1
|
Bao Z, Li J, Cai J, Yao S, Yang N, Yang J, Zhao B, Chen Y, Wu X. Plasma-derived exosome miR-10a-5p promotes premature ovarian failure by target BDNF via the TrkB/Akt/mTOR signaling pathway. Int J Biol Macromol 2024; 277:134195. [PMID: 39069050 DOI: 10.1016/j.ijbiomac.2024.134195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Premature ovarian failure (POF) is characterized by a significant decline in the ovarian follicle pool and oocyte reserve, alongside an increase in the number of low-quality oocytes and apoptosis of granulosa cells (GCs). Exosome-derived miRNA plays a regulatory role in crucial cellular activities and contributes to the onset and progression of POF. In this study, we successfully established a rabbit model of POF and conducted in vitro and in vivo experiments that confirmed DiI-labeled Pla-Exos (exosomes derived from plasma) could enter the follicle through blood circulation, with GCs capable of uptaking these exosomes. Our RNA-seq analysis revealed elevated expression of miR-10a-5p in Pla-Exos from POF rabbits. Moreover, our findings demonstrate that exosomal miR-10a-5p suppresses GCs proliferation and induces apoptosis via the mitochondrial pathway. Additionally, exosomal miR-10a-5p inhibits the TrkB/Akt/mTOR signaling pathway by downregulating BDNF expression, thereby modulating the expression levels of proteins and genes associated with the cell cycle, follicle development, and GCs senescence. In conclusion, our study highlights the role of Pla-Exos miR-10a-5p in promoting rabbit POF through the TrkB/Akt/mTOR signaling pathway by targeting BDNF. These findings provide new insights into potential therapeutic targets for POF, offering valuable references for addressing concerns related to female reproductive function.
Collapse
Affiliation(s)
- Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Jiawei Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Shuyu Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Jie Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, 225009 Yangzhou, Jiangsu, People's Republic of China.
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, 225009 Yangzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Sistani MN, Zavareh S, Valojerdi MR, Salehnia M. Reconstruction of ovarian follicular-like structure by recellularization of a cell-free human ovarian scaffold with mouse fetal ovarian cells. Cytotechnology 2024; 76:27-38. [PMID: 38304626 PMCID: PMC10828258 DOI: 10.1007/s10616-023-00595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/04/2023] [Indexed: 02/03/2024] Open
Abstract
The present study assessed the supportive roles of the decellularized human ovarian tissue in homing of mouse fetal ovarian cells into the scaffold as well as the formation of the follicular-like structure. The human ovarian cortical tissues were decellularized by three freeze-thaw cycles and then, treated with Triton X-100 for 15 h and 0.5% sodium dodecyl sulfate for 72 h. After isolation and preparation of mouse fetal ovarian cells (19 dpc) they were seeded into the decellularized scaffolds and cultured for 7 days, then using a light microscope, laser confocal scanning microscope, and scanning electron microscope these scaffolds were studied. Analysis of gene expression related to oocyte and follicular cells such as Ddx4, Nobox, Gdf9, and Connexin37 was assessed by real-time RT-PCR and the DDX4 and GDF9 proteins were detected by immunohistochemistry. The result showed that the human ovarian tissue was decellularized properly and the tissue elements and integrity were well preserved. After 7 days of in vitro culture, the fetal ovarian cells attached and penetrated into different sites and depths of the scaffold. The formed organoid within the scaffold showed large round, small polyhedral, and elongated spindle cells similar to the follicle structure. The molecular analysis and immunohistochemistry were confirmed an increase in the expression of genes and proteins related to oocyte and follicular cells in these reconstructed structures. In conclusion, the recellularization of human ovarian scaffolds by mouse fetal ovarian cells could support the follicular-like structure formation and it provides an in vitro model for follicle reconstitution and offers an alternative approach for clinical usage.
Collapse
Affiliation(s)
- Maryam Nezhad Sistani
- Anatomy Department, Faculty of Medical Sciences, Tarbiat Modares University, 14115-111, Tehran, Iran
| | - Saeed Zavareh
- School of Biology, Damghan University, Damghan, Iran
| | | | - Mojdeh Salehnia
- Anatomy Department, Faculty of Medical Sciences, Tarbiat Modares University, 14115-111, Tehran, Iran
| |
Collapse
|
3
|
Morimoto Y, Gamage USK, Yamochi T, Saeki N, Morimoto N, Yamanaka M, Koike A, Miyamoto Y, Tanaka K, Fukuda A, Hashimoto S, Yanagimachi R. Mitochondrial Transfer into Human Oocytes Improved Embryo Quality and Clinical Outcomes in Recurrent Pregnancy Failure Cases. Int J Mol Sci 2023; 24:2738. [PMID: 36769061 PMCID: PMC9917531 DOI: 10.3390/ijms24032738] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
One of the most critical issues to be solved in reproductive medicine is the treatment of patients with multiple failures of assisted reproductive treatment caused by low-quality embryos. This study investigated whether mitochondrial transfer to human oocytes improves embryo quality and provides subsequent acceptable clinical results and normality to children born due to the use of this technology. We transferred autologous mitochondria extracted from oogonia stem cells to mature oocytes with sperm at the time of intracytoplasmic sperm injection in 52 patients with recurrent failures (average 5.3 times). We assessed embryo quality using the following three methods: good-quality embryo rates, transferable embryo rates, and a novel embryo-scoring system (embryo quality score; EQS) in 33 patients who meet the preset inclusion criteria for analysis. We also evaluated the clinical outcomes of the in vitro fertilization and development of children born using this technology and compared the mtDNA sequences of the children and their mothers. The good-quality embryo rates, transferable embryo rates, and EQS significantly increased after mitochondrial transfer and resulted in 13 babies born in normal conditions. The mtDNA sequences were almost identical to the respective maternal sequences at the 83 major sites examined. Mitochondrial transfer into human oocytes is an effective clinical option to enhance embryo quality in recurrent in vitro fertilization-failure cases.
Collapse
Affiliation(s)
- Yoshiharu Morimoto
- Department of Obstetrics and Gynecology, HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan
| | | | - Takayuki Yamochi
- Reproductive Science Institute, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Noriatsu Saeki
- Department of Obstetrics and Gynecology, Nippon Life Hospital, Osaka 550-0006, Japan
| | - Naoharu Morimoto
- Department of Obstetrics and Gynecology, IVF Namba Clinic, Osaka 550-0015, Japan
| | - Masaya Yamanaka
- Department of Research, IVF Namba Clinic, Osaka 550-0015, Japan
| | - Akiko Koike
- Department of Reproductive Technology, HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan
| | - Yuki Miyamoto
- Department of Reproductive Technology, HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan
| | - Kumiko Tanaka
- Department of Integrated Medicine, HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan
| | - Aisaku Fukuda
- Department of Obstetrics and Gynecology, IVF Osaka Clinic, Osaka 577-0012, Japan
| | - Shu Hashimoto
- Reproductive Science Institute, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Ryuzo Yanagimachi
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA
| |
Collapse
|
4
|
Amirian M, Azizi H, Hashemi Karoii D, Skutella T. VASA protein and gene expression analysis of human non-obstructive azoospermia and normal by immunohistochemistry, immunocytochemistry, and bioinformatics analysis. Sci Rep 2022; 12:17259. [PMID: 36241908 PMCID: PMC9568577 DOI: 10.1038/s41598-022-22137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/10/2022] [Indexed: 01/06/2023] Open
Abstract
VASA, also known as DDX4, is a member of the DEAD-box proteins and an RNA binding protein with an ATP-dependent RNA helicase. The VASA gene expression, which is required for human germ cell development, may lead to infertility. Immunocytochemistry and immunohistochemistry were used to examine the expression of VASA protein in the human testis sections of azoospermic patients, in-vitro and in-silico models. Some studies of fertile humans showed VASA expression in the basal and adluminal compartments of seminiferous tubules. Our Immunocytochemistry and immunohistochemistry in infertile humans showed expression of VASA in the luminal compartments of the seminiferous tubule. The immunohistochemical analysis of three human cases with different levels of non-obstructive azoospermia revealed a higher expression of VASA-positive cells. For this purpose, Enrichr and Shiny Gene Ontology databases were used for pathway enrichment analysis and gene ontology. STRING and Cytoscape online evaluation were applied to predict proteins' functional and molecular interactions and performed to recognize the master genes, respectively. According to the obtained results, the main molecular functions of the up-regulated and downregulated genes include the meiotic cell cycle, RNA binding, and differentiation. STRING and Cytoscape analyses presented seven genes, i.e., DDX5, TNP2, DDX3Y, TDRD6, SOHL2, DDX31, and SYCP3, as the hub genes involved in infertility with VASA co-function and protein-protein interaction. Our findings suggest that VASA and its interacting hub proteins could help determine the pathophysiology of germ cell abnormalities and infertility.
Collapse
Affiliation(s)
- Mehdi Amirian
- grid.7700.00000 0001 2190 4373Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Hossein Azizi
- grid.495554.cFaculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Danial Hashemi Karoii
- grid.495554.cFaculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Thomas Skutella
- grid.7700.00000 0001 2190 4373Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Stolzenbach V, Woods DC, Tilly JL. Non-neutral clonal selection and its potential role in mammalian germline stem cell dysfunction with advancing age. Front Cell Dev Biol 2022; 10:942652. [PMID: 36081905 PMCID: PMC9445274 DOI: 10.3389/fcell.2022.942652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of natural selection, or "survival of the fittest", refers to an evolutionary process in nature whereby traits emerge in individuals of a population through random gene alterations that enable those individuals to better adapt to changing environmental conditions. This genetic variance allows certain members of the population to gain an advantage over others in the same population to survive and reproduce in greater numbers under new environmental pressures, with the perpetuation of those advantageous traits in future progeny. Here we present that the behavior of adult stem cells in a tissue over time can, in many respects, be viewed in the same manner as evolution, with each stem cell clone being representative of an individual within a population. As stem cells divide or are subjected to cumulative oxidative damage over the lifespan of the organism, random genetic alterations are introduced into each clone that create variance in the population. These changes may occur in parallel to, or in response to, aging-associated changes in microenvironmental cues perceived by the stem cell population. While many of these alterations will be neutral or silent in terms of affecting cell function, a small fraction of these changes will enable certain clones to respond differently to shifts in microenvironmental conditions that arise with advancing age. In some cases, the same advantageous genetic changes that support survival and expansion of certain clones over others in the population (viz. non-neutral competition) could be detrimental to the downstream function of the differentiated stem cell descendants. In the context of the germline, such a situation would be devastating to successful propagation of the species across generations. However, even within a single generation, the “evolution” of stem cell lineages in the body over time can manifest into aging-related organ dysfunction and failure, as well as lead to chronic inflammation, hyperplasia, and cancer. Increased research efforts to evaluate stem cells within a population as individual entities will improve our understanding of how organisms age and how certain diseases develop, which in turn may open new opportunities for clinical detection and management of diverse pathologies.
