1
|
Fang K, Yao X, Tian Y, He Y, Lin Y, Lei W, Peng S, Pan G, Shi H, Zhang D, Lin H. Ubiquitin-specific protease UBP14 stabilizes HY5 by deubiquitination to promote photomorphogenesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2024; 121:e2404883121. [PMID: 39102535 PMCID: PMC11331110 DOI: 10.1073/pnas.2404883121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/12/2024] [Indexed: 08/07/2024] Open
Abstract
Transcription factor ELONGATED HYPOCOTYL5 (HY5) is the central hub for seedling photomorphogenesis. E3 ubiquitin (Ub) ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) inhibits HY5 protein accumulation through ubiquitination. However, the process of HY5 deubiquitination, which antagonizes E3 ligase-mediated ubiquitination to maintain HY5 homeostasis has never been studied. Here, we identified that Arabidopsis thaliana deubiquitinating enzyme, Ub-SPECIFIC PROTEASE 14 (UBP14) physically interacts with HY5 and enhances its protein stability by deubiquitination. The da3-1 mutant lacking UBP14 function exhibited a long hypocotyl phenotype, and UBP14 deficiency led to the failure of rapid accumulation of HY5 during dark to light. In addition, UBP14 preferred to stabilize nonphosphorylated form of HY5 which is more readily bound to downstream target genes. HY5 promoted the expression and protein accumulation of UBP14 for positive feedback to facilitate photomorphogenesis. Our findings thus established a mechanism by which UBP14 stabilizes HY5 protein by deubiquitination to promote photomorphogenesis in A. thaliana.
Collapse
Affiliation(s)
- Ke Fang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Xiuhong Yao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin644000, China
| | - Yu’ang Tian
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Yang He
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Yingru Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Wei Lei
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Sihan Peng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Guohui Pan
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Haoyu Shi
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| |
Collapse
|
2
|
Parajuli A, Borphukan B, Sanguinet KA, Zhang Z. In silico analysis identified bZIP transcription factors genes responsive to abiotic stress in Alfalfa (Medicago sativa L.). BMC Genomics 2024; 25:497. [PMID: 38773372 PMCID: PMC11106943 DOI: 10.1186/s12864-024-10277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/02/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Alfalfa (Medicago sativa L.) is the most cultivated forage legume around the world. Under a variety of growing conditions, forage yield in alfalfa is stymied by biotic and abiotic stresses including heat, salt, drought, and disease. Given the sessile nature of plants, they use strategies including, but not limited to, differential gene expression to respond to environmental cues. Transcription factors control the expression of genes that contribute to or enable tolerance and survival during periods of stress. Basic-leucine zipper (bZIP) transcription factors have been demonstrated to play a critical role in regulating plant growth and development as well as mediate the responses to abiotic stress in several species, including Arabidopsis thaliana, Oryza sativa, Lotus japonicus and Medicago truncatula. However, there is little information about bZIP transcription factors in cultivated alfalfa. RESULT In the present study, 237 bZIP genes were identified in alfalfa from publicly available sequencing data. Multiple sequence alignments showed the presence of intact bZIP motifs in the identified sequences. Based on previous phylogenetic analyses in A. thaliana, alfalfa bZIPs were similarly divided and fell into 10 groups. The physico-chemical properties, motif analysis and phylogenetic study of the alfalfa bZIPs revealed high specificity within groups. The differential expression of alfalfa bZIPs in a suite of tissues indicates that bZIP genes are specifically expressed at different developmental stages in alfalfa. Similarly, expression analysis in response to ABA, cold, drought and salt stresses, indicates that a subset of bZIP genes are also differentially expressed and likely play a role in abiotic stress signaling and/or tolerance. RT-qPCR analysis on selected genes further verified these differential expression patterns. CONCLUSIONS Taken together, this work provides a framework for the future study of bZIPs in alfalfa and presents candidate bZIPs involved in stress-response signaling.
Collapse
Affiliation(s)
- Atit Parajuli
- Department of Crop and Soil Science, Washington State University, 99164, Pullman, WA, USA
| | - Bhabesh Borphukan
- Department of Crop and Soil Science, Washington State University, 99164, Pullman, WA, USA
| | - Karen A Sanguinet
- Department of Crop and Soil Science, Washington State University, 99164, Pullman, WA, USA.
| | - Zhiwu Zhang
- Department of Crop and Soil Science, Washington State University, 99164, Pullman, WA, USA.
