1
|
Powell AM, Edwards NA, Hunter H, Kiser P, Watson AJ, Cumming RC, Betts DH. Deletion of p66Shc Dysregulates ERK and STAT3 Activity in Mouse Embryonic Stem Cells, Enhancing Their Naive-Like Self-Renewal in the Presence of Leukemia Inhibitory Factor. Stem Cells Dev 2023; 32:434-449. [PMID: 37183401 DOI: 10.1089/scd.2022.0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The ShcA adapter protein is necessary for early embryonic development. The role of ShcA in development is primarily attributed to its 52 and 46 kDa isoforms that transduce receptor tyrosine kinase signaling through the extracellular signal regulated kinase (ERK). During embryogenesis, ERK acts as the primary signaling effector, driving fate acquisition and germ layer specification. P66Shc, the largest of the ShcA isoforms, has been observed to antagonize ERK in several contexts; however, its role during embryonic development remains poorly understood. We hypothesized that p66Shc could act as a negative regulator of ERK activity during embryonic development, antagonizing early lineage commitment. To explore the role of p66Shc in stem cell self-renewal and differentiation, we created a p66Shc knockout murine embryonic stem cell (mESC) line. Deletion of p66Shc enhanced basal ERK activity, but surprisingly, instead of inducing mESC differentiation, loss of p66Shc enhanced the expression of core and naive pluripotency markers. Using pharmacologic inhibitors to interrogate potential signaling mechanisms, we discovered that p66Shc deletion permits the self-renewal of naive mESCs in the absence of conventional growth factors, by increasing their responsiveness to leukemia inhibitory factor (LIF). We discovered that loss of p66Shc enhanced not only increased ERK phosphorylation but also increased phosphorylation of Signal transducer and activator of transcription in mESCs, which may be acting to stabilize their naive-like identity, desensitizing them to ERK-mediated differentiation cues. These findings identify p66Shc as a regulator of both LIF-mediated ESC pluripotency and of signaling cascades that initiate postimplantation embryonic development and ESC commitment.
Collapse
Affiliation(s)
- Andrew M Powell
- Department of Biology, The University of Western Ontario, London, Canada
| | - Nicole A Edwards
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | - Hailey Hunter
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | - Patti Kiser
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | - Andrew J Watson
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
- Genetics and Development Division, The Children's Health Research Institute, Lawson Health Research Institute, London, Canada
| | - Robert C Cumming
- Department of Biology, The University of Western Ontario, London, Canada
- Genetics and Development Division, The Children's Health Research Institute, Lawson Health Research Institute, London, Canada
| | - Dean H Betts
- Department of Biology, The University of Western Ontario, London, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
- Genetics and Development Division, The Children's Health Research Institute, Lawson Health Research Institute, London, Canada
| |
Collapse
|
2
|
Overexpression of Tfap2a in Mouse Oocytes Impaired Spindle and Chromosome Organization. Int J Mol Sci 2022; 23:ijms232214376. [PMID: 36430853 PMCID: PMC9699359 DOI: 10.3390/ijms232214376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Transcription factor AP-2-alpha (Tfap2a) is an important sequence-specific DNA-binding protein that can regulate the transcription of multiple genes by collaborating with inducible viral and cellular enhancer elements. In this experiment, the expression, localization, and functions of Tfap2a were investigated in mouse oocytes during maturation. Overexpression via microinjection of Myc-Tfap2a mRNA into the ooplasm, immunofluorescence, and immunoblotting were used to study the role of Tfap2a in mouse oocyte meiosis. According to our results, Tfap2a plays a vital role in mouse oocyte maturation. Levels of Tfap2a in GV oocytes of mice suffering from type 2 diabetes increased considerably. Tfap2a was distributed in both the ooplasm and nucleoplasm, and its level gradually increased as meiosis resumption progressed. The overexpression of Tfap2a loosened the chromatin, accelerated germinal vesicle breakdown (GVBD), and blocked the first polar body extrusion 14 h after maturation in vitro. The width of the metaphase plate at metaphase I stage increased, and the spindle and chromosome organization at metaphase II stage were disrupted in the oocytes by overexpressed Tfap2a. Furthermore, Tfap2a overexpression dramatically boosted the expression of p300 in mouse GV oocytes. Additionally, the levels of pan histone lysine acetylation (Pan Kac), histone H4 lysine 12 acetylation (H4K12ac), and H4 lysine 16 acetylation (H4K16ac), as well as pan histone lysine lactylation (Pan Kla), histone H3 lysine18 lactylation (H3K18la), and H4 lysine12 lactylation (H4K12la), were all increased in GV oocytes after Tfap2a overexpression. Collectively, Tfap2a overexpression upregulated p300, increased the levels of histone acetylation and lactylation, impeded spindle assembly and chromosome alignment, and ultimately hindered mouse oocyte meiosis.