Collapse
|
6
|
Silvestris E, Minoia C, Guarini A, Opinto G, Negri A, Dellino M, Tinelli R, Cormio G, Paradiso AV, De Palma G. Ovarian Stem Cells (OSCs) from the Cryopreserved Ovarian Cortex: A Potential for Neo-Oogenesis in Women with Cancer-Treatment Related Infertility: A Case Report and a Review of Literature. Curr Issues Mol Biol 2022; 44:2309-2320. [PMID: 35678686 PMCID: PMC9164018 DOI: 10.3390/cimb44050157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer treatment related infertility (CTRI) affects more than one third of young women undergoing anti-cancer protocols, inducing a premature exhaustion of the ovarian reserve. In addition to ovarian suppression by GnRHa, oocyte and cortex cryopreservation has gained interest in patients with estrogen-sensitive tumors for whom the hormonal burst to prompt the multiple follicular growth could provide a further pro-life tumor pulsing. On the other hand, cortex reimplantation implies a few drawbacks due to the unknown consistency of the follicles to be reimplanted or the risk of reintroducing malignant cells. The capability of ovarian stem cells (OCSs) from fresh ovarian cortex fragments to differentiate in vitro to mature oocytes provides a tool to overcome these drawbacks. In fact, since ovarian cortex sampling and cryopreservation is practicable before gonadotoxic treatments, the recruitment of OSCs from defrosted fragments could provide a novel opportunity to verify their suitability to be expanded in vitro as oocyte like cells (OLCs). Here, we describe in very preliminary experiments the consistency of an OSC population from a single cryopreserved ovarian cortex after thawing as well as both their viability and their suitability to be further explored in their property to differentiate in OLCs, thus reinforcing interest in stemness studies in the treatment of female CTRI.
Collapse
Affiliation(s)
- Erica Silvestris
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy
- Correspondence:
| | - Carla Minoia
- Haematology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (C.M.); (A.G.); (G.O.); (A.N.)
| | - Attilio Guarini
- Haematology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (C.M.); (A.G.); (G.O.); (A.N.)
| | - Giuseppina Opinto
- Haematology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (C.M.); (A.G.); (G.O.); (A.N.)
| | - Antonio Negri
- Haematology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (C.M.); (A.G.); (G.O.); (A.N.)
| | - Miriam Dellino
- Department of Obstetrics and Gynecology, “San Paolo” Hospital, 70123 Bari, Italy;
| | - Raffaele Tinelli
- Department of Obstetrics and Gynecology, “Valle d’Itria” Hospital, 74015 Martina Franca, Italy;
| | - Gennaro Cormio
- Unit of Obstetrics and Gynecology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Angelo Virgilio Paradiso
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (A.V.P.); (G.D.P.)
| | - Giuseppe De Palma
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (A.V.P.); (G.D.P.)
| |
Collapse
|
7
|
The process of ovarian aging: it is not just about oocytes and granulosa cells. J Assist Reprod Genet 2022; 39:783-792. [PMID: 35352316 PMCID: PMC9051003 DOI: 10.1007/s10815-022-02478-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ovarian age is classically considered the main cause of female reproductive infertility. In women, the process proceeds as an ongoing decline in the primordial follicle stockpile and it is associated with reduced fertility in the mid-thirties, irregular menstruation from the mid-forties, cessation of fertility, and, eventually, menopause in the early fifties. Reproductive aging is historically associated with changes in oocyte quantity and quality. However, besides the oocyte, other cellular as well as environmental factors have been the focus of more recent investigations suggesting that ovarian decay is a complex and multifaceted process. Among these factors, we will consider mitochondria and oxidative stress as related to nutrition, changes in extracellular matrix molecules, and the associated ovarian stromal compartment where immune cells of both the native and adaptive systems seem to play an important role. Understanding such processes is crucial to design treatment strategies to slow down ovarian aging and consequently prolong reproductive lifespan and, more to this, alleviaingt side effects of menopause on the musculoskeletal, cardiovascular, and nervous systems.
Collapse
|
8
|
Hu X, Wang H, Tian GG, Hou C, Xu B, Zhao X, Zhao Y, Fang Q, Li X, He L, Chen X, Li S, Wu J. Offspring production of haploid spermatid-like cells derived from mouse female germline stem cells with chromatin condensation. Cell Biosci 2022; 12:5. [PMID: 34983631 PMCID: PMC8729121 DOI: 10.1186/s13578-021-00697-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/06/2021] [Indexed: 12/04/2022] Open
Abstract
Background During male meiosis, the Y chromosome can form perfect pairing with the X chromosome. However, it is unclear whether mammalian Female germline stem cells (FGSCs) without a Y chromosome can transdifferentiate into functional haploid spermatid-like cells (SLCs). Results We found that spermatogenesis was restarted by transplanting FGSCs into Kitw/wv mutant testes. Complete meiosis and formation of SLCs was induced in vitro by testicular cells of Kitw/wv mutant mice, cytokines and retinoic acid. Healthy offspring were produced by sperm and SLCs derived from the in vivo and in vitro transdifferentiation of FGSCs, respectively. Furthermore, high-throughput chromosome conformation capture sequencing(Hi-C-seq) and “bivalent” (H3K4me3-H3K27me3) micro chromatin immunoprecipitation sequencing (μChIP-seq) experiments showed that stimulated by retinoic acid gene 8 (STRA8)/protamine 1 (PRM1)-positive transdifferentiated germ cells (tGCs) and male germ cells (mGCs) display similar chromatin dynamics and chromatin condensation during in vitro spermatogenesis. Conclusion This study demonstrates that sperm can be produced from FGSCs without a Y chromosome. This suggests a strategy for dairy cattle breeding to produce only female offspring with a high-quality genetic background. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00697-z.
Collapse
Affiliation(s)
- Xiaopeng Hu
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Hu Wang
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Geng G Tian
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Changliang Hou
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Bo Xu
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xinyan Zhao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Yongqiang Zhao
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Qian Fang
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xinyue Li
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Lin He
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xuejin Chen
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Shangang Li
- State Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China. .,Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Ji Wu
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China. .,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China. .,Shanghai Key Laboratory of Reproductive Medicine, Shanghai, 200025, China.
| |
Collapse
|
9
|
Hainaut M, Clarke HJ. Germ cells of the mammalian female: A limited or renewable resource? Biol Reprod 2021; 105:774-788. [PMID: 34114006 DOI: 10.1093/biolre/ioab115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/12/2022] Open
Abstract
In many non-mammalian organisms, a population of germ-line stem cells supports continuing production of gametes during most or all the life of the individual, and germ-line stem cells are also present and functional in male mammals. Traditionally, however, they have been thought not to exist in female mammals, who instead generate all their germ cells during fetal life. Over the last several years, this dogma has been challenged by several reports, while supported by others. We describe and compare these conflicting studies with the aim of understanding how they came to opposing conclusions. We first consider studies that, by examining marker-gene expression, the fate of genetically marked cells, and consequences of depleting the oocyte population, addressed whether ovaries of post-natal females contain oogonial stem cells (OSC) that give rise to new oocytes. We next discuss whether ovaries contain cells that, even if inactive under physiological conditions, nonetheless possess OSC properties that can be revealed through cell-culture. We then examine studies of whether cells harvested after long-term culture of cells obtained from ovaries can, following transplantation into ovaries of recipient females, give rise to oocytes and offspring. Finally, we note studies where somatic cells have been re-programmed to acquire a female germ-cell fate. We conclude that the weight of evidence strongly supports the traditional interpretation that germ-line stem cells do not exist post-natally in female mammals. However, the ability to generate germ cells from somatic cells in vitro establishes a method to generate new gametes from cells of post-natal mammalian females.
Collapse
Affiliation(s)
- Mathilde Hainaut
- Department of Obstetrics and Gynecology, McGill University and Research Institute of the McGill University Health Centre, Montreal Canada
| | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University and Research Institute of the McGill University Health Centre, Montreal Canada
| |
Collapse
|
10
|
Yuan X, Tian GG, Pei X, Hu X, Wu J. Spermidine induces cytoprotective autophagy of female germline stem cells in vitro and ameliorates aging caused by oxidative stress through upregulated sequestosome-1/p62 expression. Cell Biosci 2021; 11:107. [PMID: 34099041 PMCID: PMC8186080 DOI: 10.1186/s13578-021-00614-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autophagy is required for oogenesis and plays a critical role in response to aging caused by oxidative stress. However, there have been no reports on regulation of cytoprotective autophagy in female germline stem cells (FGSCs) in response to aging caused by oxidative stress. RESULTS We found that Spermidine (SPD) significantly increased protein expression of autophagy markers microtubule-associated protein 1 light chain 3 beta-II (MAP1LC3B-II/LC3B-II) and sequestosome-1/p62 (SQSTM1/p62), and evoked autophagic flux in FGSCs. Moreover, SPD increased the number and viability of FGSCs in vitro. Further, we found that SPD significantly reduced basal or hydrogen peroxide (H2O2)-induced up-regulated protein expression of the aging markers, cyclin dependent kinase inhibitor 2A (p16/CDKN2A) and tumor protein 53 (p53). After knockdown of p62 in FGSCs, p16 protein levels were significant higher compared with controls. However, protein p16 levels were not significantly changed in p62 knockdown FGSCs with SPD treatment compared with without SPD. Moreover, SPD significantly changed the expression of autophagy-related genes and pathways in FGSCs, as shown by bioinformatics analysis of RNA sequencing data. Additionally, SPD significantly inhibited AKT/mTOR phosphorylation. CONCLUSIONS SPD induces cytoprotective autophagy in FGSCs in vitro and ameliorates cellular senescence of FGSCs induced by H2O2. Furthermore, SPD can ameliorate cellular senescence of FGSCs through p62. SPD might induce autophagy in FGSCs via the PI3K/Akt pathway. Our findings could be helpful for delaying aging of female germ cells due to oxidative stress and preserving female fertility.