| |
Collapse
|
3
|
Wang X, Wei J, Wu J, Shi B, Wang P, Alabd A, Wang D, Gao Y, Ni J, Bai S, Teng Y. Transcription factors BZR2/MYC2 modulate brassinosteroid and jasmonic acid crosstalk during pear dormancy. PLANT PHYSIOLOGY 2024; 194:1794-1814. [PMID: 38036294 DOI: 10.1093/plphys/kiad633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023]
Abstract
Bud dormancy is an important physiological process during winter. Its release requires a certain period of chilling. In pear (Pyrus pyrifolia), the abscisic acid (ABA)-induced expression of DORMANCY-ASSOCIATED MADS-box (DAM) genes represses bud break, whereas exogenous gibberellin (GA) promotes dormancy release. However, with the exception of ABA and GA, the regulatory effects of phytohormones on dormancy remain largely uncharacterized. In this study, we confirmed brassinosteroids (BRs) and jasmonic acid (JA) contribute to pear bud dormancy release. If chilling accumulation is insufficient, both 24-epibrassinolide (EBR) and methyl jasmonic acid (MeJA) can promote pear bud break, implying that they positively regulate dormancy release. BRASSINAZOLE RESISTANT 2 (BZR2), which is a BR-responsive transcription factor, inhibited PpyDAM3 expression and accelerated pear bud break. The transient overexpression of PpyBZR2 increased endogenous GA, JA, and JA-Ile levels. In addition, the direct interaction between PpyBZR2 and MYELOCYTOMATOSIS 2 (PpyMYC2) enhanced the PpyMYC2-mediated activation of Gibberellin 20-oxidase genes PpyGA20OX1L1 and PpyGA20OX2L2 transcription, thereby increasing GA3 contents and accelerating pear bud dormancy release. Interestingly, treatment with 5 μm MeJA increased the bud break rate, while also enhancing PpyMYC2-activated PpyGA20OX expression and increasing GA3,4 contents. The 100 μm MeJA treatment decreased the PpyMYC2-mediated activation of the PpyGA20OX1L1 and PpyGA20OX2L2 promoters and suppressed the inhibitory effect of PpyBZR2 on PpyDAM3 transcription, ultimately inhibiting pear bud break. In summary, our data provide insights into the crosstalk between the BR and JA signaling pathways that regulate the BZR2/MYC2-mediated pathway in the pear dormancy release process.
Collapse
Affiliation(s)
- Xuxu Wang
- Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, PR China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, PR China
| | - Jia Wei
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, PR China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, PR China
| | - Jiahao Wu
- Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, PR China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, PR China
| | - Baojing Shi
- Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, PR China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, PR China
| | - Peihui Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, PR China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, PR China
| | - Ahmed Alabd
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, PR China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, PR China
- Department of Pomology, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Duanni Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, PR China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, PR China
| | - Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, PR China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, PR China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, PR China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, PR China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, PR China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, PR China
| | - Yuanwen Teng
- Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, PR China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, PR China
| |
Collapse
|
4
|
Tripathy MK, Roux SJ. Role of calcium in regulating key steps in phytochrome-induced signaling pathways. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1875-1879. [PMID: 38222279 PMCID: PMC10784251 DOI: 10.1007/s12298-023-01403-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/09/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024]
Abstract
A major focus in the field of signal transduction pathways in plants has been the role of calcium ions in mediating diverse sensory responses. Among these responses, those initiated by the red-light activated photoreceptor, phytochrome have received increasing attention in recent years. Although not all phytochrome responses are mediated by calcium, many of them are, and a number of recent publications have clarified just how calcium helps to transduce some of the transcriptomic changes induced by phytochrome. Many of these publications reference Dr. Sopory's laboratory as an important contributor to the initial data documenting that an early step in the signaling pathways induced by phytochrome was an increased uptake of calcium into cells. This review summarizes the strong evidence that calcium-dependent steps play a major role in transducing phytochrome-initiated responses, and it updates the latest reports on specific steps in some phytochrome responses that are dependent on the mediation of calcium-binding protein kinases and calmodulin.
Collapse
Affiliation(s)
- Manas K. Tripathy
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Stanley J. Roux
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
5
|
Wang J, Wang Y, Wu X, Wang B, Lu Z, Zhong L, Li G, Wu X. Insight into the bZIP gene family in Lagenaria siceraria: Genome and transcriptome analysis to understand gene diversification in Cucurbitaceae and the roles of LsbZIP gene expression and function under cold stress. FRONTIERS IN PLANT SCIENCE 2023; 13:1128007. [PMID: 36874919 PMCID: PMC9981963 DOI: 10.3389/fpls.2022.1128007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
The basic leucine zipper (bZIP) as a well-known transcription factor family, figures prominently in diverse biological and developmental processes and response to abiotic/biotic stresses. However, no knowledge of the bZIP family is available for the important edible Cucurbitaceae crop bottle gourd. Herein, we identified 65 putative LsbZIP genes and characterized their gene structure, phylogenetic and orthologous relationships, gene expression profiles in different tissues and cultivars, and responsive genes under cold stress. The phylogenetic tree of 16 released Cucurbitaceae plant genomes revealed the evolutionary convergence and divergence of bZIP family. Based on the specific domains, LsbZIP family were classified into 12 clades (A-K, S) with similar motifs and exon-intron distribution. 65 LsbZIP genes have undergone 19 segmental and two tandem duplication events with purifying selection. The expression profiling of LsbZIP genes showed tissue-specific but no cultivar-specific pattern. The cold stress-responsive candidate LsbZIP genes were analyzed and validated by RNA-Seq and RT-PCR, providing new insights of transcriptional regulation of bZIP family genes in bottle gourd and their potential functions in cold-tolerant variety breeding.
