1
|
Reddy TS, Privér SH, Ojha R, Mirzadeh N, Velma GR, Jakku R, Hosseinnejad T, Luwor R, Ramakrishna S, Wlodkowic D, Plebanski M, Bhargava SK. Gold(I) complexes of the type [AuL{κC-2-C 6H 4P(S)Ph 2}] [L = PTA, PPh 3, PPh 2(C 6H 4-3-SO 3Na) and PPh 2(2-py)]: Synthesis, characterisation, crystal structures, and In Vitro and In Vivo anticancer properties. Eur J Med Chem 2025; 281:117007. [PMID: 39500067 DOI: 10.1016/j.ejmech.2024.117007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/17/2024] [Accepted: 10/27/2024] [Indexed: 12/02/2024]
Abstract
Four new mononuclear gold (I) compounds of the type [AuL{κC-2-C6H4P(S)Ph2}] {L = PTA (1), PPh3 (2), PPh2(C6H4-3-SO3Na) (3), and PPh2(2-py) (4)} were prepared by scission of the dinuclear compound [Au2{μ-2-C6H4P(S)Ph2}2] by L or via a transmetalation reaction using the organotin reagent 2-Me3SnC6H4P(S)Ph2 and a suitable gold halide precursor. The cytotoxic potential of complexes 1-4 was evaluated against four human cancer cell lines of diverse cellular origin: cervical (HeLa), prostate (PC-3), non-small cell lung adenocarcinoma (A549), and fibrosarcoma (HT-1080). The in vitro cytotoxicity results showed that 1 demonstrated exceptional anticancer activity with IC50 values ranging from 0.08 to 3.5 μM. Complex 3, which contains a sulfonated triphenyl phosphine ligand, displayed the weakest anticancer activity with IC50 values ranging from 3.1 to >50 μM. When compared to the standard chemotherapeutic drug cisplatin, 1 displayed approximately 27-fold greater cytotoxic activity against cervical cancer cells and 3.5- and 7.5-fold greater activities against prostate and fibrosarcoma cancer cells, respectively. Additionally, 1 exhibited 3-fold selectivity for cervical cancer cells compared to non-cancerous HEK-293 cells. Mechanistic investigations revealed that 1 induced apoptosis, which was associated with elevated reactive oxygen species (ROS) and inhibition of the intracellular enzyme thioredoxin reductase. Furthermore, 1 exhibited notable antiangiogenic characteristics in an in vivo model using transgenic zebrafish Tg(fli1a:EGFP). In vivo studies using mouse xenograft models showed that complex 1 displayed superior inhibition of tumour growth (82 %) compared to the clinical drug cisplatin (29 %). Overall, these results highlight the potential of gold (I) compounds as novel antitumour agents.
Collapse
Affiliation(s)
- T Srinivasa Reddy
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Steven H Privér
- School of Science, STEM College, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Ruchika Ojha
- School of Science, STEM College, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Nedaossadat Mirzadeh
- School of Science, STEM College, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Ganga Reddy Velma
- School of Science, STEM College, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Ranjithkumar Jakku
- School of Science, STEM College, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Tayebeh Hosseinnejad
- School of Science, STEM College, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Rodney Luwor
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, 3050, Australia
| | - Sistla Ramakrishna
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Donald Wlodkowic
- The Neurotox Laboratory, School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, Victoria, 3083, Australia.
| | - Suresh K Bhargava
- School of Science, STEM College, RMIT University, Melbourne, Victoria, 3001, Australia.