Collapse
Affiliation(s)
- Xiaoyan Yuan
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.,Department of Emergency Medicine, Gongli Hospital, Pudong New Area, Shanghai, China
| | - Geng G Tian
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xiaopeng Hu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.
| | - Ji Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China. .,Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
11
|
In vitro cytotoxicity of zinc oxide nanoparticles in mouse ovarian germ cells. Toxicol In Vitro 2021; 70:105032. [DOI: 10.1016/j.tiv.2020.105032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/28/2020] [Accepted: 10/15/2020] [Indexed: 01/19/2023]
|
12
|
Silvestris E, Cormio G, Skrypets T, Dellino M, Paradiso AV, Guarini A, Minoia C. Novel aspects on gonadotoxicity and fertility preservation in lymphoproliferative neoplasms. Crit Rev Oncol Hematol 2020; 151:102981. [PMID: 32485429 DOI: 10.1016/j.critrevonc.2020.102981] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
The topic of fertility preservation in patients with a lymphoproliferative disease offers new aspects of debate, due to the introduction of novel chemotherapeutic regimens and small molecules in the clinical landscape. Cancer related infertility is mostly dependent on gonadotoxic treatments and fertile female patients are today addressed to the oocyte cryopreservation or to ovarian cortex fragment cryopreservation. These methods present advantages and disadvantages, which will be discussed in the present review, together with the options for male patients. The recent discovery of functional ovarian stem cells (OCSs) in woman ovarian cortex, opens new avenues offering a innovative procedure for fertility preservation through as model of regenerative medicine. Here, we review the gonadotoxic potential of "classical" chemotherapeutic treatments as well as of "novel" targeted therapies actually employed for lymphoproliferative neoplasms in young patients and revisit both the today available and future chances to preserve and restore fertility after the cancer healing.
Collapse
Affiliation(s)
- Erica Silvestris
- Gynecologic Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II" 70124 Bari, Italy.
| | - Gennaro Cormio
- Gynecologic Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II" 70124 Bari, Italy; Department of Biomedical Sciences and Human Oncology, Unit of Obstetrics and Gynecology, University of Bari Aldo Moro, Bari, Italy.
| | - Tetiana Skrypets
- Haematology Unit, National Cancer Center, IRCCS Istituto Tumori "Giovanni Paolo II", viale O. Flacco 65, Bari, Italy; Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Italy.
| | - Miriam Dellino
- Gynecologic Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II" 70124 Bari, Italy.
| | - Angelo Virgilio Paradiso
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy.
| | - Attilio Guarini
- Haematology Unit, National Cancer Center, IRCCS Istituto Tumori "Giovanni Paolo II", viale O. Flacco 65, Bari, Italy.
| | - Carla Minoia
- Haematology Unit, National Cancer Center, IRCCS Istituto Tumori "Giovanni Paolo II", viale O. Flacco 65, Bari, Italy.
| |
Collapse
|
13
|
Human Ovarian Cortex biobanking: A Fascinating Resource for Fertility Preservation in Cancer. Int J Mol Sci 2020; 21:ijms21093245. [PMID: 32375324 PMCID: PMC7246700 DOI: 10.3390/ijms21093245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/21/2022] Open
Abstract
Novel anti-cancer treatments have improved the survival rates of female young patients, reopening pregnancy issues for female cancer survivors affected by the tumor treatment-related infertility. This condition occurs in approximately one third of women of fertile age and is mainly dependent on gonadotoxic protocols, including radiation treatments. Besides routine procedures such as the hormonal induction of follicular growth and subsequent cryopreservation of oocytes or embryos, the ovarian protection by gonadotropin-releasing hormone (GnRH) agonists during chemotherapy as well as even gonadal shielding during radiotherapy, other innovative techniques are available today and need to be optimized to support their introduction into the clinical practice. These novel methods are hormone stimulation-free and include the ovarian cortex cryopreservation before anti-cancer treatments and its subsequent autologous reimplantation and a regenerative medicine approach using oocytes derived in vitro from ovarian stem cells (OSCs). For both procedures, the major benefit is related to the prompt recruitment and processing of the ovarian cortex fragments before gonadotoxic treatments. However, while the functional competence of oocytes within the cryopreserved cortex is not assessable, the in vitro maturation of OSCs to oocytes, allows to select the most competent eggs to be cryopreserved for fertility restoration.
Collapse
|
14
|
Satirapod C, Wang N, MacDonald JA, Sun M, Woods DC, Tilly JL. Estrogen regulation of germline stem cell differentiation as a mechanism contributing to female reproductive aging. Aging (Albany NY) 2020; 12:7313-7333. [PMID: 32302290 PMCID: PMC7202493 DOI: 10.18632/aging.103080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 05/09/2023]
Abstract
Progressive loss of ovarian estrogen (E2) production is a hallmark feature of, if not a driving force behind, reproductive aging and the menopause. Recent genetic studies in mice have shown that female germline or oogonial stem cells (OSCs) contribute to maintenance of adult ovarian function and fertility under physiological conditions through support of de-novo oogenesis. Here we show that mouse OSCs express E2 receptor-α (ERα). In the presence of E2, ERα interacts with the stimulated by retinoic acid gene 8 (Stra8) promoter to drive Stra8 expression followed by oogenesis. Treatment of mice with E2 in vivo increases Stra8 expression and oogenesis, and these effects are nullified by ERα (Esr1), but not ERβ (Esr2), gene disruption. Although mice lacking ERα are born with a normal quota of oocytes, ERα-deficient females develop premature ovarian insufficiency in adulthood due to impaired oogenesis. Lastly, mice treated with reversible ER antagonists show a loss of Stra8 expression and oocyte numbers; however, both endpoints rebound to control levels after ceasing drug treatment. These findings establish a key physiological role for E2-ERα signaling in promoting OSC differentiation as a potential mechanism to maintain adequate numbers of ovarian follicles during reproductive life.
Collapse
Affiliation(s)
- Chonthicha Satirapod
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ning Wang
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
- Current address: Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Julie A. MacDonald
- Department of Biology, Laboratory of Aging and Infertility Research, Northeastern University, Boston, MA 02115, USA
- Current address: Department of Medical Oncology Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Minghan Sun
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dori C. Woods
- Department of Biology, Laboratory of Aging and Infertility Research, Northeastern University, Boston, MA 02115, USA
| | - Jonathan L. Tilly
- Department of Biology, Laboratory of Aging and Infertility Research, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
15
|
Mariniello K, Ruiz-Babot G, McGaugh EC, Nicholson JG, Gualtieri A, Gaston-Massuet C, Nostro MC, Guasti L. Stem Cells, Self-Renewal, and Lineage Commitment in the Endocrine System. Front Endocrinol (Lausanne) 2019; 10:772. [PMID: 31781041 PMCID: PMC6856655 DOI: 10.3389/fendo.2019.00772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
The endocrine system coordinates a wide array of body functions mainly through secretion of hormones and their actions on target tissues. Over the last decades, a collective effort between developmental biologists, geneticists, and stem cell biologists has generated a wealth of knowledge related to the contribution of stem/progenitor cells to both organogenesis and self-renewal of endocrine organs. This review provides an up-to-date and comprehensive overview of the role of tissue stem cells in the development and self-renewal of endocrine organs. Pathways governing crucial steps in both development and stemness maintenance, and that are known to be frequently altered in a wide array of endocrine disorders, including cancer, are also described. Crucially, this plethora of information is being channeled into the development of potential new cell-based treatment modalities for endocrine-related illnesses, some of which have made it through clinical trials.
Collapse
Affiliation(s)
- Katia Mariniello
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Emily C. McGaugh
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - James G. Nicholson
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Angelica Gualtieri
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
16
|
Vermeulen M, Giudice MG, Del Vento F, Wyns C. Role of stem cells in fertility preservation: current insights. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2019; 12:27-48. [PMID: 31496751 PMCID: PMC6689135 DOI: 10.2147/sccaa.s178490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
Abstract
While improvements made in the field of cancer therapy allow high survival rates, gonadotoxicity of chemo- and radiotherapy can lead to infertility in male and female pre- and postpubertal patients. Clinical options to preserve fertility before starting gonadotoxic therapies by cryopreserving sperm or oocytes for future use with assisted reproductive technology (ART) are now applied worldwide. Cryopreservation of pre- and postpubertal ovarian tissue containing primordial follicles, though still considered experimental, has already led to the birth of healthy babies after autotransplantation and is performed in an increasing number of centers. For prepubertal boys who do not produce gametes ready for fertilization, cryopreservation of immature testicular tissue (ITT) containing spermatogonial stem cells may be proposed as an experimental strategy with the aim of restoring fertility. Based on achievements in nonhuman primates, autotransplantation of ITT or testicular cell suspensions appears promising to restore fertility of young cancer survivors. So far, whether in two- or three-dimensional culture systems, in vitro maturation of immature male and female gonadal cells or tissue has not demonstrated a capacity to produce safe gametes for ART. Recently, primordial germ cells have been generated from embryonic and induced pluripotent stem cells, but further investigations regarding efficiency and safety are needed. Transplantation of mesenchymal stem cells to improve the vascularization of gonadal tissue grafts, increase the colonization of transplanted cells, and restore the damaged somatic compartment could overcome the current limitations encountered with transplantation.
