep/dew208] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/04/2016] [Accepted: 07/08/2016] [Indexed: 12/25/2022] Open
|
21
|
Affiliation(s)
- Michel De Vos
- Clinical Professor of Reproductive Medicine, Centre for Reproductive Medicine, UZ Brussel, Belgium
| |
Collapse
|
22
|
Segers I, Mateizel I, Van Moer E, Smitz J, Tournaye H, Verheyen G, De Vos M. In vitro maturation (IVM) of oocytes recovered from ovariectomy specimens in the laboratory: a promising "ex vivo" method of oocyte cryopreservation resulting in the first report of an ongoing pregnancy in Europe. J Assist Reprod Genet 2015; 32:1221-31. [PMID: 26253691 DOI: 10.1007/s10815-015-0528-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/30/2015] [Indexed: 12/14/2022] Open
Abstract
PURPOSE We present our center's experience with 34 consecutive cases who underwent in vitro maturation (IVM) of oocytes obtained from ovariectomy specimens and compare our data with updated literature data. METHODS Feasibility and efficiency of oocyte collection during ovarian tissue processing was assessed by the recovery rate, maturation rate, and embryological development after IVM. RESULTS On average, 14 immature oocytes were retrieved per patient during ovarian tissue processing in 33/34 patients. The overall maturation rate after IVM was 36%. The maturation rate correlated with the age of the patient and the duration of IVM. Predominately, oocyte vitrification was performed. Eight couples preferred embryo cryopreservation. Here, a 65% fertilization rate was obtained and at least one good-quality day 3 embryo was cryopreserved in 7/8 couples. The retrieval of oocytes ex vivo resulted in mature oocytes or embryos available for vitrification in 79% of patients. One patient with ovarian insufficiency following therapeutic embolization of the left uterine and the right ovarian artery because of an arteriovenous malformation had an embryo transfer of one good-quality warmed embryo generated after IVM ex vivo, which resulted in an ongoing clinical pregnancy. CONCLUSIONS IVM of oocytes obtained ex vivo during the processing of ovarian cortex prior to cryopreservation is a procedure with emerging promise for patients at risk for fertility loss, as illustrated by the reported pregnancy. However, more data are needed in order to estimate the overall success rate and safety of this novel approach.
Collapse
Affiliation(s)
- Ingrid Segers
- Centre for Reproductive Medicine, UZ Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium,
| | | | | | | | | | | | | |
Collapse
|
23
|
Ritter LJ, Sugimura S, Gilchrist RB. Oocyte induction of EGF responsiveness in somatic cells is associated with the acquisition of porcine oocyte developmental competence. Endocrinology 2015; 156:2299-312. [PMID: 25849729 DOI: 10.1210/en.2014-1884] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oocytes progressively acquire the competence to support embryo development as oogenesis proceeds with ovarian folliculogenesis. The objectives of this study were to investigate oocyte-secreted factor (OSF) participation in the development of somatic cell epidermal growth factor (EGF) responsiveness associated with oocyte developmental competence. A well-established porcine model was employed using oocytes from small (<4 mm) vs medium sized (>4 mm) antral follicles, representing low vs moderate developmental competence, respectively. Cumulus-oocyte complexes (COCs) were treated in vitro with inducers of oocyte maturation, and cumulus cell functions and oocyte developmental competence were assessed. COCs from small follicles responded to FSH but, unlike COCs from larger follicles, were incapable of responding to EGF family growth factors known to mediate oocyte maturation in vivo, exhibiting perturbed cumulus expansion and expression of associated transcripts (HAS2 and TNFAIP6). Low and moderate competence COCs expressed equivalent levels of EGF receptor (EGFR) mRNA; however, the former had less total EGFR protein leading to failed activation of phospho-EGFR and phospho-ERK1/2, despite equivalent total ERK1/2 protein levels. Native OSFs from moderate, but not from low, competence oocytes established EGF responsiveness in low competence COCs. Four candidate recombinant OSFs failed to mimic the actions of native OSFs in regulating cumulus expansion. Treatment with OSFs and EGF enhanced oocyte competence but only of the low competence COCs. These data suggest that developmental acquisition by the oocyte of capacity to regulate EGF responsiveness in the oocyte's somatic cells is a major milestone in the oocyte's developmental program and contributes to coordinated oocyte and somatic cell development.