Collapse
Affiliation(s)
- Jian Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ying Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xinyi Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Baogen Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhongfu Lu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liping Zhong
- College of Horticulture Science, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
| | - Guojing Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaohua Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
6
|
Volná A, Bartas M, Nezval J, Pech R, Pečinka P, Špunda V, Červeň J. Beyond the Primary Structure of Nucleic Acids: Potential Roles of Epigenetics and Noncanonical Structures in the Regulations of Plant Growth and Stress Responses. Methods Mol Biol 2023; 2642:331-361. [PMID: 36944887 DOI: 10.1007/978-1-0716-3044-0_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Epigenetics deals with changes in gene expression that are not caused by modifications in the primary sequence of nucleic acids. These changes beyond primary structures of nucleic acids not only include DNA/RNA methylation, but also other reversible conversions, together with histone modifications or RNA interference. In addition, under particular conditions (such as specific ion concentrations or protein-induced stabilization), the right-handed double-stranded DNA helix (B-DNA) can form noncanonical structures commonly described as "non-B DNA" structures. These structures comprise, for example, cruciforms, i-motifs, triplexes, and G-quadruplexes. Their formation often leads to significant differences in replication and transcription rates. Noncanonical RNA structures have also been documented to play important roles in translation regulation and the biology of noncoding RNAs. In human and animal studies, the frequency and dynamics of noncanonical DNA and RNA structures are intensively investigated, especially in the field of cancer research and neurodegenerative diseases. In contrast, noncanonical DNA and RNA structures in plants have been on the fringes of interest for a long time and only a few studies deal with their formation, regulation, and physiological importance for plant stress responses. Herein, we present a review focused on the main fields of epigenetics in plants and their possible roles in stress responses and signaling, with special attention dedicated to noncanonical DNA and RNA structures.
Collapse
Affiliation(s)
- Adriana Volná
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jakub Nezval
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Radomír Pech
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Petr Pečinka
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Jiří Červeň
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
7
|
Srivastava M, Srivastava AK, Roy D, Mansi M, Gough C, Bhagat PK, Zhang C, Sadanandom A. The conjugation of SUMO to the transcription factor MYC2 functions in blue light-mediated seedling development in Arabidopsis. THE PLANT CELL 2022; 34:2892-2906. [PMID: 35567527 PMCID: PMC9338799 DOI: 10.1093/plcell/koac142] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 05/04/2022] [Indexed: 05/26/2023]
Abstract
A key function of photoreceptor signaling is the coordinated regulation of a large number of genes to optimize plant growth and development. The basic helix loop helix (bHLH) transcription factor MYC2 is crucial for regulating gene expression in Arabidopsis thaliana during development in blue light. Here we demonstrate that blue light induces the SUMOylation of MYC2. Non-SUMOylatable MYC2 is less effective in suppressing blue light-mediated photomorphogenesis than wild-type (WT) MYC2. MYC2 interacts physically with the SUMO proteases SUMO PROTEASE RELATED TO FERTILITY1 (SPF1) and SPF2. Blue light exposure promotes the degradation of SPF1 and SPF2 and enhances the SUMOylation of MYC2. Phenotypic analysis revealed that SPF1/SPF2 function redundantly as positive regulators of blue light-mediated photomorphogenesis. Our data demonstrate that SUMO conjugation does not affect the dimerization of MYC transcription factors but modulates the interaction of MYC2 with its cognate DNA cis-element and with the ubiquitin ligase Plant U-box 10 (PUB10). Finally, we show that non-SUMOylatable MYC2 is less stable and interacts more strongly with PUB10 than the WT. Taken together, we conclude that SUMO functions as a counterpoint to the ubiquitin-mediated degradation of MYC2, thereby enhancing its function in blue light signaling.
Collapse
Affiliation(s)
| | | | - Dipan Roy
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Mansi Mansi
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Catherine Gough
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | | - Cunjin Zhang
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | |
Collapse
|
8
|
Genome-Wide Identification, Classification, Expression and Duplication Analysis of bZIP Family Genes in Juglans regia L. Int J Mol Sci 2022; 23:ijms23115961. [PMID: 35682645 PMCID: PMC9180593 DOI: 10.3390/ijms23115961] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 01/08/2023] Open
Abstract
Basic leucine zipper (bZIP), a conserved transcription factor widely found in eukaryotes, has important regulatory roles in plant growth. To understand the information related to the bZIP gene family in walnut, 88 JrbZIP genes were identified at the genome-wide level and classified into 13 subfamilies (A, B, C, D, E, F, G, H, I, J, K, M, and S) using a bioinformatic approach. The number of exons in JrbZIPs ranged from 1 to 12, the number of amino acids in JrbZIP proteins ranged from 145 to 783, and the isoelectric point ranged from 4.85 to 10.05. The majority of JrbZIP genes were localized in the nucleus. The promoter prediction results indicated that the walnut bZIP gene contains a large number of light-responsive and jasmonate-responsive action elements. The 88 JrbZIP genes were involved in DNA binding and nucleus and RNA biosynthetic processes of three ontological categories, molecular functions, cellular components and biological processes. The codon preference analysis showed that the bZIP gene family has a stronger bias for AGA, AGG, UUG, GCU, GUU, and UCU than other codons. Moreover, the transcriptomic data showed that JrbZIP genes might play an important role in floral bud differentiation. The results of a protein interaction network map and kegg enrichment analysis indicated that bZIP genes were mainly involved in phytohormone signaling, anthocyanin synthesis and flowering regulation. qRT-PCR demonstrated the role of the bZIP gene family in floral bud differentiation. Co-expression network maps were constructed for 29 walnut bZIP genes and 6 flowering genes, and JrCO (a homolog of AtCO) was significantly correlated (p < 0.05) with 13 JrbZIP genes in the level of floral bud differentiation expression, including JrbZIP31 (homolog of AtFD), and JrLFY was significantly and positively correlated with JrbZIP10,11,51,59,67 (p < 0.05), and the above results suggest that bZIP family genes may act together with flowering genes to regulate flower bud differentiation in walnut. This study was the first genome-wide report of the walnut bZIP gene family, which could improve our understanding of walnut bZIP proteins and provide a solid foundation for future cloning and functional analyses of this gene family.
