1
|
Lv H, Qian X, Tao Z, Shu J, Shi D, Yu J, Fan G, Qian Q, Shen L, Lu B. HOXA5-induced lncRNA DNM3OS promotes human embryo lung fibroblast fibrosis via recruiting EZH2 to epigenetically suppress TSC2 expression. J Thorac Dis 2024; 16:1234-1246. [PMID: 38505042 PMCID: PMC10944743 DOI: 10.21037/jtd-23-1145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/01/2023] [Indexed: 03/21/2024]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is an unrepairable disease that results in lung dysfunction and decreased quality of life. Prevention of pulmonary fibrosis is challenging, while its pathogenesis remains largely unknown. Herein, we investigated the effect and mechanism of long non-coding RNA (lncRNA) DNM3OS/Antisense RNA in the pathogenesis of pulmonary fibrosis. Methods EdU (5-ethynyl-2'-deoxyuridine) and wound healing assays were employed to evaluate the role of DNM3OS on cell proliferation and migration. Western blot detected the proteins expressions of alpha-smooth muscle actin (α-SMA), vimentin, and fibronectin. The interactions among genes were evaluated by RNA pull-down, luciferase reporter, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP) and chromatin Isolation by RNA purification (ChIRP) assays. Results DNM3OS was upregulated by transforming growth factor beta 1 (TGF-β1) in a dose- and time-dependent manner. DNM3OS knockdown repressed the growth and migration of lung fibroblast, and fibrotic gene expression (CoL1α1, CoL3α1, α-SMA, vimentin, and fibronectin), while suppression of TSC2 accelerated the above process. DNM3OS recruited EZH2 to the promoter region of TSC2, increased the occupancy of EZH2 and H3K27me3, and thereby suppressed the expression of TSC2. HOXA5 promoted the transcription of DNM3OS. Conclusions HOXA5-induced DNM3OS promoted the proliferation, migration, and expression of fibrosis-related genes in human embryo lung fibroblast via recruiting EZH2 to epigenetically suppress the expression of TSC2.
Collapse
Affiliation(s)
- Hong Lv
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Xingjia Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Zhengzheng Tao
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Jun Shu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Dongfang Shi
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Jing Yu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Guiqin Fan
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Qiuhong Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Luhong Shen
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Bing Lu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| |
Collapse
|
2
|
Shtykalova SV, Egorova AA, Maretina MA, Freund SA, Baranov VS, Kiselev AV. Molecular Genetic Basis and Prospects of Gene Therapy of Uterine Leiomyoma. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421090118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Gu NH, Li GJ, Yang BX, You M, Lin Y, Sun F, Xu H. Hypo-Expression of Tuberin Promotes Adenomyosis via the mTOR1-Autophagy Axis. Front Cell Dev Biol 2021; 9:710407. [PMID: 34395438 PMCID: PMC8358309 DOI: 10.3389/fcell.2021.710407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022] Open
Abstract
Adenomyosis (AM) is a disease in which endometrial tissue invades the myometrium and has a 10–60% prevalence in reproductive-aged women. TSC2 regulates autophagy via mTOR1 signalling in colorectal cancer and endometrial carcinoma. Dysregulation of autophagy is implicated in adenomyosis pathogenesis. However, whether TSC2 participates in adenomyosis via autophagy remains obscure. Here, we found that the expression of TSC2 in adenomyosis was significantly decreased than that in normal endometrium during the secretory phase. Moreover, TSC2 and autophagy marker expression was significantly lower in ectopic lesions than in eutopic samples. TSC2 downregulation inhibited autophagy through mTOR1 signalling pathway activation in endometrial cells, leading to excessive proliferation, migration, and EMT; TSC2 overexpression induced the opposite effects. Rapamycin treatment suppressed cell proliferation, migration and EMT in the absence of TSC2. In parallel, an autophagy-specific inhibitor (SAR-405) restored migration and EMT under rapamycin treatment in TSC2-knockdown Ishikawa cells. Finally, SAR-405 treatment promoted EMT and migration of overexpressing cells. Collectively, our results suggest that TSC2 controls endometrial epithelial cell migration and EMT by regulating mTOR1-autophagy axis activation and that hypo-expression of TSC2 in the endometrium might promote adenomyosis.