Collapse
Affiliation(s)
- Lesley J Ritter
- School of Paediatrics and Reproductive Health and Robinson Research Institute (L.J.R., S.S., R.B.G.) Australian Research Council Centre of Excellence in Nanoscale BioPhotonics (L.J.R.), The University of Adelaide, Adelaide, SA 5005, Australia; Institute of Agriculture (S.S.), Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; and Discipline of Obstetrics and Gynaecology (R.B.G.), School of Women's and Children's Health, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
24
|
ADAMTS proteases in fertility. Matrix Biol 2015; 44-46:54-63. [PMID: 25818315 DOI: 10.1016/j.matbio.2015.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 01/11/2023]
Abstract
The reproductive organs are unique among adult organs in that they must undergo continual tissue remodelling as a key aspect of their normal function. The processes for persistent maturation and release of new gametes, as well as fertilisation, implantation, placentation, gestation and parturition involve cyclic development and regression of tissues that must continually regenerate to support fertility. The ADAMTS family of proteases has been shown to contribute to many aspects of the tissue morphogenesis required for development and function of each of the reproductive organs. Dysregulation or functional changes in ADAMTS family proteases have been associated with reproductive disorders such as polycystic ovarian syndrome (PCOS) and premature ovarian failure (POF). Likewise, proteolytic substrates of ADAMTS enzymes have also been linked to reproductive function. New insight into the roles of ADAMTS proteases has yielded a deeper understanding of the molecular mechanisms behind fertility with clinical potential to generate therapeutic targets to resolve infertility, develop biomarkers that predict dysfunction of the reproductive organs and potentially offer targets for development of non-hormonal male and female contraceptives.
Collapse
|
25
|
Altered amphiregulin expression induced by diverse luteinizing hormone receptor reactivity in granulosa cells affects IVF outcomes. Reprod Biomed Online 2015; 30:593-601. [PMID: 25911599 DOI: 10.1016/j.rbmo.2015.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 11/22/2022]
Abstract
The expression of specific genes (LHR, AREG, EREG, EGFR, NPPC and NPR2) involved in peri-ovulatory signalling pathways induced by LH surge in granulosa cells was investigated, and their relationships with IVF outcomes analysed. mRNA levels of the genes of 147 infertile women undergoing IVF and intracytoplasmic sperm injection (ICSI) with embryo transfer were evaluated. Compared with non-pregnant women, amphiregulin (AREG) mRNA levels in mural and cumulus graunulosa cells were significantly higher (P < 0.05) in pregnant women, and were positively correlated with number of oocytes retrieved and good-quality embryos. No significant differences were found between the two groups in the remaining detected genes. To investigate the reason for the differences in AREG expression, mural granulosa cells were cultured and stimulated with human chorionic gonadotrophin (HCG) for 2-24 h. At 4 h after HCG stimulation, AREG and epiregulin mRNA expression peaked, with much greater increases in the pregnant group. The fold-change of AREG expression was positively correlated with number of good-quality embryos. No obvious correlation, however, was found between NPPC/Npr2 expression levels in granulosa cells and IVF outcomes. Altered AREG expression induced by diverse luteinizing hormone receptor reactivity in granulosa cells may provide a useful marker for oocyte developmental competency.
Collapse
|
26
|
Nunes C, Silva JV, Silva V, Torgal I, Fardilha M. Signalling pathways involved in oocyte growth, acquisition of competence and activation. HUM FERTIL 2015; 18:149-55. [DOI: 10.3109/14647273.2015.1006692] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Induction of proteinases in the human preovulatory follicle of the menstrual cycle by human chorionic gonadotropin. Fertil Steril 2014; 103:826-33. [PMID: 25516084 DOI: 10.1016/j.fertnstert.2014.11.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To explore the temporal expression in granulosa and theca cells of key members of the MMP and ADAMTS families across the periovulatory period in women to gain insight into their possible roles during ovulation and early luteinization. DESIGN Experimental prospective clinical study and laboratory-based investigation. SETTING University medical center and private IVF center. ANIMAL AND PATIENT(S) Thirty-eight premenopausal women undergoing surgery for tubal ligation and six premenopausal women undergoing assisted reproductive techniques. INTERVENTION(S) Administration of hCG and harvesting of follicles by laparoscopy and collection of granulosa-lutein cells at oocyte retrieval. MAIN OUTCOME MEASURE(S) Expression of mRNA for matrix metalloproteinase (MMPs) and the A disintegrin and metalloproteinase with thrombospondin-like motifs (ADAMTS) in human granulosa cells and theca cells collected across the periovulatory period of the menstrual cycle and in cultured granulosa-lutein cells after hCG. Localization of MMPs and ADAMTSs by immunohistochemistry. RESULT(S) Expression of MMP1 and MMP19 mRNA increased in both granulosa and theca cells after hCG administration. ADAMTS1 and ADAMTS9 mRNA increased in granulosa cells after hCG treatment, however, thecal cell expression for ADAMTS1 was unchanged, while ADAMTS9 expression was decreased. Expression of MMP8 and MMP13 mRNA was unchanged. Immunohistochemistry confirmed the localization of MMP1, MMP19, ADAMTS1, and ADAMTS9 to the granulosa and thecal cell layers. CONCLUSION(S) The collection of the dominant follicle throughout the periovulatory period has allowed the identification of proteolytic remodeling enzymes in the granulosa and theca compartments that may be critically involved in human ovulation. These proteinases may work in concert to regulate breakdown of the follicular wall and release of the oocyte.