Collapse
|
9
|
Han Y, Hou Z, He Q, Zhang X, Yan K, Han R, Liang Z. Genome-Wide Characterization and Expression Analysis of bZIP Gene Family Under Abiotic Stress in Glycyrrhiza uralensis. Front Genet 2021; 12:754237. [PMID: 34675967 PMCID: PMC8525656 DOI: 10.3389/fgene.2021.754237] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
bZIP gene family is one of the largest transcription factor families. It plays an important role in plant growth, metabolic, and environmental response. However, complete genome-wide investigation of bZIP gene family in Glycyrrhiza uralensis remains unexplained. In this study, 66 putative bZIP genes in the genome of G. uralensis were identified. And their evolutionary classification, physicochemical properties, conserved domain, functional differentiation, and the expression level under different stress conditions were further analyzed. All the members were clustered into 13 subfamilies (A–K, M, and S). A total of 10 conserved motifs were found in GubZIP proteins. Members from the same subfamily shared highly similar gene structures and conserved domains. Tandem duplication events acted as a major driving force for the evolution of bZIP gene family in G. uralensis. Cis-acting elements and protein–protein interaction networks showed that GubZIPs in one subfamily are involved in multiple functions, while some GubZIPs from different subfamilies may share the same functional category. The miRNA network targeting GubZIPs showed that the regulation at the transcriptional level may affect protein–protein interaction networks. We suspected that domain-mediated interactions may categorize a protein family into subfamilies in G. uralensis. Furthermore, the tissue-specific gene expression patterns of GubZIPs were analyzed using the public RNA-seq data. Moreover, gene expression level of 66 bZIP family members under abiotic stress treatments was quantified by using qRT-PCR. The results of this study may serve as potential candidates for functional characterization in the future.
Collapse
Affiliation(s)
- Yuxuan Han
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhuoni Hou
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qiuling He
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xuemin Zhang
- Tasly R&D Institute, Tasly Holding Group Co., Ltd., Tianjin, China
| | - Kaijing Yan
- Tasly R&D Institute, Tasly Holding Group Co., Ltd., Tianjin, China
| | - Ruilian Han
- Institute of Landscape and Plant Ecology, The School of Engineering and Architecture, Zhejiang Sci-tech University, Hangzhou, China
| | - Zongsuo Liang
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
10
|
Basu R, Dutta S, Pal A, Sengupta M, Chattopadhyay S. Calmodulin7: recent insights into emerging roles in plant development and stress. PLANT MOLECULAR BIOLOGY 2021; 107:1-20. [PMID: 34398355 DOI: 10.1007/s11103-021-01177-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/27/2021] [Indexed: 05/25/2023]
Abstract
Analyses of the function of Arabidopsis Calmodulin7 (CAM7) in concert with multiple regulatory proteins involved in various signal transduction processes. Calmodulin (CaM) plays various regulatory roles in multiple signaling pathways in eukaryotes. Arabidopsis CALMODULIN 7 (CAM7) is a unique member of the CAM family that works as a transcription factor in light signaling pathways. CAM7 works in concert with CONSTITUTIVE PHOTOMORPHOGENIC 1 and ELONGATED HYPOCOTYL 5, and plays an important role in seedling development. Further, it is involved in the regulation of the activity of various Ca2+-gated channels such as cyclic nucleotide gated channel 6 (CNGC6), CNGC14 and auto-inhibited Ca2+ ATPase 8. Recent studies further indicate that CAM7 is also an integral part of multiple signaling pathways including hormone, immunity and stress. Here, we review the recent advances in understanding the multifaceted role of CAM7. We highlight the open-ended questions, and also discuss the diverse aspects of CAM7 characterization that need to be addressed for comprehensive understanding of its cellular functions.