| |
Collapse
|
2
|
Adhikari S, Nath P, Das A, Datta A, Baildya N, Duttaroy AK, Pathak S. A review on metal complexes and its anti-cancer activities: Recent updates from in vivo studies. Biomed Pharmacother 2024; 171:116211. [PMID: 38290253 DOI: 10.1016/j.biopha.2024.116211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Research into cancer therapeutics has uncovered various potential medications based on metal-containing scaffolds after the discovery and clinical applications of cisplatin as an anti-cancer agent. This has resulted in many metallodrugs that can be put into medical applications. These metallodrugs have a wider variety of functions and mechanisms of action than pure organic molecules. Although platinum-based medicines are very efficient anti-cancer agents, they are often accompanied by significant side effects and toxicity and are limited by resistance. Some of the most studied and developed alternatives to platinum-based anti-cancer medications include metallodrugs based on ruthenium, gold, copper, iridium, and osmium, which showed effectiveness against many cancer cell lines. These metal-based medicines represent an exciting new category of potential cancer treatments and sparked a renewed interest in the search for effective anti-cancer therapies. Despite the widespread development of metal complexes touted as powerful and promising in vitro anti-cancer therapeutics, only a small percentage of these compounds have shown their worth in vivo models. Metallodrugs, which are more effective and less toxic than platinum-based drugs and can treat drug-resistant cancer cells, are the focus of this review. Here, we highlighted some of the most recently developed Pt, Ru, Au, Cu, Ir, and Os complexes that have shown significant in vivo antitumor properties between 2017 and 2023.
Collapse
Affiliation(s)
- Suman Adhikari
- Department of Chemistry, Govt. Degree Collage, Dharmanagar, Tripura (N) 799253, India.
| | - Priyatosh Nath
- Department of Human Physiology, Tripura University, Suryamaninagar, West Tripura 799022, India
| | - Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Abhijit Datta
- Department of Botany, Ambedkar College, Fatikroy, Unakoti 799290, Tripura, India
| | - Nabajyoti Baildya
- Department of Chemistry, Milki High School, Milki, Malda 732209, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| |
Collapse
|
3
|
Zhang J, Li Y, Fang R, Wei W, Wang Y, Jin J, Yang F, Chen J. Organometallic gold(I) and gold(III) complexes for lung cancer treatment. Front Pharmacol 2022; 13:979951. [PMID: 36176441 PMCID: PMC9513137 DOI: 10.3389/fphar.2022.979951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Metal compounds, especially gold complexes, have recently gained increasing attention as possible lung cancer therapeutics. Some gold complexes display not only excellent activity in cisplatin-sensitive lung cancer but also in cisplatin-resistant lung cancer, revealing promising prospects in the development of novel treatments for lung cancer. This review summarizes examples of anticancer gold(I) and gold (III) complexes for lung cancer treatment, including mechanisms of action and approaches adopted to improve their efficiency. Several excellent examples of gold complexes against lung cancer are highlighted.
Collapse
Affiliation(s)
- Juzheng Zhang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Yanping Li
- School of Public Health, Guilin Medical University, Guilin, China
| | - Ronghao Fang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Wei Wei
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Yong Wang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Jiamin Jin
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
- *Correspondence: Feng Yang, mailto:, Jian Chen, mailto:
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- *Correspondence: Feng Yang, mailto:, Jian Chen, mailto:
| |
Collapse
|
4
|
Lu Y, Ma X, Chang X, Liang Z, Lv L, Shan M, Lu Q, Wen Z, Gust R, Liu W. Recent development of gold(I) and gold(III) complexes as therapeutic agents for cancer diseases. Chem Soc Rev 2022; 51:5518-5556. [PMID: 35699475 DOI: 10.1039/d1cs00933h] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metal complexes have demonstrated significant antitumor activities and platinum complexes are well established in the clinical application of cancer chemotherapy. However, the platinum-based treatment of different types of cancers is massively hampered by severe side effects and resistance development. Consequently, the development of novel metal-based drugs with different mechanism of action and pharmaceutical profile attracts modern medicinal chemists to design and synthesize novel metal-based agents. Among non-platinum anticancer drugs, gold complexes have gained considerable attention due to their significant antiproliferative potency and efficacy. In most situations, the gold complexes exhibit anticancer activities by targeting thioredoxin reductase (TrxR) or other thiol-rich proteins and enzymes and trigger cell death via reactive oxygen species (ROS). Interestingly, gold complexes were recently reported to elicit biochemical hallmarks of immunogenic cell death (ICD) as an ICD inducer. In this review, the recent progress of gold(I) and gold(III) complexes is comprehensively summarized, and their activities and mechanism of action are documented.