Collapse
|
28
|
Follicle-stimulating hormone regulates expression and activity of epidermal growth factor receptor in the murine ovarian follicle. Proc Natl Acad Sci U S A 2014; 111:16778-83. [PMID: 25385589 DOI: 10.1073/pnas.1414648111] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fertility depends on the precise coordination of multiple events within the ovarian follicle to ensure ovulation of a fertilizable egg. FSH promotes late follicular development, including expression of luteinizing hormone (LH) receptor by the granulosa cells. Expression of its receptor permits the subsequent LH surge to trigger the release of ligands that activate EGF receptors (EGFR) on the granulosa, thereby initiating the ovulatory events. Here we identify a previously unknown role for FSH in this signaling cascade. We show that follicles of Fshb(-/-) mice, which cannot produce FSH, have a severely impaired ability to support two essential EGFR-regulated events: expansion of the cumulus granulosa cell layer that encloses the oocyte and meiotic maturation of the oocyte. These defects are not caused by an inability of Fshb(-/-) oocytes to produce essential oocyte-secreted factors or of Fshb(-/-) cumulus cells to respond. In contrast, although expression of both Egfr and EGFR increases during late folliculogenesis in Fshb(+/-) females, these increases fail to occur in Fshb(-/-) females. Remarkably, supplying a single dose of exogenous FSH activity to Fshb(-/-) females is sufficient to increase Egfr and EGFR expression and to restore EGFR-dependent cumulus expansion and oocyte maturation. These studies show that FSH induces an increase in EGFR expression during late folliculogenesis and provide evidence that the FSH-dependent increase is necessary for EGFR physiological function. Our results demonstrate an unanticipated role for FSH in establishing the signaling axis that coordinates ovulatory events and may contribute to the diagnosis and treatment of some types of human infertility.
Collapse
|
29
|
Yerushalmi GM, Salmon-Divon M, Yung Y, Maman E, Kedem A, Ophir L, Elemento O, Coticchio G, Dal Canto M, Mignini Renzinu M, Fadini R, Hourvitz A. Characterization of the human cumulus cell transcriptome during final follicular maturation and ovulation. Mol Hum Reprod 2014; 20:719-35. [PMID: 24770949 DOI: 10.1093/molehr/gau031] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cumulus expansion and oocyte maturation are central processes in ovulation. Knowledge gained from rodent and other mammalian models has revealed some of the molecular pathways associated with these processes. However, the equivalent pathways in humans have not been thoroughly studied and remain unidentified. Compact cumulus cells (CCs) from germinal vesicle cumulus oocyte complexes (COCs) were obtained from patients undergoing in vitro maturation (IVM) procedures. Expanded CCs from metaphase 2 COC were obtained from patients undergoing IVF/ICSI. Global transcriptome profiles of the samples were obtained using state-of-the-art RNA sequencing techniques. We identified 1746 differentially expressed (DE) genes between compact and expanded CCs. Most of these genes were involved in cellular growth and proliferation, cellular movement, cell cycle, cell-to-cell signaling and interaction, extracellular matrix and steroidogenesis. Out of the DE genes, we found 89 long noncoding RNAs, of which 12 are encoded within introns of genes known to be involved in granulosa cell processes. This suggests that unique noncoding RNA transcripts may contribute to the regulation of cumulus expansion and oocyte maturation. Using global transcriptome sequencing, we were able to generate a library of genes regulated during cumulus expansion and oocyte maturation processes. Analysis of these genes allowed us to identify important new genes and noncoding RNAs potentially involved in COC maturation and cumulus expansion. These results may increase our understanding of the process of oocyte maturation and could ultimately improve the efficacy of IVM treatment.