Collapse
Affiliation(s)
- Riya Basu
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Siddhartha Dutta
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| | - Abhideep Pal
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Mandar Sengupta
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
11
|
Li T, Lian H, Li H, Xu Y, Zhang H. HY5 regulates light-responsive transcription of microRNA163 to promote primary root elongation in Arabidopsis seedlings. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1437-1450. [PMID: 33860639 DOI: 10.1111/jipb.13099] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/12/2021] [Indexed: 05/25/2023]
Abstract
MicroRNAs (miRNAs) play key roles in the post-transcriptional regulation of gene expression in plants. Many miRNAs are responsive to environmental signals. Light is the first environmental signal perceived by plants after emergence from the soil. However, less is known about the roles and regulatory mechanism of miRNAs in response to light signal. Here, using small RNA sequencing, we determined that miR163 is significantly rapidly induced by light signaling in Arabidopsis thaliana seedlings. The light-inducible response of miR163 functions genetically downstream of LONG HYPOCOTYL 5 (HY5), a central positive regulator of photomorphogenesis. HY5 directly binds to the two G/C-hybrid elements in the miR163 promoter with unequal affinity; one of these elements, which is located next to the transcription start site, plays a major role in light-induced expression of miR163. Overexpression of miR163 rescued the defective primary root elongation of hy5 seedlings without affecting lateral root growth, whereas overexpressing of miR163 target PXMT1 inhibited primary root elongation. These findings provide insight into understanding the post-transcriptional regulation of root photomorphogenesis mediated by the HY5-miR163-PXMT1 network.
Collapse
Affiliation(s)
- Tao Li
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongmei Lian
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haojie Li
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yufang Xu
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huiyong Zhang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
12
|
Zulfiqar F, Ashraf M. Bioregulators: unlocking their potential role in regulation of the plant oxidative defense system. PLANT MOLECULAR BIOLOGY 2021; 105:11-41. [PMID: 32990920 DOI: 10.1007/s11103-020-01077-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/23/2020] [Indexed: 05/21/2023]
Abstract
Plant bioregulators play an important role in managing oxidative stress tolerance in plants. Utilizing their ability in stress sensitive crops through genetic engineering will be a meaningful approach to manage food production under the threat of climate change. Exploitation of the plant defense system against oxidative stress to engineer tolerant plants in the climate change scenario is a sustainable and meaningful strategy. Plant bioregulators (PBRs), which are important biotic factors, are known to play a vital role not only in the development of plants, but also in inducing tolerance in plants against various environmental extremes. These bioregulators include auxins, gibberellins, cytokinins, abscisic acid, brassinosteroids, polyamines, strigolactones, and ascorbic acid and provide protection against the oxidative stress-associated reactive oxygen species through modulation or activation of a plant's antioxidant system. Therefore, exploitation of their functioning and accumulation is of considerable significance for the development of plants more tolerant of harsh environmental conditions in order to tackle the issue of food security under the threat of climate change. Therefore, this review summarizes a new line of evidence that how PBRs act as inducers of oxidative stress resistance in plants and how they could be modulated in transgenic crops via introgression of genes. Reactive oxygen species production during oxidative stress events and their neutralization through an efficient antioxidants system is comprehensively detailed. Further, the use of exogenously applied PBRs in the induction of oxidative stress resistance is discussed. Recent advances in engineering transgenic plants with modified PBR gene expression to exploit the plant defense system against oxidative stress are discussed from an agricultural perspective.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| | | |
Collapse
|
13
|
Differentially expressed bZIP transcription factors confer multi-tolerances in Gossypium hirsutum L. Int J Biol Macromol 2020; 146:569-578. [PMID: 31923491 DOI: 10.1016/j.ijbiomac.2020.01.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/23/2022]
Abstract
Basic leucine zipper (bZIP) transcription factor plays an important role in various biological processes, such as response to biotic and abiotic stresses. In this study we performed a systematic investigation and analysis of bZIP gene family in Gossypium hirsutum to predict their functions in response to different abiotic stresses. A total of 207 bZIP genes were identified from Gossypium hirsutum genome and classified into 13 subfamilies through phylogenetic analysis, which was testified by the analysis of conserved motifs and exon-intron structures. Annotation of GHbZIPs was performed based on well-studied Arabidopsis bZIPs to speculate the gene function. RNA-seq analysis was conducted to identify the co-expressed and differentially expressed bZIPs under cold, heat, salt and PEG treatments. Promoter analysis and interaction network of GHbZIP proteins demonstrated that ABA-activated signaling pathway was pivotal in the regulation of GHbZIPs, and GHbZIPs involved in ER stress were supposed to function through interaction with other GHbZIPs and ABA pathway. Cis-elements in the upstream and downstream of GHbZIPs interaction network were also discussed. These findings provided us with clues about functions of bZIP in Gossypium hirsutum.
Collapse
|
14
|
Chakraborty M, Gangappa SN, Maurya JP, Sethi V, Srivastava AK, Singh A, Dutta S, Ojha M, Gupta N, Sengupta M, Ram H, Chattopadhyay S. Functional interrelation of MYC2 and HY5 plays an important role in Arabidopsis seedling development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1080-1097. [PMID: 31059179 DOI: 10.1111/tpj.14381] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 05/22/2023]
Abstract
Arabidopsis MYC2 bHLH transcription factor plays a negative regulatory role in blue light (BL)-mediated seedling development. HY5 bZIP protein works as a positive regulator of multiple wavelengths of light and promotes photomorphogenesis. Both MYC2 and HY5, belonging to two different classes of transcription factors, are the integrators of multiple signaling pathways. However, the functional interrelations of these two transcription factors in seedling development remain unknown. Additionally, whereas HY5-mediated regulation of gene expression has been investigated in detail, the transcriptional regulation of HY5 itself is yet to be understood. Here, we show that HY5 and MYC2 work in an antagonistic manner in Arabidopsis seedling development. Our results reveal that HY5 expression is negatively regulated by MYC2 predominantly in BL, and at various stages of development. On the other hand, HY5 negatively regulates the expression of MYC2 at various wavelengths of light. In vitro and in vivo DNA-protein interaction studies suggest that MYC2 binds to the E-box cis-acting element of HY5 promoter. Collectively, this study demonstrates a coordinated regulation of MYC2 and HY5 in blue-light-mediated Arabidopsis seedling development.
