1
|
Atwal M, Swan RL, Rowe C, Lee KC, Lee DC, Armstrong L, Cowell IG, Austin CA. Intercalating TOP2 Poisons Attenuate Topoisomerase Action at Higher Concentrations. Mol Pharmacol 2019; 96:475-484. [PMID: 31399497 PMCID: PMC6744389 DOI: 10.1124/mol.119.117259] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
Topoisomerase II (TOP2) poisons are effective cytotoxic anticancer agents that stabilize the normally transient TOP2-DNA covalent complexes formed during the enzyme reaction cycle. These drugs include etoposide, mitoxantrone, and the anthracyclines doxorubicin and epirubicin. Anthracyclines also exert cell-killing activity via TOP2-independent mechanisms, including DNA adduct formation, redox activity, and lipid peroxidation. Here, we show that anthracyclines and another intercalating TOP2 poison, mitoxantrone, stabilize TOP2-DNA covalent complexes less efficiently than etoposide, and at higher concentrations they suppress the formation of TOP2-DNA covalent complexes, thus behaving as TOP2 poisons at low concentration and inhibitors at high concentration. We used induced pluripotent stem cell (iPSC)-derived human cardiomyocytes as a model to study anthracycline-induced damage in cardiac cells. Using immunofluorescence, our study is the first to demonstrate the presence of topoisomerase IIβ (TOP2B) as the only TOP2 isoform in iPSC-derived cardiomyocytes. In these cells, etoposide robustly induced TOP2B covalent complexes, but we could not detect doxorubicin-induced TOP2-DNA complexes, and doxorubicin suppressed etoposide-induced TOP2-DNA complexes. In vitro, etoposide-stabilized DNA cleavage was attenuated by doxorubicin, epirubicin, or mitoxantrone. Clinical use of anthracyclines is associated with cardiotoxicity. The observations in this study have potentially important clinical consequences regarding the effectiveness of anticancer treatment regimens when TOP2-targeting drugs are used in combination. These observations suggest that inhibition of TOP2B activity, rather than DNA damage resulting from TOP2 poisoning, may play a role in doxorubicin cardiotoxicity. SIGNIFICANCE STATEMENT: We show that anthracyclines and mitoxantrone act as topoisomerase II (TOP2) poisons at low concentration but attenuate TOP2 activity at higher concentration, both in cells and in in vitro cleavage experiments. Inhibition of type II topoisomerases suppresses the action of other drugs that poison TOP2. Thus, combinations containing anthracyclines or mitoxantrone and etoposide may reduce the activity of etoposide as a TOP2 poison and thus reduce the efficacy of drug combinations.
Collapse
Affiliation(s)
- Mandeep Atwal
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (M.A., R.L.S., C.R., K.C.L., I.G.C., C.A.A.) and Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom (D.C.L., L.A.)
| | - Rebecca L Swan
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (M.A., R.L.S., C.R., K.C.L., I.G.C., C.A.A.) and Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom (D.C.L., L.A.)
| | - Chloe Rowe
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (M.A., R.L.S., C.R., K.C.L., I.G.C., C.A.A.) and Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom (D.C.L., L.A.)
| | - Ka C Lee
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (M.A., R.L.S., C.R., K.C.L., I.G.C., C.A.A.) and Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom (D.C.L., L.A.)
| | - David C Lee
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (M.A., R.L.S., C.R., K.C.L., I.G.C., C.A.A.) and Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom (D.C.L., L.A.)
| | - Lyle Armstrong
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (M.A., R.L.S., C.R., K.C.L., I.G.C., C.A.A.) and Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom (D.C.L., L.A.)
| | - Ian G Cowell
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (M.A., R.L.S., C.R., K.C.L., I.G.C., C.A.A.) and Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom (D.C.L., L.A.)
| | - Caroline A Austin
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (M.A., R.L.S., C.R., K.C.L., I.G.C., C.A.A.) and Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom (D.C.L., L.A.)