Collapse
Affiliation(s)
- Maxime Vermeulen
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium
| | - Maria-Grazia Giudice
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels 1200, Belgium
| | - Federico Del Vento
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium
| | - Christine Wyns
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels 1200, Belgium
| |
Collapse
|
17
|
Li B, Hu X, Yang Y, Zhu M, Zhang J, Wang Y, Pei X, Zhou H, Wu J. GAS5/miR-21 Axis as a Potential Target to Rescue ZCL-082-Induced Autophagy of Female Germline Stem Cells In Vitro. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:436-447. [PMID: 31319247 PMCID: PMC6637212 DOI: 10.1016/j.omtn.2019.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/24/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
Several studies have recently revealed the regulatory mechanisms underlying female germline stem cell (FGSC) differentiation, proliferation, and apoptosis, but other biological processes such as autophagy and its mechanism in FGSCs are largely unclear. The use of small chemical compounds may be a good approach to further investigate the process and mechanism of autophagy in FGSC development. In this study, we used ZCL-082, a derivative of benzoxaboroles, to treat FGSCs. Using a cell counting kit-8 (CCK8) and 5-ethynyl-2′-deoxyuridine (EdU) assays, we found that ZCL-082 could significantly reduce the viability, proliferation, and number of FGSCs in vitro. Moreover, western blotting revealed that the expression of light chain 3 beta 2 (LC3B-II) in FGSCs was significantly increased after treatment with ZCL-082 for 3 and 6 h. Meanwhile, the expression of sequestosome-1 (SQSTM1) was significantly decreased. These results suggested that ZCL-082 can induce autophagy of FGSCs in vitro. Regarding the molecular mechanism, ZCL-082 could significantly reduce the expression of growth arrest-specific 5 (GAS5) long non-coding RNA, which could directly bind to microRNA-21a (miR-21a) and negatively regulate each other in FGSCs. Knockdown of GAS5 induced the autophagy of FGSCs, while GAS5 overexpression inhibited the autophagy of FGSCs in vitro and rescued FGSC autophagy induced by ZCL-082. Additionally, overexpression of miR-21a significantly enhanced LC3B-II protein expression while significantly reducing the expression of programmed cell death protein 4 (PDCD4) and SQSTM1 protein in FGSCs compared with control cells. The inhibition of miR-21a significantly reduced the basal or ZCL-082-induced upregulated expression of LC3B-II, and it significantly enhanced the expression of PDCD4 while downregulating the basal or ZCL-082-induced expression of SQSTM1 in FGSCs. Furthermore, the overexpression of GAS5 enhanced the protein expression of PDCD4, but knockdown of GAS5 reduced the protein expression of PDCD4. Taken together, these results suggested that ZCL-082 induced autophagy through GAS5 functioning as a competing endogenous RNA (ceRNA) sponge for miR-21a in FGSCs. It also suggested that the GAS5/miR-21a axis may be a potential therapeutic target for premature ovarian failure in the clinic.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaopeng Hu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Mingyan Zhu
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Jiong Zhang
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Yanrong Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Huchen Zhou
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai, China.
| | - Ji Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
18
|
Clarkson YL, Weatherall E, Waterfall M, McLaughlin M, Lu H, Skehel PA, Anderson RA, Telfer EE. Extracellular Localisation of the C-Terminus of DDX4 Confirmed by Immunocytochemistry and Fluorescence-Activated Cell Sorting. Cells 2019; 8:cells8060578. [PMID: 31212843 PMCID: PMC6627596 DOI: 10.3390/cells8060578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/06/2019] [Accepted: 06/09/2019] [Indexed: 02/03/2023] Open
Abstract
Putative oogonial stem cells (OSCs) have been isolated by fluorescence-activated cell sorting (FACS) from adult human ovarian tissue using an antibody against DEAD-box helicase 4 (DDX4). DDX4 has been reported to be germ cell specific within the gonads and localised intracellularly. White et al. (2012) hypothesised that the C-terminus of DDX4 is localised on the surface of putative OSCs but is internalised during the process of oogenesis. This hypothesis is controversial since it is assumed that RNA helicases function intracellularly with no extracellular expression. To determine whether the C-terminus of DDX4 could be expressed on the cell surface, we generated a novel expression construct to express full-length DDX4 as a DsRed2 fusion protein with unique C- and N-terminal epitope tags. DDX4 and the C-terminal myc tag were detected at the cell surface by immunocytochemistry and FACS of non-permeabilised human embryonic kidney HEK 293T cells transfected with the DDX4 construct. DDX4 mRNA expression was detected in the DDX4-positive sorted cells by RT-PCR. This study clearly demonstrates that the C-terminus of DDX4 can be expressed on the cell surface despite its lack of a conventional membrane-targeting or secretory sequence. These results validate the use of antibody-based FACS to isolate DDX4-positive putative OSCs.
Collapse
Affiliation(s)
- Yvonne L Clarkson
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK.
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
- Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | - Emma Weatherall
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK.
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
- Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | - Martin Waterfall
- Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | - Marie McLaughlin
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK.
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
- Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | - Haojiang Lu
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK.
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
- Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | - Paul A Skehel
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Evelyn E Telfer
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK.
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
- Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.
| |
Collapse
|
19
|
Akahori T, Woods DC, Tilly JL. Female Fertility Preservation through Stem Cell-based Ovarian Tissue Reconstitution In Vitro and Ovarian Regeneration In Vivo. CLINICAL MEDICINE INSIGHTS. REPRODUCTIVE HEALTH 2019; 13:1179558119848007. [PMID: 31191070 PMCID: PMC6540489 DOI: 10.1177/1179558119848007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
Historically, approaches designed to offer women diagnosed with cancer the prospects of having a genetically matched child after completion of their cytotoxic treatments focused on the existing oocyte population as the sole resource available for clinical management of infertility. In this regard, elective oocyte and embryo cryopreservation, as well as autologous ovarian cortical tissue grafting posttreatment, have gained widespread support as options for young girls and reproductive-age women who are faced with cancer to consider. In addition, the use of ovarian protective therapies, including gonadotropin-releasing hormone agonists and sphingosine-1-phosphate analogs, has been put forth as an alternative way to preserve fertility by shielding existing oocytes in the ovaries in vivo from the side-effect damage caused by radiotherapy and many chemotherapeutic regimens. This viewpoint changed with the publication of now numerous reports that adult ovaries of many mammalian species, including humans, contain a rare population of oocyte-producing germ cells-referred to as female germline or oogonial stem cells (OSCs). This new line of study has fueled research into the prospects of generating new oocytes, rather than working with existing oocytes, as a novel approach to sustain or restore fertility in female cancer survivors. Here, we overview the history of work from laboratories around the world focused on improving our understanding of the biology of OSCs and how these cells may be used to reconstitute "artificial" ovarian tissue in vitro or to regenerate damaged ovarian tissue in vivo as future fertility-preservation options.
Collapse
Affiliation(s)
- Taichi Akahori
- Laboratory for Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA, USA.,On leave from the Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Dori C Woods
- Laboratory for Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA, USA
| | - Jonathan L Tilly
- Laboratory for Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA, USA
| |
Collapse
|
20
|
MacDonald JA, Takai Y, Ishihara O, Seki H, Woods DC, Tilly JL. Extracellular matrix signaling activates differentiation of adult ovary-derived oogonial stem cells in a species-specific manner. Fertil Steril 2019; 111:794-805. [PMID: 30871765 DOI: 10.1016/j.fertnstert.2018.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/01/2018] [Accepted: 12/17/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To test if ovarian microenvironmental cues affect oogonial stem cell (OSC) function in a species-specific manner. DESIGN Animal and human study. SETTING Research laboratory. PATIENT(S)/ANIMAL(S) Human ovarian cells obtained from cryopreserved ovarian cortical tissue of reproductive-age women, and ovarian cells and tissues from female C57BL/6 mice. INTERVENTION(S) Mouse ovarian tissue, mouse OSCs (mOSCs) and human OSCs (hOSCs) were analyzed for extracellular matrix (ECM) protein expression, and OSCs isolated from adult mouse and human ovaries were cultured in the absence or presence of ECM proteins without or with an integrin signaling inhibitor. MAIN OUTCOME MEASURE(S) Gene expression and in vitro derived (IVD) oocyte formation. RESULT(S) Culture of mOSCs on a collagen-based ECM significantly elevated the rate of differentiation of the cells into IVD oocytes. Mouse OSCs expressed many integrins, including Arg-Gly-Asp (RGD)-binding subunits, and ECM-mediated increases in mOSC differentiation were blocked by addition of integrin-antagonizing RGD peptides. In comparison, hOSCs expressed a different pattern of integrin subunits compared with mOSCs, and hOSCs were unresponsive to a collagen-based ECM; however, hOSCs exhibited increased differentiation into IVD oocytes when cultured on laminin. CONCLUSION(S) These data, along with in silico analysis of ECM protein profiles in human ovaries, indicate that ovarian ECM-based niche components function in a species-specific manner to control OSC differentiation.
Collapse
Affiliation(s)
- Julie A MacDonald
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts
| | - Yasushi Takai
- Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Osamu Ishihara
- Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Hiroyuki Seki
- Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Dori C Woods
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts
| | - Jonathan L Tilly
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
21
|
Martin JJ, Woods DC, Tilly JL. Implications and Current Limitations of Oogenesis from Female Germline or Oogonial Stem Cells in Adult Mammalian Ovaries. Cells 2019; 8:E93. [PMID: 30696098 PMCID: PMC6407002 DOI: 10.3390/cells8020093] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/16/2019] [Indexed: 12/15/2022] Open
Abstract
A now large body of evidence supports the existence of mitotically active germ cells in postnatal ovaries of diverse mammalian species, including humans. This opens the possibility that adult stem cells naturally committed to a germline fate could be leveraged for the production of female gametes outside of the body. The functional properties of these cells, referred to as female germline or oogonial stem cells (OSCs), in ovaries of women have recently been tested in various ways, including a very recent investigation of the differentiation capacity of human OSCs at a single cell level. The exciting insights gained from these experiments, coupled with other data derived from intraovarian transplantation and genetic tracing analyses in animal models that have established the capacity of OSCs to generate healthy eggs, embryos and offspring, should drive constructive discussions in this relatively new field to further exploring the value of these cells to the study, and potential management, of human female fertility. Here, we provide a brief history of the discovery and characterization of OSCs in mammals, as well as of the in-vivo significance of postnatal oogenesis to adult ovarian function. We then highlight several key observations made recently on the biology of OSCs, and integrate this information into a broader discussion of the potential value and limitations of these adult stem cells to achieving a greater understanding of human female gametogenesis in vivo and in vitro.