Collapse
|
3
|
Dual role of an essential HtrA2/Omi protease in the human malaria parasite: Maintenance of mitochondrial homeostasis and induction of apoptosis-like cell death under cellular stress. PLoS Pathog 2022; 18:e1010932. [DOI: 10.1371/journal.ppat.1010932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/09/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Members of the HtrA family of serine proteases are known to play roles in mitochondrial homeostasis as well as in programmed cell death. Mitochondrial homeostasis and metabolism are crucial for the survival and propagation of the malaria parasite within the host. Here we have functionally characterized a Plasmodium falciparum HtrA2 (PfHtrA2) protein, which harbours trypsin-like protease activity that can be inhibited by its specific inhibitor, ucf-101. A transgenic parasite line was generated, using the HA-glmS C-terminal tagging approach, for localization as well as for inducible knock-down of PfHtrA2. The PfHtrA2 was localized in the parasite mitochondrion during the asexual life cycle. Genetic ablation of PfHtrA2 caused significant parasite growth inhibition, decreased replication of mtDNA, increased mitochondrial ROS production, caused mitochondrial fission/fragmentation, and hindered parasite development. However, the ucf-101 treatment did not affect the parasite growth, suggesting the non-protease/chaperone role of PfHtrA2 in the parasite. Under cellular stress conditions, inhibition of PfHtrA2 by ucf-101 reduced activation of the caspase-like protease as well as parasite cell death, suggesting the involvement of protease activity of PfHtrA2 in apoptosis-like cell death in the parasite. Under these cellular stress conditions, the PfHtrA2 gets processed but remains localized in the mitochondrion, suggesting that it acts within the mitochondrion by cleaving intra-mitochondrial substrate(s). This was further supported by trans-expression of PfHtrA2 protease domain in the parasite cytosol, which was unable to induce any cell death in the parasite. Overall, we show the specific roles of PfHtrA2 in maintaining mitochondrial homeostasis as well as in regulating stress-induced cell death.
Collapse
|
4
|
Mousavi S, Khazeei Tabari MA, Bagheri A, Samieefar N, Shaterian N, Kelishadi R. The Role of p66Shc in Diabetes: A Comprehensive Review from Bench to Bedside. J Diabetes Res 2022; 2022:7703520. [PMID: 36465704 PMCID: PMC9715346 DOI: 10.1155/2022/7703520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
It is well-documented that diabetes is an inflammatory and oxidative disease, with an escalating global burden. Still, there is no definite treatment for diabetes or even prevention of its harmful complications. Therefore, understanding the molecular pathways associated with diabetes might help in finding a solution. p66Shc is a member of Shc family proteins, and it is considered as an oxidative stress sensor and regulator in cells. There are inconsistent data about the role of p66Shc in inducing diabetes, but accumulating evidence supports its role in the pathogenesis of diabetes-related complications, including macro and microangiopathies. There is growing hope that by understanding and targeting molecular pathways involved in this network, prevention of diabetes or its complications would be achievable. This review provides an overview about the role of p66Shc in the development of diabetes and its complications.