Collapse
Affiliation(s)
- Moumita Chakraborty
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | | | - Jay P Maurya
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Vishmita Sethi
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Archana K Srivastava
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Aparna Singh
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Siddhartha Dutta
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Madhusmita Ojha
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Nisha Gupta
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Mandar Sengupta
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Hasthi Ram
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| |
Collapse
|
15
|
Yang J, Duan G, Li C, Liu L, Han G, Zhang Y, Wang C. The Crosstalks Between Jasmonic Acid and Other Plant Hormone Signaling Highlight the Involvement of Jasmonic Acid as a Core Component in Plant Response to Biotic and Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:1349. [PMID: 31681397 PMCID: PMC6813250 DOI: 10.3389/fpls.2019.01349] [Citation(s) in RCA: 305] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/27/2019] [Indexed: 05/19/2023]
Abstract
Plant hormones play central roles in plant growth, developmental processes, and plant response to biotic and abiotic stresses. On the one hand, plant hormones may allocate limited resources to the most serious stresses; on the other hand, the crosstalks among multiple plant hormone signaling regulate the balance between plant growth and defense. Many studies have reported the mechanism of crosstalks between jasmonic acid (JA) and other plant hormones in plant growth and stress responses. Based on these studies, this paper mainly reviews the crosstalks between JA and other plant hormone signaling in regulating the balance between plant growth and defense response. The suppressor proteins JASMONATE ZIM DOMAIN PROTEIN (JAZ) and MYC2 as the key components in the crosstalks are also highlighted in the review. We conclude that JA interacts with other hormone signaling pathways [such as auxin, ethylene (ET), abscisic acid (ABA), salicylic acid (SA), brassinosteroids (BRs), and gibberellin (GA)] to regulate plant growth, abiotic stress tolerance, and defense resistance against hemibiotrophic pathogens such as Magnaporthe oryzae and Pseudomonas syringae. Notably, JA may act as a core signal in the phytohormone signaling network.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, China
- *Correspondence: Jing Yang,
| | - Guihua Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Chunqin Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Lin Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Guangyu Han
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yaling Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Changmi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
16
|
Dröge-Laser W, Snoek BL, Snel B, Weiste C. The Arabidopsis bZIP transcription factor family-an update. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:36-49. [PMID: 29860175 DOI: 10.1016/j.pbi.2018.05.001] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/30/2018] [Accepted: 05/02/2018] [Indexed: 05/18/2023]
Abstract
The basic (region) leucine zippers (bZIPs) are evolutionarily conserved transcription factors in eukaryotic organisms. Here, we have updated the classification of the Arabidopsis thaliana bZIP-family, comprising 78 members, which have been assorted into 13 groups. Arabidopsis bZIPs are involved in a plethora of functions related to plant development, environmental signalling and stress response. Based on the classification, we have highlighted functional and regulatory aspects of selected well-studied bZIPs, which may serve as prototypic examples for the particular groups.
Collapse
Affiliation(s)
- Wolfgang Dröge-Laser
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany.
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany.
| |
Collapse
|
17
|
Blue-light induced biosynthesis of ROS contributes to the signaling mechanism of Arabidopsis cryptochrome. Sci Rep 2017; 7:13875. [PMID: 29066723 PMCID: PMC5655019 DOI: 10.1038/s41598-017-13832-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 09/14/2017] [Indexed: 01/08/2023] Open
Abstract
Cryptochromes are evolutionarily conserved blue light receptors with many roles throughout plant growth and development. They undergo conformational changes in response to light enabling interaction with multiple downstream signaling partners. Recently, it has been shown that cryptochromes also synthesize reactive oxygen species (ROS) in response to light, suggesting the possibility of an alternate signaling mechanism. Here we show by fluorescence imaging and microscopy that H202 and ROS accumulate in the plant nucleus after cryptochrome activation. They induce ROS-regulated transcripts including for genes implicated in pathogen defense, biotic and abiotic stress. Mutant cryptochrome alleles that are non-functional in photomorphogenesis retain the capacity to induce ROS-responsive phenotypes. We conclude that nuclear biosynthesis of ROS by cryptochromes represents a new signaling paradigm that complements currently known mechanisms. This may lead to novel applications using blue light induced oxidative bursts to prime crop plants against the deleterious effects of environmental stresses and toxins.