Collapse
Affiliation(s)
- Jessica J Martin
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| | - Dori C Woods
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| | - Jonathan L Tilly
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Zhang X, Yang Y, Xia Q, Song H, Wei R, Wang J, Zou K. Cadherin 22 participates in the self-renewal of mouse female germ line stem cells via interaction with JAK2 and β-catenin. Cell Mol Life Sci 2018; 75:1241-1253. [PMID: 29063123 PMCID: PMC11105442 DOI: 10.1007/s00018-017-2689-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/12/2017] [Accepted: 10/18/2017] [Indexed: 02/03/2023]
Abstract
The self-renewal capacity of the stem cell pool determines tissue function and health. Cadherin-22 (Cdh22), a member of the cadherin superfamily, has two splicing patterns in rats, and the short type that lacks a catenin binding domain is closely related to spermatogonial stem cell self-renewal. Previously, we reported that CDH22 was highly expressed in mouse ovary germ cells, especially in female germ line stem cells (FGSCs). However, its underlying function in FGSCs is still not clear. Here, we found that Cdh22 encodes only one type of protein product in mice and demonstrated that CDH22 was required for FGSC self-renewal. In addition, JAK2 and β-catenin were found to interact with CDH22 and be involved in CDH22 signaling in mouse FGSCs. Moreover, extrinsic CDH22 was identified as a potential molecule that participates in FGSC adhesion and is pivotal for FGSC maintenance and self-renewal. These results reveal that CDH22 functions as an essential molecule in FGSC maintenance and self-renewal via different mechanisms, including interaction with the JAK-STAT signaling pathway and β-catenin.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qin Xia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongfei Song
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rui Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingjing Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kang Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
23
|
Yazdekhasti H, Hosseini MA, Rajabi Z, Parvari S, Salehnia M, Koruji M, Izadyar F, Aliakbari F, Abbasi M. Improved Isolation, Proliferation, and Differentiation Capacity of Mouse Ovarian Putative Stem Cells. Cell Reprogram 2017; 19:132-144. [PMID: 28375748 DOI: 10.1089/cell.2016.0054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The recent discovery of ovarian stem cells in postnatal mammalian ovaries, also referred to as putative stem cells (PSCs), and their roles in mammalian fertility has challenged the long-existing theory that women are endowed with a certain number of germ cells. The rare amount of PSCs is the major limitation for utilizing them through different applications. Therefore, this study was conducted in six phases to find a way to increase the number of Fragilis- and mouse vasa homolog (MVH)-positive sorted cells from 14-day-old NMRI strain mice. Results showed that there is a population of Fragilis- and MVH-positive cells with pluripotent stem cell characteristics, which can be isolated and expanded for months in vitro. PSCs increase their proliferation capacity under the influence of some mitogenic agents, and our results showed that different doses of stem cell factor (SCF) induce PSC proliferation with the maximum increase observed at 50 ng/mL. SCF was also able to increase the number of Fragilis- and MVH-positive cells after sorting by magnetic-activated cell sorting and enhance colony formation efficiency in sorted cells. Differentiation capacity assay indicated that there is a basic level of spontaneous differentiation toward oocyte-like cells during 3 days of culture. However, relative gene expression was significantly higher in the follicle-stimulating hormone-treated groups, especially in the Fragilis- sorted PSCs. We suggest that higher number of PSCs provides us either a greater source of energy that can be injected into energy-impaired oocytes in women with a history of repeat IVF failure or a good source for research.
Collapse
Affiliation(s)
- Hossein Yazdekhasti
- 1 Department of Anatomy, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Marzieh Agha Hosseini
- 2 Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Zahra Rajabi
- 1 Department of Anatomy, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Soraya Parvari
- 3 Department of Anatomy, School of Medicine, Alborz University of Medical Sciences , Karaj, Iran
| | - Mojdeh Salehnia
- 4 Department of Anatomy, School of Medical Sciences, Tarbiat Modarres University , Tehran, Iran
| | - Morteza Koruji
- 5 Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | | | - Fereshte Aliakbari
- 1 Department of Anatomy, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Mehdi Abbasi
- 1 Department of Anatomy, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
24
|
Genetic studies in mice directly link oocytes produced during adulthood to ovarian function and natural fertility. Sci Rep 2017; 7:10011. [PMID: 28855574 PMCID: PMC5577229 DOI: 10.1038/s41598-017-10033-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
Multiple labs have reported that mammalian ovaries contain oogonial stem cells (OSCs), which can differentiate into oocytes that fertilize to produce offspring. However, the physiological relevance of these observations to adult ovarian function is unknown. Here we performed targeted and reversible ablation of premeiotic germ cells undergoing differentiation into oocytes in transgenic mice expressing the suicide gene, herpes simplex virus thymidine kinase (HSVtk), driven by the promoter of stimulated by retinoic acid gene 8 (Stra8), a germ cell-specific gene activated during meiotic commitment. Over a 21-day ablation phase induced by the HSVtk pro-drug, ganciclovir (GCV), oocyte numbers declined due to a disruption of new oocyte input. However, germ cell differentiation resumed after ceasing the ablation protocol, enabling complete regeneration of the oocyte pool. We next employed inducible lineage tracing to fate map, through Cre recombinase-mediated fluorescent reporter gene activation only in Stra8-expressing cells, newly-formed oocytes. Induction of the system during adulthood yielded a mosaic pool of unmarked (pre-existing) and marked (newly-formed) oocytes. Marked oocytes matured and fertilized to produce offspring, which grew normally to adulthood and transmitted the reporter to second-generation offspring. These findings establish that oocytes generated during adulthood contribute directly to ovarian function and natural fertility in mammals.
Collapse
|
25
|
Kumar TR. The SO(H)L(H) "O" drivers of oocyte growth and survival but not meiosis I. J Clin Invest 2017; 127:2044-2047. [PMID: 28504648 DOI: 10.1172/jci94665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The spermatogenesis/oogenesis helix-loop-helix (SOHLH) proteins SOHLH1 and SOHLH2 play important roles in male and female reproduction. Although previous studies indicate that these transcriptional regulators are expressed in and have in vivo roles in postnatal ovaries, their expression and function in the embryonic ovary remain largely unknown. Because oocyte differentiation is tightly coupled with the onset of meiosis, it is of significant interest to determine how early oocyte transcription factors regulate these two processes. In this issue of the JCI, Shin and colleagues report that SOHLH1 and SOHLH2 demonstrate distinct expression patterns in the embryonic ovary and interact with each other and other oocyte-specific transcription factors to regulate oocyte differentiation. Interestingly, even though there is a rapid loss of oocytes postnatally in ovaries with combined loss of Sohlh1 and Sohlh2, meiosis is not affected and proceeds normally.
Collapse
|
26
|
Sun X, Ito J, Potter SJ, Dey SK, DeFalco T. Extragonadal oocytes residing in the mouse ovarian hilum contribute to fertility. Biol Reprod 2017; 96:1060-1070. [PMID: 28339687 PMCID: PMC6279060 DOI: 10.1095/biolreprod.116.145631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/13/2017] [Accepted: 02/13/2017] [Indexed: 12/17/2022] Open
Abstract
The observation of pups born from recipient and donor mice after ovariectomy followed by ovarian transplant poses the interesting possibility of an extraovarian source of oocytes. However, whether mammalian adult oocytes reside in extragonadal tissues remains elusive. Using transgenic fluorescent reporter mice and transplantation surgeries, we demonstrate the presence of both donor- and recipient-derived corpora lutea and recovery of both donor- and recipient-derived offspring from ovariectomized mice after transplantation of donor ovaries. A potential region for extraovarian oocytes is the hilum, a ligament-like structure between the ovary and the reproductive tract. Immunofluorescent confocal microscopy of mouse ovaries and reproductive tracts revealed that a population of primordial follicles resides outside the ovary within the hilum. Ovariectomy-only controls confirmed that oocytes remain in the recipient hilum after surgery. These results provide evidence that the hilum is a reserve source of follicles, which likely return to the ovary for maturation and ovulation. By identifying a new follicle reservoir, our study addresses a long-standing question in reproductive biology and contributes to new conceptual knowledge about ovarian function and fertility.
Collapse
Affiliation(s)
- Xiaofei Sun
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Junya Ito
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sarah J. Potter
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sudhansu K. Dey
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
27
|
Truman AM, Tilly JL, Woods DC. Ovarian regeneration: The potential for stem cell contribution in the postnatal ovary to sustained endocrine function. Mol Cell Endocrinol 2017; 445:74-84. [PMID: 27743990 PMCID: PMC5604433 DOI: 10.1016/j.mce.2016.10.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/26/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023]
Abstract
The endocrine function of the ovary is dependent upon the ovarian follicle, which on a cellular basis consists of an oocyte surrounded by adjacent somatic cells responsible for generating sex steroid hormones and maintenance of hormonal stasis with the hypothalamic-pituitary axis. As females age, both fertility and the endocrine function of the ovary decline due to waning follicle numbers as well as aging-related cellular dysfunction. Although there is currently no cure for ovarian failure and endocrine disruption, recent advances in ovarian biology centered on ovarian stem cell and progenitor cell populations have brought the prospects of cell- or tissue-based therapeutic strategies closer to fruition. Herein, we review the relative contributions of ovarian stem cells to ovarian function during the reproductive lifespan, and postulate steps toward the development of ovarian stem cell-based approaches to advance fertility treatments, and also importantly to provide a physiological long-term means of endocrine support.