Collapse
Affiliation(s)
- SeyedehFatemeh Mousavi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Mazandaran, Iran
- USERN Office, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Alireza Bagheri
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Noosha Samieefar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negar Shaterian
- Student Research Committee, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- USERN Office, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- USERN Office, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Zhang H, Pang X, Yu H, Zhou H. Genistein suppresses ox-LDL-elicited oxidative stress and senescence in HUVECs through the SIRT1-p66shc-Foxo3a pathways. J Biochem Mol Toxicol 2021; 36:e22939. [PMID: 34719845 DOI: 10.1002/jbt.22939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/09/2021] [Accepted: 10/18/2021] [Indexed: 01/10/2023]
Abstract
The anti-senescence function of genistein is related to inhibiting oxidative stress, however, the mechanism has not been clarified. The present study aimed to explore the effects of genistein on oxidized low-density lipoprotein (ox-LDL)-induced endothelial senescence and the role of the sirtuin-1 (SIRT1)-66-kDa Src homology 2 domain-containing protein (p66Shc)-forkhead box protein O3 (Foxo3a) pathways in the process. In this paper, human umbilical vein endothelial cells were pretreated with 1000 nM genistein for 30 min and then incubated with 50 mg/L ox-LDL for another 12 h; meanwhile, the functions of adenovirus-mediated overexpression of p66shc and small interfering RNA-mediated silencing of SIRT1 were investigated. Results showed that genistein pretreatment alleviated ox-LDL-induced mitochondrial reactive oxygen species, the levels of oxidatively modified DNA (8-OHdG) and pai-1, and the activity of SA-β-gal, which was associated with mitigating p66shc. Further studies indicated the inhibitory effect of genistein on p66shc was correlated with suppressing the acetylation and phosphorylation of p66shc, and ameliorating its mitochondrial translocation by activating SIRT1. Moreover, the inactivated p66shc could enhance the activity of Foxo3a via restraining the phosphorylation and triggering nucleus accumulation. The study demonstrates genistein could prevent ox-LDL-induced mitochondrial oxidative stress and senescence through the SIRT1-p66shc-Foxo3a pathways.
Collapse
Affiliation(s)
- Huaping Zhang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Xuefen Pang
- National Key Disciplines, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Haixia Yu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Hui Zhou
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
6
|
Hirschhäuser C, Sydykov A, Wolf A, Esfandiary A, Bornbaum J, Kutsche HS, Boengler K, Sommer N, Schreckenberg R, Schlüter KD, Weissmann N, Schermuly R, Schulz R. Lack of Contribution of p66shc to Pressure Overload-Induced Right Heart Hypertrophy. Int J Mol Sci 2020; 21:ijms21249339. [PMID: 33302436 PMCID: PMC7762598 DOI: 10.3390/ijms21249339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022] Open
Abstract
The leading cause of death in pulmonary arterial hypertension (PAH) is right ventricular (RV) failure (RVF). Reactive oxygen species (ROS) have been suggested to play a role in the development of RV hypertrophy (RVH) and the transition to RVF. The hydrogen peroxide-generating protein p66shc has been associated with left ventricular (LV) hypertrophy but its role in RVH is unclear. The purpose of this study was to determine whether genetic deletion of p66shc affects the development and/or progression of RVH and RVF in the pulmonary artery banding (PAB) model of RV pressure overload. The impact of p66shc on mitochondrial ROS formation, RV cardiomyocyte function, as well as on RV morphology and function were studied three weeks after PAB or sham operation. PAB in wild type mice did not affect mitochondrial ROS production or RV cardiomyocyte function, but induced RVH and impaired cardiac function. Genetic deletion of p66shc did also not alter basal mitochondrial ROS production or RV cardiomyocyte function, but impaired RV cardiomyocyte shortening was observed following PAB. The development of RVH and RVF following PAB was not affected by p66shc deletion. Thus, our data suggest that p66shc-derived ROS are not involved in the development and progression of RVH or RVF in PAH.
Collapse
Affiliation(s)
- Christine Hirschhäuser
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (A.W.); (J.B.); (H.S.K.); (K.B.); (R.S.); (K.-D.S.); (R.S.)