| |
Collapse
|
2
|
Marchetti F, Pearson FS, Bishop JB, Wyrobek AJ. Etoposide induces chromosomal abnormalities in mouse spermatocytes and stem cell spermatogonia. Hum Reprod 2005; 21:888-95. [PMID: 16311288 DOI: 10.1093/humrep/dei416] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Etoposide (ET) is a chemotherapeutic agent widely used in the treatment of leukaemia, lymphomas and many solid tumours such as testicular and ovarian cancers, all of which are common in patients of reproductive age. The purpose of the study was to characterize the long-term effects of ET on male germ cells using sperm fluorescence in situ hybridization (FISH) analyses. METHODS Chromosomal aberrations (partial duplications and deletions) and whole chromosomal aneuploidies were detected in sperm of mice treated with a clinical dose of ET. Semen samples were collected at 25 and 49 days after dosing to investigate the effects of ET on meiotic pachytene cells and spermatogonial stem-cells, respectively. RESULTS ET treatment resulted in major increases in the frequencies of sperm-carrying chromosomal aberrations in both meiotic pachytene (27- to 578-fold) and spermatogonial stem-cells (8- to 16-fold), but aneuploid sperm were induced only after treatment of meiotic cells (27-fold) with no persistent effects in stem cells. CONCLUSION These results show that ET may have long-lasting effects on the frequencies of sperm with structural aberrations. This has important implications for cancer patients undergoing chemotherapy with ET because they may remain at higher risk for abnormal reproductive outcomes long after the end of chemotherapy.
Collapse
Affiliation(s)
- Francesco Marchetti
- Biosciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | | | | | | |
Collapse
|
3
|
Pastor N, Cantero G, Campanella C, Cortés F. Endoreduplication induced in cultured Chinese hamster cells by different anti-topoisomerase II chemicals. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 582:11-9. [PMID: 15781205 DOI: 10.1016/j.mrgentox.2004.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 11/11/2004] [Accepted: 12/03/2004] [Indexed: 10/25/2022]
Abstract
With the ultimate purpose of testing the hypothesis that, as shown in yeast mutants, any malfunction of DNA topoisomerase II might result in aberrant mitosis due to defective chromosome segregation, we have chosen three chemicals of different nature, recently reported to catalytically inhibit the enzyme. The endpoint selected to assess any negative effect on the ability of topoisomerase II to properly carry out decatenation of fully replicated chromosomes in the G2/M phase of the cell cycle was the presence of metaphases showing diplochromosomes as a result of endoreduplication, i.e. two successive rounds of DNA replication without intervening mitosis. The anti-topoisomerase drugs selected were the anthracycline antibiotic and antineoplastic agent aclarubicin, the respiratory venom sodium azide, and 9-aminoacridine, a chemical compound with planar topology capable of intercalation between DNA bases. Our results show that the three chemicals tested are able to induce endoreduplication to different degrees. These observations seem to lend support to the proposal that topoisomerase II plays a central role in chromosome segregation in mammalian cells.
Collapse
Affiliation(s)
- Nuria Pastor
- Department of Cell Biology, Faculty of Biology, University of Seville, Avenida Reina Mercedes 6, E-41012 Seville, Spain
| | | | | | | |
Collapse
|
4
|
Tateno H, Kamiguchi Y. Chromosome analysis of mouse one-cell androgenones derived from a sperm nucleus exposed to topoisomerase II inhibitors at pre- and post-fertilization stages. Mutat Res 2005; 556:117-26. [PMID: 15491639 DOI: 10.1016/j.mrfmmm.2004.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 07/07/2004] [Accepted: 07/14/2004] [Indexed: 11/29/2022]
Abstract
Mouse spermatozoa and androgenetic one-cell embryos (androgenones) at various developmental stages were exposed to etoposide (1 microM), a topoisomerase II (topo II) poison, or to either of two catalytic inhibitors: ICRF-193 (10 microM) or merbarone (50 microM), for 2 h in order to study the clastogenic effects of these drugs on remodeled sperm chromatin. None of the drugs induced structural chromosome aberrations in condensed chromatin of spermatozoa. However, etoposide and merbarone exerted strong clastogenic actions on remodeled chromatin of androgenones. Expanding chromatin was most sensitive to both of these drugs at the time of pronuclear formation, as nearly 100% of androgenones exposed at this stage displayed structural chromosome aberrations. ICRF-193 did not affect sperm chromatin at all remodeling stages. A majority of the aberrations induced by etoposide and merbarone were of the chromosome-type. Chromosome exchanges, including translocation, dicentric, and ring chromosomes, preferentially appeared following exposure at the early stages of chromatin remodeling. Thus, despite their different modes of topo II inhibition, etoposide and merbarone showed similar clastogenic actions on remodeled sperm chromatin. These results suggest that the formation of transient DNA cleavage, mediated by ooplasmic topo II, accompanies the remodeling. The present findings provide insight into the mechanisms by which structural aberrations are generated in paternal chromosomes.