Collapse
Affiliation(s)
- Alisha M Truman
- Department of Biology, Laboratory of Aging and Infertility Research, Northeastern University, Boston, MA, USA
| | - Jonathan L Tilly
- Department of Biology, Laboratory of Aging and Infertility Research, Northeastern University, Boston, MA, USA
| | - Dori C Woods
- Department of Biology, Laboratory of Aging and Infertility Research, Northeastern University, Boston, MA, USA.
| |
Collapse
|
28
|
Horan CJ, Williams SA. Oocyte stem cells: fact or fantasy? Reproduction 2017; 154:R23-R35. [PMID: 28389520 DOI: 10.1530/rep-17-0008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/29/2017] [Accepted: 04/07/2017] [Indexed: 01/08/2023]
Abstract
For many decades, the dogma prevailed that female mammals had a finite pool of oocytes at birth and this was gradually exhausted during a lifetime of reproductive function. However, in 2004, a new era began in the field of female oogenesis. A study was published that appeared to detect oocyte-stem cells capable of generating new eggs within mouse ovaries. This study was highly controversial and the years since this initial finding have produced extensive research and even more extensive debate into their possibility. Unequivocal evidence testifying to the existence of oocyte-stem cells (OSCs) has yet to be produced, meanwhile the spectrum of views from both sides of the debate are wide-ranging and surprisingly passionate. Although recent studies have presented some convincing results that germ cells exist and are capable of creating new oocytes, many questions remain. Are these cells present in humans? Do they exist in physiological conditions in a dormant state? This comprehensive review first examines where and how the dogma of a finite pool was established, how this has been challenged over the years and addresses the most pertinent questions as to the current status of their existence, their role in female fertility, and perhaps most importantly, if they do exist, how can we harness these cells to improve a woman's oocyte reserve and treat conditions such as premature ovarian insufficiency (POI: also known as premature ovarian failure, POF).
Collapse
Affiliation(s)
- Corrina J Horan
- Nuffield Department of Obstetrics and GynaecologyUniversity of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Suzannah A Williams
- Nuffield Department of Obstetrics and GynaecologyUniversity of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
29
|
Differentiation of Mouse Primordial Germ Cells into Functional Oocytes In Vitro. Ann Biomed Eng 2017; 45:1608-1619. [PMID: 28243826 PMCID: PMC5489615 DOI: 10.1007/s10439-017-1815-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/15/2017] [Indexed: 01/01/2023]
Abstract
Various complex molecular events in oogenesis cannot be observed in vivo. As a bioengineering technique for female reproductive tissues, in vitro culture systems for female germ cells have been used to analyze oogenesis and preserve germ cells for over 20 years. Recently, we have established a new methodological approach for the culture of primordial germ cells (PGCs) and successfully obtained offspring. Our PGC culture system will be useful to clarify unresolved mechanisms of fertility and sterility from the beginning of mammalian oogenesis, before meiosis. This review summarizes the history of culture methods for mammalian germ cells, our current in vitro system, and future prospects for the culture of germ cells.
Collapse
|
30
|
Erler P, Sweeney A, Monaghan JR. Regulation of Injury-Induced Ovarian Regeneration by Activation of Oogonial Stem Cells. Stem Cells 2016; 35:236-247. [PMID: 28028909 DOI: 10.1002/stem.2504] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/25/2016] [Accepted: 09/06/2016] [Indexed: 01/14/2023]
Abstract
Some animals have the ability to generate large numbers of oocytes throughout life. This raises the question whether persistent adult germline stem cell populations drive continuous oogenesis and whether they are capable of mounting a regenerative response after injury. Here we demonstrate the presence of adult oogonial stem cells (OSCs) in the adult axolotl salamander ovary and show that ovarian injury induces OSC activation and functional regeneration of the ovaries to reproductive capability. Cells that have morphological similarities to germ cells were identified in the developing and adult ovaries via histological analysis. Genes involved in germ cell maintenance including Vasa, Oct4, Sox2, Nanog, Bmp15, Piwil1, Piwil2, Dazl, and Lhx8 were expressed in the presumptive OSCs. Colocalization of Vasa protein with H3 mitotic marker showed that both oogonial and spermatogonial adult stem cells were mitotically active. Providing evidence of stemness and viability of adult OSCs, enhanced green fluorescent protein (EGFP) adult OSCs grafted into white juvenile host gonads gave rise to EGFP OSCs, and oocytes. Last, the axolotl ovaries completely regenerated after partial ovariectomy injury. During regeneration, OSC activation resulted in rapid differentiation into new oocytes, which was demonstrated by Vasa+ /BrdU+ coexpression. Furthermore, follicle cell proliferation promoted follicle maturation during ovarian regeneration. Overall, these results show that adult oogenesis occurs via proliferation of endogenous OSCs in a tetrapod and mediates ovarian regeneration. This study lays the foundations to elucidate mechanisms of ovarian regeneration that will assist regenerative medicine in treating premature ovarian failure and reduced fertility. Stem Cells 2017;35:236-247.
Collapse
Affiliation(s)
- Piril Erler
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Alexandra Sweeney
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - James R Monaghan
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Yazdekhasti H, Rajabi Z, Parvari S, Abbasi M. Used protocols for isolation and propagation of ovarian stem cells, different cells with different traits. J Ovarian Res 2016; 9:68. [PMID: 27765047 PMCID: PMC5072317 DOI: 10.1186/s13048-016-0274-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 10/03/2016] [Indexed: 11/10/2022] Open
Abstract
Although existence of ovarian stem cells (OSCs) in mammalian postnatal ovary is still under controversy, however, it has been almost accepted that OSCs are contributing actively to folliculogenesis and neo-oogenesis. Recently, various methods with different efficacies have been employed for OSCs isolation from ovarian tissue, which these methods could be chosen depends on aim of isolation and accessible equipments and materials in lab. Although isolated OSCs from different methods have various traits and characterizations, which might become from their different nature and origin, however these stem cells are promising source for woman infertility treatment or source of energy for women with a history of repeat IVF failure in near future. This review has brought together and summarized currently used protocols for isolation and propagation of OSCs in vitro.
Collapse
Affiliation(s)
- Hossein Yazdekhasti
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rajabi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Parvari
- Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Abbasi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Bhartiya D, Shaikh A, Anand S, Patel H, Kapoor S, Sriraman K, Parte S, Unni S. Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Hum Reprod Update 2016; 23:41-76. [PMID: 27614362 DOI: 10.1093/humupd/dmw030] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Both pluripotent very small embryonic-like stem cells (VSELs) and induced pluripotent stem (iPS) cells were reported in 2006. In 2012, a Nobel Prize was awarded for iPS technology whereas even today the very existence of VSELs is not well accepted. The underlying reason is that VSELs exist in low numbers, remain dormant under homeostatic conditions, are very small in size and do not pellet down at 250-280g. The VSELs maintain life-long tissue homeostasis, serve as a backup pool for adult stem cells and are mobilized under stress conditions. An imbalance in VSELs function (uncontrolled proliferation) may result in cancer. SEARCH METHODS The electronic database 'Medline/Pubmed' was systematically searched with the subject heading term 'very small embryonic-like stem cells'. OBJECTIVE AND RATIONALE The most primitive stem cells that undergo asymmetric cell divisions to self-renew and give rise to progenitors still remain elusive in the hematopoietic system and testes, while the presence of stem cells in ovary is still being debated. We propose to review the available literature on VSELs, the methods of their isolation and characterization, their ontogeny, how they compare with embryonic stem (ES) cells, primordial germ cells (PGCs) and iPS cells, and their role in maintaining tissue homeostasis. The review includes a look ahead on how VSELs will result in paradigm shifts in basic reproductive biology. OUTCOMES Adult tissue-specific stem cells including hematopoietic, spermatogonial, ovarian and mesenchymal stem cells have good proliferation potential and are indeed committed progenitors (with cytoplasmic OCT-4), which arise by asymmetric cell divisions of pluripotent VSELs (with nuclear OCT-4). VSELs are the most primitive stem cells and postulated to be an overlapping population with the PGCs. Rather than migrating only to the gonads, PGCs migrate and survive in various adult body organs throughout life as VSELs. VSELs express both pluripotent and PGC-specific markers and are epigenetically and developmentally more mature compared with ES cells obtained from the inner cell mass of a blastocyst-stage embryo. As a result, VSELs readily differentiate into three embryonic germ layers and spontaneously give rise to both sperm and oocytes in vitro. Like PGCs, VSELs do not divide readily in culture, nor produce teratoma or integrate in the developing embryo. But this property of being relatively quiescent allows endogenous VSELs to survive various kinds of toxic insults. VSELs that survive oncotherapy can be targeted to induce endogenous regeneration of non-functional gonads. Transplanting healthy niche (mesenchymal) cells have resulted in improved gonadal function and live births. WIDER IMPLICATIONS Being quiescent, VSELs possibly do not accumulate genomic (nuclear or mitochondrial) mutations and thus may be ideal endogenous, pluripotent stem cell candidates for regenerative and reproductive medicine. The presence of VSELs in adult gonads and the fact that they survive oncotherapy may obviate the need to bank gonadal tissue for fertility preservation prior to oncotherapy. VSELs and their ability to undergo spermatogenesis/neo-oogenesis in the presence of a healthy niche will help identify newer strategies toward fertility restoration in cancer survivors, delaying menopause and also enabling aged mothers to have better quality eggs.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Ambreen Shaikh
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sandhya Anand
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Hiren Patel
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sona Kapoor
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Kalpana Sriraman
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,The Foundation for Medical Research, 84-A, RG Thadani Marg, Worli, Mumbai 400018, India
| | - Seema Parte
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Department of Physiology, James Graham Brown Cancer Centre, University of Louisville School of Medicine, 2301 S 3rd St, Louisville, KY 40202, USA
| | - Sreepoorna Unni
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Inter Disciplinary Studies Department, University College, Zayed University, Academic City, PO Box 19282, Dubai, United Arab Emirates
| |
Collapse
|
33
|
Ding X, Liu G, Xu B, Wu C, Hui N, Ni X, Wang J, Du M, Teng X, Wu J. Human GV oocytes generated by mitotically active germ cells obtained from follicular aspirates. Sci Rep 2016; 6:28218. [PMID: 27357640 PMCID: PMC4928061 DOI: 10.1038/srep28218] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 06/01/2016] [Indexed: 01/26/2023] Open
Abstract
Human female germline stem cells (FGSCs) have opened new opportunities for understanding human oogenesis, delaying menopause, treating infertility, and providing a new strategy for preserving fertility. However, the shortage of adult human ovaries tissues available impedes their future investigations and clinical applications. Here, we have established FGSC lines from scarce ovarian cortical tissues that exist in follicular aspirates (faFGSCs), which are produced and discarded in in vitro fertilization centers worldwide. The faFGSCs have characteristics of germline stem cells involved in the gene expression profile, growth characteristics, and a normal karyotype consistent with that of FGSCs obtained from ovarian cortexes surgically removed from patients (srFGSCs). Furthermore, faFGSCs have developmental potentials including spontaneous differentiation into oocytes under feeder-free conditions, communicating with granulosa cells by gap junctions and paracrine factors, entering meiosis after RA induction, as well as forming follicles after injection into human ovarian cortical tissues xenografted into adult immunodeficient female mice. Lastly, we developed a strategy guiding FGSCs differentiated into germinal vesicle (GV) stage oocytes in vitro and revealed their developmental mechanisms. Our study not only provides a new approach to obtain human FGSCs for medical treatment, but also opens several avenues to investigate human oogenesis in vitro.