- Correspondence: ; Tel.: +49-641-99-47252
| | - Akylbek Sydykov
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.E.); (N.S.); (N.W.); (R.S.)
| | - Annemarie Wolf
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (A.W.); (J.B.); (H.S.K.); (K.B.); (R.S.); (K.-D.S.); (R.S.)
| | - Azadeh Esfandiary
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.E.); (N.S.); (N.W.); (R.S.)
| | - Julia Bornbaum
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (A.W.); (J.B.); (H.S.K.); (K.B.); (R.S.); (K.-D.S.); (R.S.)
| | - Hanna Sarah Kutsche
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (A.W.); (J.B.); (H.S.K.); (K.B.); (R.S.); (K.-D.S.); (R.S.)
| | - Kerstin Boengler
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (A.W.); (J.B.); (H.S.K.); (K.B.); (R.S.); (K.-D.S.); (R.S.)
| | - Natascha Sommer
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.E.); (N.S.); (N.W.); (R.S.)
| | - Rolf Schreckenberg
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (A.W.); (J.B.); (H.S.K.); (K.B.); (R.S.); (K.-D.S.); (R.S.)
| | - Klaus-Dieter Schlüter
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (A.W.); (J.B.); (H.S.K.); (K.B.); (R.S.); (K.-D.S.); (R.S.)
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.E.); (N.S.); (N.W.); (R.S.)
| | - Ralph Schermuly
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.E.); (N.S.); (N.W.); (R.S.)
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (A.W.); (J.B.); (H.S.K.); (K.B.); (R.S.); (K.-D.S.); (R.S.)
| |
Collapse
|
7
|
Oleic Acid Counters Impaired Blastocyst Development Induced by Palmitic Acid During Mouse Preimplantation Development: Understanding Obesity-Related Declines in Fertility. Reprod Sci 2020; 27:2038-2051. [PMID: 32542540 PMCID: PMC7522107 DOI: 10.1007/s43032-020-00223-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
Abstract
Obesity is associated with altered fatty acid profiles, reduced fertility, and assisted reproductive technology (ART) success. The effects of palmitic acid (PA), oleic acid (OA), and their combination on mouse preimplantation development, endoplasmic reticulum (ER) stress pathway gene expression, lipid droplet formation, and mitochondrial reactive oxygen species (ROS) were characterized. Two-cell stage mouse embryos collected from superovulated and mated CD1 females were placed into culture with KSOMaa medium, or PA alone or in combination with OA for 46 h. PA significantly reduced blastocyst development in a concentration-dependent manner, which was prevented by co-treatment with OA. PA and OA levels in mouse reproductive tracts were assessed by liquid chromatography coupled to mass spectrometry (LC-MS). LC-MS indicated higher concentrations of PA in the mouse oviduct than the uterus. Transcript analysis revealed that PA alone groups had increased ER stress pathway (ATF3, CHOP, and XBP1 splicing) mRNAs, which was alleviated by OA co-treatment. OA co-treatment significantly increased lipid droplet accumulation and significantly decreased mitochondrial ROS from PA treatment alone. PA treatment for only 24 h significantly reduced its impact on blastocyst development from the 2-cell stage. Thus, PA affects ER stress pathway gene expression, lipid droplet accumulation, and mitochondrial ROS in treated preimplantation embryos. These mechanisms may serve to offset free fatty acid exposure effects on preimplantation development, but their protective ability may be overwhelmed by elevated PA.
Collapse
|
8
|
Sánchez-Ajofrín I, Iniesta-Cuerda M, Sánchez-Calabuig MJ, Peris-Frau P, Martín-Maestro A, Ortiz JA, Del Rocío Fernández-Santos M, Garde JJ, Gutiérrez-Adán A, Soler AJ. Oxygen tension during in vitro oocyte maturation and fertilization affects embryo quality in sheep and deer. Anim Reprod Sci 2020; 213:106279. [PMID: 31987329 DOI: 10.1016/j.anireprosci.2020.106279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 01/13/2023]
Abstract
Incubation gas atmosphere affects the development of in vitro produced embryos. In this study, there was examination of effects of two different oxygen (O2) tensions (5 % and 21 %) during in vitro maturation (M5 and M21) and/or fertilization (F5 and F21) on embryo production and quality in deer and sheep. There was assessment of the percentage of embryos with cell cleavage occurring, percentage that developed to the blastocyst stage, and analysis of the relative abundance of mRNA transcript for genes important for development to the blastocyst stage. The O2 tension treatment did not affect (P > 0.05) percentage cleavage or blastocyst development in either species. In sheep, there was a greater abundance of SHC1, GPX1, TP53, BAX and NRF1 mRNA transcript (P < 0.05) in M21 F5-derived embryos. In deer, there was a greater abundance of SOD2 mRNA transcript (P < 0.05) when oocytes had been matured under relatively lesser O2, regardless of the tension used during fertilization. There was a lesser abundance of SOX2 mRNA transcript (P < 0.05) in the M5F21 compared to the other three treatment groups. The AKR1B1 mRNA transcript was in greater abundance (P < 0.05) in M21 F21 as compared to M21 F5 and M5F21 group, and there was a greater abundance PLAC8 mRNA transcript (P < 0.05) in M21 F21, as compared to all other treatment groups. In conclusion, while O2 tension had no effect on developmental rates it did affect the relative abundance of mRNA transcript of multiple genes related to important cell functions during development.