Collapse
Affiliation(s)
- Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xingyu Chang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenlin Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qiuyue Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ronald Gust
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Center for Chemistry and Biomedicine, Innsbruck, Austria.
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,State key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
5
|
Gao W, Fan X, Bi Y, Zhou Z, Yuan Y. Preparation of NIR-Responsive Gold Nanocages as Efficient Carrier for Controlling Release of EGCG in Anticancer Application. Front Chem 2022; 10:926002. [PMID: 35720982 PMCID: PMC9201208 DOI: 10.3389/fchem.2022.926002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of cancer that has a restricted therapy option. Epigallocatechin gallate (EGCG) is one of the main biologically active ingredients in tea. A large number of studies have shown that EGCG has preventive and therapeutic effects on various tumors. In addition, the development of near-infrared (NIR)-responsive nano-platforms has been attracting cancer treatment. In this work, we designed and synthesized a strategy of gold nanocages (AuNCs) as an efficient carrier for controlling release of EGCG for anti-tumor to achieve the synergistic functions of NIR-response and inhibited tumor cell proliferation. The diameter of AuNCs is about 50 nm and has a hollow porous (8 nm) structure. Thermal imaging-graphic studies proved that the AuNCs-EGCG obtained have photothermal response to laser irradiation under near-infrared light and still maintain light stability after multiple cycles of laser irradiation. The resulted AuNCs-EGCG reduced the proliferation rate of HepG2 cells to 50% at 48 h. Western blot analysis showed that NIR-responsive AuNCs-EGCG can promote the expression of HepG2 cell apoptosis-related proteins HSP70, Cytochrome C, Caspase-9, Caspase-3, and Bax, while the expression of Bcl-2 is inhibited. Cell confocal microscopy analysis proved that AuNCs-EGCG irradiated by NIR significantly upregulates Caspase-3 by nearly 2-fold and downregulates Bcl-2 by nearly 0.33-fold, which is beneficial to promote HepG2 cell apoptosis. This study provides useful information for the NIR-responsive AuNCs-EGCG as a new type of nanomedicine for HCC.
Collapse
Affiliation(s)
- Weiran Gao
- Department of Oncology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiangyi Fan
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yunlong Bi
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zipeng Zhou
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- *Correspondence: Zipeng Zhou, ; Yajiang Yuan,
| | - Yajiang Yuan
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- *Correspondence: Zipeng Zhou, ; Yajiang Yuan,
| |
Collapse
|
6
|
Almeida CM, S. Marcon PH, Nascimento ÉCM, Martins JBL, Chagas MAS, Fujimori M, De Marchi PGF, França EL, Honorio‐França AC, Gatto CC. Organometallic Gold (III) and Platinum (II) Complexes with Thiosemicarbazone: structural behavior, anticancer activity, and molecular docking. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Carolane M. Almeida
- Laboratory of Inorganic Synthesis and Crystallography University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| | - Pedro H. S. Marcon
- Laboratory of Inorganic Synthesis and Crystallography University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| | - Érica C. M. Nascimento
- Laboratory of Computational Chemistry University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| | - João B. L. Martins
- Laboratory of Computational Chemistry University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| | - Marcio A. S. Chagas
- Institute of Biological and Health Science, Federal University of Mato Grosso Barra do Garças Brazil
| | - Mahmi Fujimori
- Institute of Biological and Health Science, Federal University of Mato Grosso Barra do Garças Brazil
| | - Patrícia G. F. De Marchi
- Institute of Biological and Health Science, Federal University of Mato Grosso Barra do Garças Brazil
| | - Eduardo L. França
- Institute of Biological and Health Science, Federal University of Mato Grosso Barra do Garças Brazil
| | | | - Claudia C. Gatto
- Laboratory of Inorganic Synthesis and Crystallography University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| |
Collapse
|