Collapse
Affiliation(s)
- Xinbao Ding
- Renji Hospital Shanghai Jiaotong University School of Medicine, Key Laboratory for the Genetics of Developmental &Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guishu Liu
- The First People's Hospital of Chenzhou, Chenzhou 42300, Hunan, China
| | - Bo Xu
- Renji Hospital Shanghai Jiaotong University School of Medicine, Key Laboratory for the Genetics of Developmental &Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changqing Wu
- Renji Hospital Shanghai Jiaotong University School of Medicine, Key Laboratory for the Genetics of Developmental &Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ning Hui
- Changhai Hospital of Second Military Medical University, Shanghai 200433, China
| | - Xin Ni
- Department of Physiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Jian Wang
- Renji Hospital Shanghai Jiaotong University School of Medicine, Key Laboratory for the Genetics of Developmental &Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meirong Du
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Xiaoming Teng
- Center of Reproductive medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Ji Wu
- Renji Hospital Shanghai Jiaotong University School of Medicine, Key Laboratory for the Genetics of Developmental &Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| |
Collapse
|
34
|
FACS-sorted putative oogonial stem cells from the ovary are neither DDX4-positive nor germ cells. Sci Rep 2016; 6:27991. [PMID: 27301892 PMCID: PMC4908409 DOI: 10.1038/srep27991] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/26/2016] [Indexed: 12/11/2022] Open
Abstract
Whether the adult mammalian ovary contains oogonial stem cells (OSCs) is controversial. They have been isolated by a live-cell sorting method using the germ cell marker DDX4, which has previously been assumed to be cytoplasmic, not surface-bound. Furthermore their stem cell and germ cell characteristics remain disputed. Here we show that although OSC-like cells can be isolated from the ovary using an antibody to DDX4, there is no good in silico modelling to support the existence of a surface-bound DDX4. Furthermore these cells when isolated were not expressing DDX4, and did not initially possess germline identity. Despite these unremarkable beginnings, they acquired some pre-meiotic markers in culture, including DDX4, but critically never expressed oocyte-specific markers, and furthermore were not immortal but died after a few months. Our results suggest that freshly isolated OSCs are not germ stem cells, and are not being isolated by their DDX4 expression. However it may be that culture induces some pre-meiotic markers. In summary the present study offers weight to the dogma that the adult ovary is populated by a fixed number of oocytes and that adult de novo production is a rare or insignificant event.
Collapse
|
35
|
Zhang C, Wu J. Production of offspring from a germline stem cell line derived from prepubertal ovaries of germline reporter mice. Mol Hum Reprod 2016; 22:457-64. [PMID: 27141102 DOI: 10.1093/molehr/gaw030] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 04/22/2016] [Indexed: 01/01/2023] Open
Abstract
STUDY HYPOTHESIS We investigated whether DEAD-box polypeptide 4 (DDX4) positive cells from post-natal ovaries of germline lineage reporter mice can be isolated based on endogenously expressed fluorescent proteins and used to establish a cell line for producing offspring. STUDY FINDING DDX4-positive cells from post-natal ovaries of germline lineage reporter mice can be isolated and used to establish a cell line for producing offspring. WHAT IS KNOWN ALREADY In recent years, female germline stem cells (FGSCs) have been isolated from the ovaries of post-natal mice by magnetic-activated cell sorting or fluorescence-activated cell sorting (FACS) relying on an antibody against DDX4. However, whether DDX4-positive cells from post-natal ovaries of germline lineage reporter mice can be established without using an antibody, as well as a cell line established for producing offspring, remains unknown. STUDY DESIGN, SAMPLES/MATERIALS, METHODS To obtain the expected offspring (Ddx4-Cre;mT/mG mice), Ddx4-Cre mice were crossed with mT/mG mice. In the ovaries of Ddx4-Cre;mT/mG mice, germ cells were destined to express enhanced green fluorescent protein (EGFP) while somatic cells still express tandem dimer Tomato (tdTomato). Therefore, the germ cells could be clearly distinguished from somatic cells by fluorescent proteins. Then, we investigated the pattern of fluorescent cells in the ovaries of 21-day-old Ddx4-Cre;mT/mG mice under a fluorescent microscope. Germ cells were sorted by FACS without using antibody and used to establish a FGSC line. The FGSC line was analyzed by DDX4 immunostaining, Edu (5-ethynyl-2'-deoxyuridine) labeling, and RT-PCR for germ cell markers. Finally, the physiological function of the FGSC line was examined by transplanting FGSCs into the ovaries of sterilized recipients and subsequent mating. MAIN RESULTS AND THE ROLE OF CHANCE Firstly, we have successfully isolated FGSCs from the ovaries of 21-day-old Ddx4-Cre;mT/mG mice based on endogenously expressed fluorescent proteins. FACS was used to separate the cells and 2.3% of all viable cells was EGFP-positive germ cells. Subsequently, a FGSC line was established that was doubly positive for DDX4 immunostaining and Edu labeling. The mRNA expression of several germ cell markers in this cell line, such as Ddx4, Deleted in azoospermia-like (Dazl), B lymphocyte-induced maturation protein-1 (Blimp1), Stella and Fragilis, was detected. Lastly, the FGSC line was proven to be functional under physiological conditions, as offspring were produced after transplanting FGSCs into ovaries of sterilized recipients and a subsequent mating. LIMITATIONS, REASONS FOR CAUTION The molecular mechanisms of proliferation and differentiation of FGSCs in vivo and in vitro still need to be elucidated. WIDER IMPLICATIONS OF THE FINDINGS Our results confirm that DDX4-positive cells can be separated from post-natal mouse ovaries and used to establish cell lines that are functional in producing offspring, and provide further evidence for the existence of post-natal FGSCs in mammals. The Ddx4-Cre;mT/mG mouse strain is an ideal model for the isolation, characterization and propagation of FGSCs and is a useful tool for fully elucidating the molecular mechanisms of proliferation and differentiation of FGSCs in vivo and in vitro. LARGE SCALE DATA none. STUDY FUNDING AND COMPETING INTERESTS This work was supported by National Basic Research Program of China (2013CB967401) and the National Nature Science Foundation of China (81370675, 81200472 and 81421061). The authors declare no competing interests.
Collapse
Affiliation(s)
- Chen Zhang
- Renji Hospital Shanghai Jiaotong University School of Medicine, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ji Wu
- Renji Hospital Shanghai Jiaotong University School of Medicine, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| |
Collapse
|
36
|
González R, Dobrinski I. Beyond the mouse monopoly: studying the male germ line in domestic animal models. ILAR J 2016; 56:83-98. [PMID: 25991701 DOI: 10.1093/ilar/ilv004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis and essential to maintain the continuous production of spermatozoa after the onset of puberty in the male. The study of the male germ line is important for understanding the process of spermatogenesis, unravelling mechanisms of stemness maintenance, cell differentiation, and cell-to-cell interactions. The transplantation of SSCs can contribute to the preservation of the genome of valuable individuals in assisted reproduction programs. In addition to the importance of SSCs for male fertility, their study has recently stimulated interest in the generation of genetically modified animals because manipulations of the male germ line at the SSC stage will be maintained in the long term and transmitted to the offspring. Studies performed mainly in the mouse model have laid the groundwork for facilitating advancements in the field of male germ line biology, but more progress is needed in nonrodent species in order to translate the technology to the agricultural and biomedical fields. The lack of reliable markers for isolating germ cells from testicular somatic cells and the lack of knowledge of the requirements for germ cell maintenance have precluded their long-term maintenance in domestic animals. Nevertheless, some progress has been made. In this review, we will focus on the state of the art in the isolation, characterization, culture, and manipulation of SSCs and the use of germ cell transplantation in domestic animals.
Collapse
Affiliation(s)
- Raquel González
- Raquel González, DVM, PhD, is a postdoctoral research fellow at the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada. Ina Dobrinski, DVM, MVSc, PhD, Dipl ACT, is a professor and the head of the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Ina Dobrinski
- Raquel González, DVM, PhD, is a postdoctoral research fellow at the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada. Ina Dobrinski, DVM, MVSc, PhD, Dipl ACT, is a professor and the head of the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| |
Collapse
|
37
|
Anderson RA, Telfer EE. Replenishing the adult ovarian follicle population: a fresh look at dogma. Mol Hum Reprod 2016; 22:313-5. [PMID: 26916382 DOI: 10.1093/molehr/gaw017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/19/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Evelyn E Telfer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
38
|
Navaroli DM, Tilly JL, Woods DC. Isolation of Mammalian Oogonial Stem Cells by Antibody-Based Fluorescence-Activated Cell Sorting. Methods Mol Biol 2016; 1457:253-268. [PMID: 27557587 PMCID: PMC8802829 DOI: 10.1007/978-1-4939-3795-0_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability to isolate and subsequently culture mitotically active female germ cells from adult ovaries, referred to as either oogonial stem cells (OSCs) or adult female germline stem cells (aFGSCs), has provided a robust system to study female germ cell development under multiple experimental conditions, and in many species. Flow cytometry or fluorescence-activated cell sorting (FACS) is an integral part of many isolation and characterization protocols. Here, we provide methodological details for antibody-based flow cytometric isolation of OSCs using antibodies specific for external epitopes of the proteins Ddx4 or Ifitm3, alone or in combination with the use of fluorescent reporter mice. Beginning with sample preparation, we provide point-by-point instructions to guide researchers on how to isolate OSCs using flow cytometry.