Collapse
|
9
|
Oke SL, Sohi G, Hardy DB. Perinatal protein restriction with postnatal catch-up growth leads to elevated p66Shc and mitochondrial dysfunction in the adult rat liver. Reproduction 2020; 159:27-39. [PMID: 31689235 PMCID: PMC6933810 DOI: 10.1530/rep-19-0188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
Epidemiological data suggest an inverse relationship between birth weight and long-term metabolic deficits, which is exacerbated by postnatal catch-up growth. We have previously demonstrated that rat offspring subject to maternal protein restriction (MPR) followed by catch-up growth exhibit impaired hepatic function and ER stress. Given that mitochondrial dysfunction is associated with various metabolic pathologies, we hypothesized that altered expression of p66Shc, a gatekeeper of oxidative stress and mitochondrial function, contributes to the hepatic defects observed in MPR offspring. To test this hypothesis, pregnant Wistar rats were fed a control (20% protein) diet or an isocaloric low protein (8%; LP) diet throughout gestation. Offspring born to control dams received a control diet in postnatal life, while MPR offspring remained on a LP diet (LP1) or received a control diet post weaning (LP2) or at birth (LP3). At four months, LP2 offspring exhibited increased protein abundance of both p66Shc and the cis-trans isomerase PIN1. This was further associated with aberrant markers of oxidative stress (i.e. elevated 4-HNE, SOD1 and SOD2, decreased catalase) and aerobic metabolism (i.e., increased phospho-PDH and LDHa, decreased complex II, citrate synthase and TFAM). We further demonstrated that tunicamycin-induced ER stress in HepG2 cells led to increased p66Shc protein abundance, suggesting that ER stress may underlie the programmed effects observed in vivo. In summary, because these defects are exclusive to adult LP2 offspring, it is possible that a low protein diet during perinatal life, a period of liver plasticity, followed by catch-up growth is detrimental to long-term mitochondrial function.
Collapse
Affiliation(s)
- Shelby L Oke
- The Children’s Health Research Institute, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, London, Ontario, Canada
- Department of Physiology and Pharmacology, London, Ontario, Canada
- The University of Western Ontario, London, Ontario, Canada
| | - Gurjeev Sohi
- Department of Physiology and Pharmacology, London, Ontario, Canada
- The University of Western Ontario, London, Ontario, Canada
| | - Daniel B Hardy
- The Children’s Health Research Institute, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, London, Ontario, Canada
- Department of Physiology and Pharmacology, London, Ontario, Canada
- The University of Western Ontario, London, Ontario, Canada
- Correspondence should be addressed to D B Hardy;
| |
Collapse
|
10
|
Su XJ, Huang L, Qu Y, Mu D. Progress in research on the role of Omi/HtrA2 in neurological diseases. Rev Neurosci 2019; 30:279-287. [PMID: 30205651 DOI: 10.1515/revneuro-2018-0004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023]
Abstract
Omi/HtrA2 is a serine protease present in the mitochondrial space. When stimulated by external signals, HtrA2 is released into the mitochondrial matrix where it regulates cell death through its interaction with apoptotic and autophagic signaling pathways. Omi/HtrA2 is closely related to the pathogenesis of neurological diseases, such as neurodegeneration and hypoxic ischemic brain damage. Here, we summarize the biological characteristics of Omi/HtrA2 and its role in neurological diseases, which will provide new hints in developing Omi/HtrA2 as a therapeutic target for neurological diseases.
