1
|
Nicklin EF, Cohen KE, Cooper RL, Mitchell G, Fraser GJ. Evolution, development, and regeneration of tooth-like epithelial appendages in sharks. Dev Biol 2024; 516:221-236. [PMID: 39154741 DOI: 10.1016/j.ydbio.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Sharks and their relatives are typically covered in highly specialized epithelial appendages embedded in the skin called dermal denticles; ancient tooth-like units (odontodes) composed of dentine and enamel-like tissues. These 'skin teeth' are remarkably similar to oral teeth of vertebrates and share comparable morphological and genetic signatures. Here we review the histological and morphological data from embryonic sharks to uncover characters that unite all tooth-like elements (odontodes), including teeth and skin denticles in sharks. In addition, we review the differences between the skin and oral odontodes that reflect their varied capacity for renewal. Our observations have begun to decipher the developmental and genetic shifts that separate these seemingly similar dental units, including elements of the regenerative nature in both oral teeth and the emerging skin denticles from the small-spotted catshark (Scyliorhinus canicula) and other chondrichthyan models. Ultimately, we ask what defines a tooth at both the molecular and morphological level. These insights aim to help us understand how nature makes, replaces and evolves a vast array of odontodes.
Collapse
Affiliation(s)
- Ella F Nicklin
- Department of Biology, University of Florida, Gainesville, USA
| | - Karly E Cohen
- Department of Biology, University of Florida, Gainesville, USA; Department of Biology, California State University Fullerton, Fullerton, USA
| | - Rory L Cooper
- Department of Genetics and Evolution, University of Geneva, Switzerland
| | - Gianna Mitchell
- Department of Biology, University of Florida, Gainesville, USA
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, USA.
| |
Collapse
|
2
|
Manard BT, Quarles CD, Bradley VC, Spano TL, Zirakparvar NA, Ticknor BW, Dunlap DR, Cable-Dunlap P, Hexel CR, Andrews HB. Uranium Single Particle Analysis for Simultaneous Fluorine and Uranium Isotopic Determinations via Laser-Induced Breakdown Spectroscopy/Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry. J Am Chem Soc 2024; 146:14856-14863. [PMID: 38717994 DOI: 10.1021/jacs.4c03965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Uranyl fluoride (UO2F2) particles (<20 μm) were subjected to first-of-its-kind analysis via simultaneous laser-induced breakdown spectroscopy (LIBS) and laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS). Briefly, a nanosecond pulsed high-energy laser was focused onto the sample (particle) surface. In a single laser pulse, the UO2F2 particle was excited/ionized within the microplasma volume, and the emission of light was collected via fiber optics such that emission spectroscopy could be employed for the detection of uranium (U) and fluorine (F). The ablated particle was simultaneously transported into the MC-ICP-MS for high precision isotopic (i.e., 234U, 235U, and 238U) analysis. This method, LIBS/LA-MC-ICP-MS was optimized and employed to rapidly measure 80+ UO2F2 particles, which were subjected to different calcination processes, which results in varying degrees of F loss from the individual particles. In measuring the particles, the average F/U ratios for the populations treated at 100 and 500 °C were 2.78 ± 1.28 and 1.01 ± 0.50, respectively, confirming loss of F through the calcination process. The average 235U/238U on the particle populations for the 100 and 500 °C were 0.007262 (22) and 0.007231 (23), which was determined to be <0.2% from the expected value. The 234U/238U ratios on the same particles were 0.000053 (11) and 0.000050 (10) for the 100 and 500 °C, respectively, <10% from the expected value. Notably, each population was analyzed in under 5 min, demonstrating the truly rapid analysis technique presented here.
Collapse
Affiliation(s)
- Benjamin T Manard
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | | | - Veronica C Bradley
- Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tyler L Spano
- Nuclear Nonproliferation Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - N Alex Zirakparvar
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Brian W Ticknor
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Daniel R Dunlap
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Paula Cable-Dunlap
- Nuclear Nonproliferation Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Cole R Hexel
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Hunter B Andrews
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
3
|
Brunnbauer L, Jirku M, Quarles CD, Limbeck A. Capabilities of simultaneous 193 nm - LIBS/LA-ICP-MS imaging for microplastics characterization. Talanta 2024; 269:125500. [PMID: 38070285 DOI: 10.1016/j.talanta.2023.125500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Microplastics (MPs) are currently one of the major environmental challenges within our society. With the awareness of the impact of MPs on the environment increasing over the last years, the need for increased monitoring as well as comprehensive analysis to better understand the fate and impact of MPs has become more and more important. A major aspect of MP characterization is the assignment of the polymer type of individual particles. Here, per- and poly-fluoroalkyl substances (PFAS), originating from fluor-containing polymers, have gained a lot of attention due to the severe environmental impact. Additionally, quantitative analysis of the metal content is of great interest in the field, since MPs are prone to either leaching (in)organic additives into the environment or taking up and accumulating hazardous components (e.g., heavy metals). In this work we demonstrate the capabilities of a simultaneous LIBS/LA-ICP-MS setup for the analysis of MPs. In the first part, we demonstrate the potential of targeted LIBS analysis for the imaging of fluor-containing polymers. Using a laser spot size of 5 μm combined with highly sensitive ICCD detection enables analysis of particles in the low μm range. In the second part we combine the polymer-identification capabilities of LIBS with the high sensitivity of ICP-MS to perform matrix-matched quantification of the metal content of individual MPs. In this case we use a spot size of 50 μm facilitating polymer classification with a broadband spectrometer, resulting in detection limits of 0.72 μg/g for Pb and 9.5 μg/g for Sn simultaneously measured using ICP-MS.
Collapse
Affiliation(s)
- Lukas Brunnbauer
- TU Wien, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164-I2AC, 1060, Vienna, Austria.
| | - Mara Jirku
- TU Wien, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164-I2AC, 1060, Vienna, Austria
| | | | - Andreas Limbeck
- TU Wien, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164-I2AC, 1060, Vienna, Austria
| |
Collapse
|
4
|
Gardette V, Motto-Ros V, Alvarez-Llamas C, Sancey L, Duponchel L, Busser B. Laser-Induced Breakdown Spectroscopy Imaging for Material and Biomedical Applications: Recent Advances and Future Perspectives. Anal Chem 2023; 95:49-69. [PMID: 36625118 DOI: 10.1021/acs.analchem.2c04910] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Vincent Gardette
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, France
| | - Vincent Motto-Ros
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, France
| | - César Alvarez-Llamas
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, France
| | - Lucie Sancey
- Univ. Grenoble Alpes, Institute for Advanced Biosciences, Inserm U 1209/CNRS 5309, 38000 Grenoble, France
| | - Ludovic Duponchel
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Laboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, Lille F-59000, France
| | - Benoit Busser
- Univ. Grenoble Alpes, Institute for Advanced Biosciences, Inserm U 1209/CNRS 5309, 38000 Grenoble, France.,Department of Laboratory Medicine, Grenoble Alpes University Hospital, 38000 Grenoble, France.,Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|