Collapse
|
18
|
Gangappa SN, Botto JF. The Multifaceted Roles of HY5 in Plant Growth and Development. MOLECULAR PLANT 2016; 9:1353-1365. [PMID: 27435853 DOI: 10.1016/j.molp.2016.07.002] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 06/27/2016] [Accepted: 07/08/2016] [Indexed: 05/18/2023]
Abstract
ELONGATED HYPOCOTYL5 (HY5), a member of the bZIP transcription factor family, inhibits hypocotyl growth and lateral root development, and promotes pigment accumulation in a light-dependent manner in Arabidopsis. Recent research on its role in different processes such as hormone, nutrient, abiotic stress (abscisic acid, salt, cold), and reactive oxygen species signaling pathways clearly places HY5 at the center of a transcriptional network hub. HY5 regulates the transcription of a large number of genes by directly binding to cis-regulatory elements. Recently, HY5 has also been shown to activate its own expression under both visible and UV-B light. Moreover, HY5 acts as a signal that moves from shoot to root to promote nitrate uptake and root growth. Here, we review recent advances on HY5 research in diverse aspects of plant development and highlight still open questions that need to be addressed in the near future for a complete understanding of its function in plant signaling and beyond.
Collapse
Affiliation(s)
- Sreeramaiah N Gangappa
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg 40530, Sweden.
| | - Javier F Botto
- IFEVA, UBA, CONICET, Facultad de Agronomía, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina.
| |
Collapse
|
19
|
Nazemof N, Couroux P, Xing T, Robert LS. Proteomic analysis of the mature Brassica stigma reveals proteins with diverse roles in vegetative and reproductive development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:51-58. [PMID: 27457983 DOI: 10.1016/j.plantsci.2016.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 06/06/2023]
Abstract
The stigma, the specialized apex of the Brassicaceae gynoecium, plays a role in pollen capture, discrimination, hydration, germination, and guidance. Despite this crucial role in reproduction, the global proteome underlying Brassicaceae stigma development and function remains largely unknown. As a contribution towards the characterization of the Brassicaceae dry stigma global proteome, more than 2500 Brassica napus mature stigma proteins were identified using three different gel-based proteomics approaches. Most stigma proteins participated in Metabolic Processes, Responses to Stimulus or Stress, Cellular or Developmental Processes, and Transport. The stigma was found to express a wide variety of proteins with demonstrated roles in cellular and organ development including proteins known to be involved in cellular expansion and morphogenesis, embryo development, as well as gynoecium and stigma development. Comparisons to a corresponding proteome from a very morphologically different Poaceae dry stigma showed a very similar distribution of proteins among different functional categories, but also revealed evident distinctions in protein composition especially in glucosinolate and carotenoid metabolism, photosynthesis, and self-incompatibility. To our knowledge, this study reports the largest Brassicaceae stigma protein dataset described to date.
Collapse
Affiliation(s)
- Nazila Nazemof
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada.
| | - Philippe Couroux
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada.
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada.
| | - Laurian S Robert
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada.
| |
Collapse
|
20
|
Nemoto Y, Nonoue Y, Yano M, Izawa T. Hd1,a CONSTANS ortholog in rice, functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:221-33. [PMID: 26991872 DOI: 10.1111/tpj.13168] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 05/04/2023]
Abstract
Flowering time is an important agronomic trait that affects crop yields. In cereals, several CCT-domain proteins unique to monocots, such as Grain number, plant height, and heading date 7 (Ghd7) gene, have been identified as key floral repressors, although the corresponding molecular mechanisms have been unknown until now. In rice, a short-day plant, Heading date 1 (Hd1) gene, a rice ortholog of Arabidopsis floral activator CONSTANS (CO), represses flowering under non-inductive long-day (LD) conditions and induces it under inductive short-day (SD) conditions. Here, we report biological interactions between Ghd7 and Hd1, which together repress Early heading date 1 (Ehd1), a key floral inducer under non-inductive LD conditions. In addition to this genetic interaction between them, Co-IP experiments further demonstrated that a Ghd7-Hd1 protein formed a complex in vivo and ChIP and luciferase reporter analyses suggested that this complex specifically binds to a cis-regulatory region in Ehd1 and represses its expression. These findings imply that Hd1, an evolutionally conserved transcriptional activator, can function as a strong transcriptional repressor within a monocot-specific flowering-time pathway through with Ghd7.
Collapse
Affiliation(s)
- Yasue Nemoto
- Functional Plant Research Unit, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Yasunori Nonoue
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Masahiro Yano
- Functional Plant Research Unit, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Takeshi Izawa
- Department of Molecular Genetics, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
21
|
Yamaoka C, Suzuki Y, Makino A. Differential Expression of Genes of the Calvin-Benson Cycle and its Related Genes During Leaf Development in Rice. PLANT & CELL PHYSIOLOGY 2016; 57:115-124. [PMID: 26615032 DOI: 10.1093/pcp/pcv183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/01/2015] [Indexed: 06/05/2023]
Abstract
To understand how the machinery for photosynthetic carbon assimilation is formed and maintained during leaf development, changes in the mRNA levels of the Calvin-Benson cycle enzymes, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase and two key enzymes for sucrose synthesis were determined in rice (Oryza sativa L.). According to the patterns of changes in the mRNA levels, these genes were categorized into three groups. Group 1 included most of the genes involved in the carboxylation and reduction phases of the Calvin-Benson cycle, as well as three genes in the regeneration phase. The mRNA levels increased and reached maxima during leaf expansion and then rapidly declined, although there were some variations in the residual mRNA levels in senescent leaves. Group 2 included a number of genes involved in the regeneration phase, one gene in the reduction phase of the Calvin-Benson cycle and one gene in sucrose synthesis. The mRNA levels increased and almost reached maxima before full expansion and then gradually declined. Group 3 included Rubisco activase, one gene involved in the regeneration phase and one gene in sucrose synthesis. The overall pattern was similar to that in group 2 genes except that the mRNA levels reached maxima after the stage of full expansion. Thus, genes of the Calvin-Benson cycle and its related genes were differentially expressed during leaf development in rice, suggesting that such differential gene expression is necessary for formation and maintenance of the machinery of photosynthetic carbon assimilation.