Collapse
Affiliation(s)
- Xiao Juan Su
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| | - Lingyi Huang
- West China College of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| |
Collapse
|
11
|
p66Shc activation promotes increased oxidative phosphorylation and renders CNS cells more vulnerable to amyloid beta toxicity. Sci Rep 2018; 8:17081. [PMID: 30459314 PMCID: PMC6244282 DOI: 10.1038/s41598-018-35114-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/28/2018] [Indexed: 12/26/2022] Open
Abstract
A key pathological feature of Alzheimer's disease (AD) is the accumulation of the neurotoxic amyloid beta (Aβ) peptide within the brains of affected individuals. Previous studies have shown that neuronal cells selected for resistance to Aβ toxicity display a metabolic shift from mitochondrial-dependent oxidative phosphorylation (OXPHOS) to aerobic glycolysis to meet their energy needs. The Src homology/collagen (Shc) adaptor protein p66Shc is a key regulator of mitochondrial function, ROS production and aging. Moreover, increased expression and activation of p66Shc promotes a shift in the cellular metabolic state from aerobic glycolysis to OXPHOS in cancer cells. Here we evaluated the hypothesis that activation of p66Shc in CNS cells promotes both increased OXPHOS and enhanced sensitivity to Aβ toxicity. The effect of altered p66Shc expression on metabolic activity was assessed in rodent HT22 and B12 cell lines of neuronal and glial origin respectively. Overexpression of p66Shc repressed glycolytic enzyme expression and increased both mitochondrial electron transport chain activity and ROS levels in HT22 cells. The opposite effect was observed when endogenous p66Shc expression was knocked down in B12 cells. Moreover, p66Shc activation in both cell lines increased their sensitivity to Aβ toxicity. Our findings indicate that expression and activation of p66Shc renders CNS cells more sensitive to Aβ toxicity by promoting mitochondrial OXPHOS and ROS production while repressing aerobic glycolysis. Thus, p66Shc may represent a potential therapeutically relevant target for the treatment of AD.
Collapse
|
12
|
Edwards NA, Watson AJ, Betts DH. Knockdown of p66Shc Alters Lineage-Associated Transcription Factor Expression in Mouse Blastocysts. Stem Cells Dev 2018; 27:1479-1493. [PMID: 30091687 PMCID: PMC6209429 DOI: 10.1089/scd.2018.0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/08/2018] [Indexed: 11/12/2022] Open
Abstract
The p66Shc adaptor protein regulates apoptosis and senescence during early mammalian development. However, p66Shc expression during mouse preimplantation development is upregulated at the blastocyst stage. Our objective was to determine the biological function of p66Shc during mouse blastocyst development. In this study, we demonstrate that a reduced p66Shc transcript abundance following its short interfering RNA (siRNA)-mediated knockdown alters the spatiotemporal expression of cell lineage-associated transcription factors in the inner cell mass (ICM) of the mouse blastocyst. P66Shc knockdown blastocysts restrict OCT3/4 earlier to the inner cells of the early blastocyst and have ICMs containing significantly higher OCT3/4 levels, more GATA4-positive cells, and fewer NANOG-positive cells. P66Shc knockdown blastocysts also show a significantly reduced ability to form ICM-derived outgrowths when explanted in vitro. The increase in cells expressing primitive endoderm markers may be due to increased ERK1/2 activity, as it is reversed by ERK1/2 inhibition. These results suggest that p66Shc may regulate the relative abundance and timing of lineage-associated transcription factor expression in the blastocyst ICM.