Collapse
Affiliation(s)
- G M Yerushalmi
- IVF Unit and Reproduction Lab, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Salmon-Divon
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Y Yung
- IVF Unit and Reproduction Lab, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E Maman
- IVF Unit and Reproduction Lab, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Kedem
- IVF Unit and Reproduction Lab, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - L Ophir
- IVF Unit and Reproduction Lab, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - O Elemento
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA
| | - G Coticchio
- Biogenesi, Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20052 Monza, Italy
| | - M Dal Canto
- Biogenesi, Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20052 Monza, Italy
| | - M Mignini Renzinu
- Biogenesi, Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20052 Monza, Italy
| | - R Fadini
- Biogenesi, Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20052 Monza, Italy
| | - A Hourvitz
- IVF Unit and Reproduction Lab, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Ortega-Hrepich C, Polyzos NP, Anckaert E, Guzman L, Tournaye H, Smitz J, De Vos M. The effect of ovarian puncture on the endocrine profile of PCOS patients who undergo IVM. Reprod Biol Endocrinol 2014; 12:18. [PMID: 24564914 PMCID: PMC3936928 DOI: 10.1186/1477-7827-12-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 02/01/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To examine whether ovarian puncture for immature oocyte retrieval and in-vitro maturation (IVM) has an effect on the endocrine profile of patients with polycystic ovary syndrome (PCOS). METHODS Twenty-two consecutive patients with PCOS undergoing IVM treatment were included. Serum anti-Müllerian hormone (AMH), sex hormone-binding globulin (SHBG), total testosterone (TT) and luteinized hormone (LH) levels were analyzed at the start of the cycle, on the day of immature oocyte retrieval (OR) and at fixed intervals thereafter, for up to three months after OR. RESULTS Five days after OR circulating AMH, TT, calculated free testosterone (FTc), and LH levels were significantly reduced and circulating SHBG was significantly increased. Two weeks after OR, TT, FTc and LH remained reduced, whereas circulating AMH and SHBG levels recovered to pre-puncture values. Three months after OR, all circulating hormone levels had recovered to baseline values. CONCLUSION Ovarian puncture for the retrieval of immature oocytes and IVM in patients with PCOS has a significant impact on the ovarian endocrine profile, but this impact is brief and transient.
Collapse
Affiliation(s)
| | - Nikolaos P Polyzos
- Centre for Reproductive Medicine, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Ellen Anckaert
- Laboratory of Clinical Chemistry and Radioimmunology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Luis Guzman
- Laboratory of Clinical Chemistry and Radioimmunology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Herman Tournaye
- Centre for Reproductive Medicine, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Johan Smitz
- Laboratory of Clinical Chemistry and Radioimmunology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Michel De Vos
- Centre for Reproductive Medicine, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
31
|
Lin ZL, Li YH, Xu YN, Wang QL, Namgoong S, Cui XS, Kim NH. Effects of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 on thein vitroMaturation of Porcine Oocytes. Reprod Domest Anim 2013; 49:219-27. [DOI: 10.1111/rda.12254] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/06/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Z-L Lin
- Department of Animal Sciences; Chungbuk National University; Cheongju Korea
| | - Y-H Li
- Department of Animal Sciences; Chungbuk National University; Cheongju Korea
| | - Y-N Xu
- Department of Animal Sciences; Chungbuk National University; Cheongju Korea
| | - Q-L Wang
- Department of Animal Sciences; Chungbuk National University; Cheongju Korea
| | - S Namgoong
- Department of Animal Sciences; Chungbuk National University; Cheongju Korea
| | - X-S Cui
- Department of Animal Sciences; Chungbuk National University; Cheongju Korea
| | - N-H Kim
- Department of Animal Sciences; Chungbuk National University; Cheongju Korea
| |
Collapse
|
32
|
Richani D, Ritter LJ, Thompson JG, Gilchrist RB. Mode of oocyte maturation affects EGF-like peptide function and oocyte competence. Mol Hum Reprod 2013; 19:500-9. [DOI: 10.1093/molehr/gat028] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|