Collapse
Affiliation(s)
- Deanna M Navaroli
- Laboratory of Aging and Infertility Research, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Jonathan L Tilly
- Laboratory of Aging and Infertility Research, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
- Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| | - Dori C Woods
- Laboratory of Aging and Infertility Research, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
- Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
39
|
Autologous Germline Mitochondrial Energy Transfer (AUGMENT) in Human Assisted Reproduction. Semin Reprod Med 2015; 33:410-21. [PMID: 26574741 DOI: 10.1055/s-0035-1567826] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ovarian aging is characterized by a decline in both the total number and overall quality of oocytes, the latter of which has been experimentally tied to mitochondrial dysfunction. Clinical studies in the late 1990s demonstrated that transfer of cytoplasm aspirated from eggs of young female donors into eggs of infertile women at the time of intracytoplasmic sperm injection improved pregnancy success rates. However, donor mitochondria were identified in offspring, and the United States Food and Drug Administration raised questions about delivery of foreign genetic material into human eggs at the time of fertilization. Accordingly, heterologous cytoplasmic transfer, while promising, was in effect shut down as a clinical protocol. The recent discovery of adult oogonial (oocyte-generating) stem cells in mice, and subsequently in women, has since re-opened the prospects of delivering a rich source of pristine and patient-matched germline mitochondria to boost egg health and embryonic developmental potential without the need for young donor eggs to obtain cytoplasm. Herein we overview the science behind this new protocol, which has been patented and termed autologous germline mitochondrial energy transfer, and its use to date in clinical studies for improving pregnancy success in women with a prior history of assisted reproduction failure.
Collapse
|
40
|
Improvement in Isolation and Identification of Mouse Oogonial Stem Cells. Stem Cells Int 2015; 2016:2749461. [PMID: 26635882 PMCID: PMC4655301 DOI: 10.1155/2016/2749461] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 01/16/2023] Open
Abstract
Female germline stem cells (FGSCs) or oogonial stem cells (OSCs) have the capacity to generate newborn oocytes and thus open a new door to fight ovarian aging and female infertility. However, the production and identification of OSCs are difficult for investigators. Rare amount of these cells in the ovary results in the failure of the acquisition of OSCs. Furthermore, the oocyte formation by OSCs in vivo was usually confirmed using tissue sections by immunofluorescence or immunohistochemistry in previous studies. STO or MEF feeder cells are derived from mouse, not human. In our study, we modified the protocol. The cells were digested from ovaries and cultured for 2-3 days and then were purified by magnetic-activated cell sorting (MACS). The ovaries and fetus of mice injected with EGFP-positive OSCs were prepared and put on the slides to directly visualize oocyte and progeny formation under microscope. Additionally, the human umbilical cord mesenchymal stem cells (hUC-MSCs) were also used as feeder cells to support the proliferation of OSCs. The results showed that all the modified procedures can significantly improve and facilitate the generation and characterization of OSCs, and hUC-MSCs as feeder will be useful for isolation and proliferation of human OSCs avoiding contamination from mouse.
Collapse
|
41
|
Intraovarian Transplantation of Female Germline Stem Cells Rescue Ovarian Function in Chemotherapy-Injured Ovaries. PLoS One 2015; 10:e0139824. [PMID: 26431320 PMCID: PMC4592213 DOI: 10.1371/journal.pone.0139824] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 09/16/2015] [Indexed: 11/19/2022] Open
Abstract
Early menopause and infertility often occur in female cancer patients after chemotherapy (CTx). For these patients, oocyte/embryo cryopreservation or ovarian tissue cryopreservation is the current modality for fertility preservation. However, the above methods are limited in the long-term protection of ovarian function, especially for fertility preservation (very few females with cancer have achieved pregnancy with cryopreserved ovarian tissue or eggs until now). In addition, the above methods are subject to their scope (females with no husband or prepubertal females with no mature oocytes). Thus, many females who suffer from cancers would not adopt the above methods pre- and post-CTx due to their uncertainty, safety and cost-effectiveness. Therefore, millions of women have achieved long-term survival after thorough CTx treatment and have desired to rescue their ovarian function and fertility with economic, durable and reliable methods. Recently, some studies showed that mice with infertility caused by CTx can produce normal offspring through intraovarian injection of exogenous female germline stem cells (FGSCs). Though exogenous FGSC can be derived from mice without immune rejection in the same strain, it is difficult to obtain human female germline stem cells (hFGSCs), and immune rejection could occur between different individuals. In this study, infertility in mice was caused by CTx, and the ability of FGSCs to restore ovarian function or even produce offspring was assessed. We had successfully isolated and purified the FGSCs from adult female mice two weeks after CTx. After infection with GFP-carrying virus, the FGSCs were transplanted into ovaries of mice with infertility caused by CTx. Finally, ovarian function was restored and the recipients produced offspring long-term. These findings showed that mice with CTx possessed FGSCs, restoring ovarian function and avoiding immune rejection from exogenous germline stem cells.
Collapse
|
42
|
Affiliation(s)
- Dori C Woods
- Department of Biology, Laboratory of Aging and Infertility Research, Northeastern University, Boston, Massachusetts, USA
| | - Jonathan L Tilly
- Department of Biology, Laboratory of Aging and Infertility Research, Northeastern University, Boston, Massachusetts, USA
- Office of the Dean of the College of Science, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Sharma A, Jamil MA, Nuesgen N, Schreiner F, Priebe L, Hoffmann P, Herns S, Nöthen MM, Fröhlich H, Oldenburg J, Woelfle J, El-Maarri O. DNA methylation signature in peripheral blood reveals distinct characteristics of human X chromosome numerical aberrations. Clin Epigenetics 2015. [PMID: 26221191 PMCID: PMC4517491 DOI: 10.1186/s13148-015-0112-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Abnormal sex chromosome numbers in humans are observed in Turner (45,X) and Klinefelter (47,XXY) syndromes. Both syndromes are associated with several clinical phenotypes, whose molecular mechanisms are obscure, and show a range of inter-individual penetrance. In order to understand the effect of abnormal numbers of X chromosome on the methylome and its correlation to the variable clinical phenotype, we performed a genome-wide methylation analysis using MeDIP and Illumina's Infinium assay on individuals with four karyotypes: 45,X, 46,XY, 46,XX, and 47,XXY. RESULTS DNA methylation changes were widespread on all autosomal chromosomes in 45,X and in 47,XXY individuals, with Turner individuals presenting five times more affected loci. Differentially methylated CpGs, in most cases, have intermediate methylation levels and tend to occur outside CpG islands, especially in individuals with Turner syndrome. The X inactivation process appears to be less effective in Klinefelter syndrome as methylation on the X was decreased compared to normal female samples. In a large number of individuals, we verified several loci by pyrosequencing and observed only weak inter-loci correlations between the verified regions. This suggests a certain stochastic/random contribution to the methylation changes at each locus. Interestingly, methylation patterns on some PAR2 loci differ between male and Turner syndrome individuals and between female and Klinefelter syndrome individuals, which possibly contributed to this distinguished and unique autosomal methylation patterns in Turner and Klinefelter syndrome individuals. CONCLUSIONS The presented data clearly show that gain or loss of an X chromosome results in different epigenetic effects, which are not necessary opposite.
Collapse
Affiliation(s)
- Amit Sharma
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - Muhammad Ahmer Jamil
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - Nicole Nuesgen
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - Felix Schreiner
- Pediatric Endocrinology Division, Children's Hospital, University of Bonn, Bonn, Germany
| | - Lutz Priebe
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Stefan Herns
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Holger Fröhlich
- Institute for Computer Science, c/o Bonn-Aachen International Center for IT, Algorithmic Bioinformatics, University of Bonn, Dahlmannstr. 2, 53113 Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - Joachim Woelfle
- Pediatric Endocrinology Division, Children's Hospital, University of Bonn, Bonn, Germany
| | - Osman El-Maarri
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| |
Collapse
|
44
|
Hummitzsch K, Anderson RA, Wilhelm D, Wu J, Telfer EE, Russell DL, Robertson SA, Rodgers RJ. Stem cells, progenitor cells, and lineage decisions in the ovary. Endocr Rev 2015; 36:65-91. [PMID: 25541635 PMCID: PMC4496428 DOI: 10.1210/er.2014-1079] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/15/2014] [Indexed: 01/05/2023]
Abstract
Exploring stem cells in the mammalian ovary has unleashed a Pandora's box of new insights and questions. Recent evidence supports the existence of stem cells of a number of the different cell types within the ovary. The evidence for a stem cell model producing mural granulosa cells and cumulus cells is strong, despite a limited number of reports. The recent identification of a precursor granulosa cell, the gonadal ridge epithelial-like cell, is exciting and novel. The identification of female germline (oogonial) stem cells is still very new and is currently limited to just a few species. Their origins and physiological roles, if any, are unknown, and their potential to produce oocytes and contribute to follicle formation in vivo lacks robust evidence. The precursor of thecal cells remains elusive, and more compelling data are needed. Similarly, claims of very small embryonic-like cells are also preliminary. Surface epithelial cells originating from gonadal ridge epithelial-like cells and from the mesonephric epithelium at the hilum of the ovary have also been proposed. Another important issue is the role of the stroma in guiding the formation of the ovary, ovigerous cords, follicles, and surface epithelium. Immune cells may also play key roles in developmental patterning, given their critical roles in corpora lutea formation and regression. Thus, while the cellular biology of the ovary is extremely important for its major endocrine and fertility roles, there is much still to be discovered. This review draws together the current evidence and perspectives on this topic.
Collapse
Affiliation(s)
- Katja Hummitzsch
- Discipline of Obstetrics and Gynaecology (K.H., D.L.R., S.A.R., R.J.R.), School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia 5005; Medical Research Council Centre for Reproductive Health (R.A.A.), The University of Edinburgh, The Queens Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom; Department of Anatomy and Developmental Biology (D.W.), Monash University, Clayton, Victoria, Australia 3800; Bio-X Institutes (J.W.), Shanghai Jiao Tong University, Shanghai 200240, China; and Institute of Cell Biology and Centre for Integrative Physiology (E.E.T), The University of Edinburgh, Edinburgh EH8 9XE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|