Collapse
Affiliation(s)
- Chihiro Yamaoka
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, 981-8555 Japan
| | - Yuji Suzuki
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, 981-8555 Japan
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, 981-8555 Japan CREST, JST, Gobancho, Chiyoda-ku, Tokyo, 102-0076 Japan
| |
Collapse
|
22
|
Maurya JP, Sethi V, Gangappa SN, Gupta N, Chattopadhyay S. Interaction of MYC2 and GBF1 results in functional antagonism in blue light-mediated Arabidopsis seedling development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:439-450. [PMID: 26047210 DOI: 10.1111/tpj.12899] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 05/24/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Regulations of Arabidopsis seedling growth by two proteins, which belong to different classes of transcription factors, are poorly understood. MYC2 and GBF1 belong to bHLH and bZIP classes of transcription factors, respectively, and function in cryptochrome-mediated blue light signaling. Here, we have investigated the molecular and functional interrelation of MYC2 and GBF1 in blue light-mediated photomorphogenesis. Our study reveals that MYC2 and GBF1 colocalize and physically interact in the nucleus. This interaction requires the N-terminal domain of each protein. The atmyc2 gbf1 double mutant analyses and transgenic studies have revealed that MYC2 and GBF1 act antagonistically and inhibit the activity of each other to regulate hypocotyl growth and several other biological processes. This study further reveals that MYC2 and GBF1 bind to HYH promoter and inhibit each other through non-DNA binding bHLH-bZIP heterodimers. These results, taken together, provide insights into the mechanistic view on the concerted regulatory role of MYC2 and GBF1 in Arabidopsis seedling development.
Collapse
Affiliation(s)
- Jay P Maurya
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Vishmita Sethi
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | | | - Nisha Gupta
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| |
Collapse
|
23
|
Nazemof N, Couroux P, Rampitsch C, Xing T, Robert LS. Proteomic profiling reveals insights into Triticeae stigma development and function. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6069-80. [PMID: 25170101 PMCID: PMC4203142 DOI: 10.1093/jxb/eru350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To our knowledge, this study represents the first high-throughput characterization of a stigma proteome in the Triticeae. A total of 2184 triticale mature stigma proteins were identified using three different gel-based approaches combined with mass spectrometry. The great majority of these proteins are described in a Triticeae stigma for the first time. These results revealed many proteins likely to play important roles in stigma development and pollen-stigma interactions, as well as protection against biotic and abiotic stresses. Quantitative comparison of the triticale stigma transcriptome and proteome showed poor correlation, highlighting the importance of having both types of analysis. This work makes a significant contribution towards the elucidation of the Triticeae stigma proteome and provides novel insights into its role in stigma development and function.
Collapse
Affiliation(s)
- Nazila Nazemof
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, Canada K1A 0C6 Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Philippe Couroux
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, Canada K1A 0C6
| | - Christof Rampitsch
- Agriculture and Agri-Food Canada, Cereal Research Centre, 101 Route 100, Morden, MB, Canada R6M 1Y5
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Laurian S Robert
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, Canada K1A 0C6
| |
Collapse
|
24
|
Sethi V, Raghuram B, Sinha AK, Chattopadhyay S. A mitogen-activated protein kinase cascade module, MKK3-MPK6 and MYC2, is involved in blue light-mediated seedling development in Arabidopsis. THE PLANT CELL 2014; 26:3343-57. [PMID: 25139007 PMCID: PMC4371833 DOI: 10.1105/tpc.114.128702] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/18/2014] [Accepted: 08/03/2014] [Indexed: 05/20/2023]
Abstract
Mitogen-activated protein kinase (MAPK) pathways are involved in several signal transduction processes in eukaryotes. Light signal transduction pathways have been extensively studied in plants; however, the connection between MAPK and light signaling pathways is currently unknown. Here, we show that MKK3-MPK6 is activated by blue light in a MYC2-dependent manner. MPK6 physically interacts with and phosphorylates a basic helix-loop-helix transcription factor, MYC2, and is phosphorylated by a MAPK kinase, MKK3. Furthermore, MYC2 binds to the MPK6 promoter and regulates its expression in a feedback regulatory mechanism in blue light signaling. We present mutational and physiological studies that illustrate the function of the MKK3-MPK6-MYC2 module in Arabidopsis thaliana seedling development and provide a revised mechanistic view of photomorphogenesis.
Collapse
Affiliation(s)
- Vishmita Sethi
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Badmi Raghuram
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | | - Sudip Chattopadhyay
- National Institute of Plant Genome Research, New Delhi 110067, India Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| |
Collapse
|