Collapse
Affiliation(s)
- Ni-Hao Gu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Guo-Jing Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Bing-Xin Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Min You
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yu Lin
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Feng Sun
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| |
Collapse
|
4
|
Katz TA, Yang Q, Treviño LS, Walker CL, Al-Hendy A. Endocrine-disrupting chemicals and uterine fibroids. Fertil Steril 2016; 106:967-77. [PMID: 27553264 PMCID: PMC5051569 DOI: 10.1016/j.fertnstert.2016.08.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Uterine fibroids are the most frequent gynecologic tumor, affecting 70% to 80% of women over their lifetime. Although these tumors are benign, they can cause significant morbidity and may require invasive treatments such as myomectomy and hysterectomy. Many risk factors for these tumors have been identified, including environmental exposures to endocrine-disrupting chemicals (EDCs) such as genistein and diethylstilbestrol. Uterine development may be a particularly sensitive window to environmental exposures, as some perinatal EDC exposures have been shown to increase tumorigenesis in both rodent models and human epidemiologic studies. The mechanisms by which EDC exposures may increase tumorigenesis are still being elucidated, but epigenetic reprogramming of the developing uterus is an emerging hypothesis. Given the remarkably high incidence of uterine fibroids and their significant impact on women's health, understanding more about how prenatal exposures to EDCs (and other environmental agents) may increase fibroid risk could be key to developing prevention and treatment strategies in the future.
Collapse
Affiliation(s)
- Tiffany A Katz
- Health Science Center, Institute of Biotechnology, Center for Translational Cancer Research, Texas A&M University, Houston, Texas
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Lindsey S Treviño
- Health Science Center, Institute of Biotechnology, Center for Translational Cancer Research, Texas A&M University, Houston, Texas
| | - Cheryl Lyn Walker
- Health Science Center, Institute of Biotechnology, Center for Translational Cancer Research, Texas A&M University, Houston, Texas
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia.
| |
Collapse
|
5
|
Commandeur AE, Styer AK, Teixeira JM. Epidemiological and genetic clues for molecular mechanisms involved in uterine leiomyoma development and growth. Hum Reprod Update 2015; 21:593-615. [PMID: 26141720 DOI: 10.1093/humupd/dmv030] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 06/09/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Uterine leiomyomas (fibroids) are highly prevalent benign smooth muscle tumors of the uterus. In the USA, the lifetime risk for women developing uterine leiomyomas is estimated as up to 75%. Except for hysterectomy, most therapies or treatments often provide only partial or temporary relief and are not successful in every patient. There is a clear racial disparity in the disease; African-American women are estimated to be three times more likely to develop uterine leiomyomas and generally develop more severe symptoms. There is also familial clustering between first-degree relatives and twins, and multiple inherited syndromes in which fibroid development occurs. Leiomyomas have been described as clonal and hormonally regulated, but despite the healthcare burden imposed by the disease, the etiology of uterine leiomyomas remains largely unknown. The mechanisms involved in their growth are also essentially unknown, which has contributed to the slow progress in development of effective treatment options. METHODS A comprehensive PubMed search for and critical assessment of articles related to the epidemiological, biological and genetic clues for uterine leiomyoma development was performed. The individual functions of some of the best candidate genes are explained to provide more insight into their biological function and to interconnect and organize genes and pathways in one overarching figure that represents the current state of knowledge about uterine leiomyoma development and growth. RESULTS In this review, the widely recognized roles of estrogen and progesterone in uterine leiomyoma pathobiology on the basis of clinical and experimental data are presented. This is followed by fundamental aspects and concepts including the possible cellular origin of uterine fibroids. The central themes in the subsequent parts are cytogenetic aberrations in leiomyomas and the racial/ethnic disparities in uterine fibroid biology. Then, the attributes of various in vitro and in vivo, human syndrome, rodent xenograft, naturally mutant, and genetically modified models used to study possible molecular mechanisms of leiomyoma development and growth are described. Particular emphasis is placed on known links to fibrosis, hypertrophy, and hyperplasia and genes that are potentially important in these processes. CONCLUSIONS Menstrual cycle-related injury and repair and coinciding hormonal cycling appears to affect myometrial stem cells that, at a certain stage of fibroid development, often obtain cytogenetic aberrations and mutations of Mediator complex subunit 12 (MED12). Mammalian target of rapamycin (mTOR), a master regulator of proliferation, is activated in many of these tumors, possibly by mechanisms that are similar to some human fibrosis syndromes and/or by mutation of upstream tumor suppressor genes. Animal models of the disease support some of these dysregulated pathways in fibroid etiology or pathogenesis, but none are definitive. All of this suggests that there are likely several key mechanisms involved in the disease that, in addition to increasing the complexity of uterine fibroid pathobiology, offer possible approaches for patient-specific therapies. A final model that incorporates many of these reported mechanisms is presented with a discussion of their implications for leiomyoma clinical practice.
Collapse
Affiliation(s)
- Arno E Commandeur
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Aaron K Styer
- Vincent Center for Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jose M Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, 333 Bostwick Ave NE, 4018A, Grand Rapids, MI, USA Department of Women's Health, Spectrum Health Systems, Grand Rapids, MI, USA
| |
Collapse
|