Collapse
Affiliation(s)
- Nicole A. Edwards
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Andrew J. Watson
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
- Department of Obstetrics and Gynecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
- The Children's Health Research Institute (CHRI), Lawson Health Research Institute, London, Canada
| | - Dean H. Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
- Department of Obstetrics and Gynecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
- The Children's Health Research Institute (CHRI), Lawson Health Research Institute, London, Canada
| |
Collapse
|
13
|
Calder MD, Edwards NA, Betts DH, Watson AJ. Treatment with AICAR inhibits blastocyst development, trophectoderm differentiation and tight junction formation and function in mice. Mol Hum Reprod 2018; 23:771-785. [PMID: 28962017 DOI: 10.1093/molehr/gax050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 09/06/2017] [Indexed: 12/28/2022] Open
Abstract
STUDY QUESTION What is the impact of adenosine monophosphate-activated protein kinase (AMPK) activation on blastocyst formation, gene expression, and tight junction formation and function? SUMMARY ANSWER AMPK activity must be tightly controlled for normal preimplantation development and blastocyst formation to occur. WHAT IS KNOWN ALREADY AMPK isoforms are detectable in oocytes, cumulus cells and preimplantation embryos. Cultured embryos are subject to many stresses that can activate AMPK. STUDY DESIGN, SIZE, DURATION Two primary experiments were carried out to determine the effect of AICAR treatment on embryo development and maintenance of the blastocoel cavity. Embryos were recovered from superovulated mice. First, 2-cell embryos were treated with a concentration series (0-2000 μM) of AICAR for 48 h until blastocyst formation would normally occur. In the second experiment, expanded mouse blastocysts were treated for 9 h with 1000 μM AICAR. PARTICIPANTS/MATERIALS, SETTING, METHODS Outcomes measured included development to the blastocyst stage, cell number, blastocyst volume, AMPK phosphorylation, Cdx2 and blastocyst formation gene family expression (mRNAs and protein measured using quantitative RT-PCR, immunoblotting, immunofluorescence), tight junction function (FITC dextran dye uptake assay), and blastocyst ATP levels. The reversibility of AICAR treatment was assessed using Compound C (CC), a well-known inhibitor of AMPK, alone or in combination with AICAR. MAIN RESULTS AND THE ROLE OF CHANCE Prolonged treatment with AICAR from the 2-cell stage onward decreases blastocyst formation, reduces total cell number, embryo diameter, leads to loss of trophectoderm cell contacts and membrane zona occludens-1 staining, and increased nuclear condensation. Treatment with CC alone inhibited blastocyst development only at concentrations that are higher than normally used. AICAR treated embryos displayed altered mRNA and protein levels of blastocyst formation genes. Treatment of blastocysts with AICAR for 9 h induced blastocyst collapse, altered blastocyst formation gene expression, increased tight junction permeability and decreased CDX2. Treated blastocysts displayed three phenotypes: those that were unaffected by treatment, those in which treatment was reversible, and those in which effects were irreversible. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION Our study investigates the effects of AICAR treatment on early development. While AICAR does increase AMPK activity and this is demonstrated in our study, AICAR is not a natural regulator of AMPK activity and some outcomes may result from off target non-AMPK AICAR regulated events. To support our results, blastocyst developmental outcomes were confirmed with two other well-known small molecule activators of AMPK, metformin and phenformin. WIDER IMPLICATIONS OF THE FINDINGS Metformin, an AMPK activator, is widely used to treat type II diabetes and polycystic ovarian disorder (PCOS). Our results indicate that early embryonic AMPK levels must be tightly regulated to ensure normal preimplantation development. Thus, use of metformin should be carefully considered during preimplantation and early post-embryo transfer phases of fertility treatment cycles. STUDY FUNDING AND COMPETING INTEREST(S) Canadian Institutes of Health Research (CIHR) operating funds. There are no competing interests.
Collapse
Affiliation(s)
- Michele D Calder
- Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Obstetrics and Gynaecology, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Nicole A Edwards
- Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Dean H Betts
- Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Obstetrics and Gynaecology, Schulich School of Medicine, Western University, London, Ontario, Canada.,Children's Health Research Institute (CHRI), Lawson Health Research Institute (LHRI), London, Ontario, Canada
| | - Andrew J Watson
- Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Obstetrics and Gynaecology, Schulich School of Medicine, Western University, London, Ontario, Canada.,Children's Health Research Institute (CHRI), Lawson Health Research Institute (LHRI), London, Ontario, Canada
| |
Collapse
|