Collapse
Affiliation(s)
- Hiroyuki Tateno
- Department of Biological Sciences, Asahikawa Medical College, 2-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan.
| | | |
Collapse
|
5
|
Marchetti F, Bishop JB, Lowe X, Generoso WM, Hozier J, Wyrobek AJ. Etoposide induces heritable chromosomal aberrations and aneuploidy during male meiosis in the mouse. Proc Natl Acad Sci U S A 2001; 98:3952-7. [PMID: 11274416 PMCID: PMC31160 DOI: 10.1073/pnas.061404598] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2000] [Indexed: 11/18/2022] Open
Abstract
Etoposide, a topoisomerase II inhibitor widely used in cancer therapy, is suspected of inducing secondary tumors and affecting the genetic constitution of germ cells. A better understanding of the potential heritable risk of etoposide is needed to provide sound genetic counseling to cancer patients treated with this drug in their reproductive years. We used a mouse model to investigate the effects of clinical doses of etoposide on the induction of chromosomal abnormalities in spermatocytes and their transmission to zygotes by using a combination of chromosome painting and 4',6-diamidino-2-phenylindole staining. High frequencies of chromosomal aberrations were detected in spermatocytes within 64 h after treatment when over 30% of the metaphases analyzed had structural aberrations (P < 0.01). Significant increases in the percentages of zygotic metaphases with structural aberrations were found only for matings that sampled treated pachytene (28-fold, P < 0.0001) and preleptotene spermatocytes (13-fold, P < 0.001). Etoposide induced mostly acentric fragments and deletions, types of aberrations expected to result in embryonic lethality, because they represent loss of genetic material. Chromosomal exchanges were rare. Etoposide treatment of pachytene cells induced aneuploidy in both spermatocytes (18-fold, P < 0.01) and zygotes (8-fold, P < 0.05). We know of no other report of an agent for which paternal exposure leads to an increased incidence of aneuploidy in the offspring. Thus, we found that therapeutic doses of etoposide affect primarily meiotic germ cells, producing unstable structural aberrations and aneuploidy, effects that are transmitted to the progeny. This finding suggests that individuals who undergo chemotherapy with etoposide may be at a higher risk for abnormal reproductive outcomes especially within the 2 months after chemotherapy.
Collapse
Affiliation(s)
- F Marchetti
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Willmore E, Frank AJ, Padget K, Tilby MJ, Austin CA. Etoposide targets topoisomerase IIalpha and IIbeta in leukemic cells: isoform-specific cleavable complexes visualized and quantified in situ by a novel immunofluorescence technique. Mol Pharmacol 1998; 54:78-85. [PMID: 9658192 DOI: 10.1124/mol.54.1.78] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have shown that both DNA topoisomerase (topo) IIalpha and beta are in vivo targets for etoposide using a new assay which directly measures topo IIalpha and beta cleavable complexes in individual cells after treatment with topo II targeting drugs. CCRF-CEM human leukemic cells were exposed to etoposide for 2 hr, then embedded in agarose on microscope slides before cell lysis. DNA from each cell remained trapped in the agarose and covalently bound topo II molecules from drug-stabilized cleavable complexes remained associated with the DNA. The covalently bound topo II was detected in situ by immunofluorescence. Isoform-specific covalent complexes were detected with antisera specific for either the alpha or beta isoform of topo II followed by a fluorescein isothiocyanate-conjugated second antibody. DNA was detected using the fluorescent stain Hoechst 33258. A cooled slow scan charged coupled device camera was used to capture images. A dose-dependent increase in green immunofluorescence was observed when using antisera to either the alpha or beta isoforms of topo II, indicating that both isoforms are targets for etoposide. We have called this the TARDIS method, for trapped in agarose DNA immunostaining. Two key advantages of the TARDIS method are that it is isoform-specific and that it requires small numbers of cells, making it suitable for analysis of samples from patients being treated with topo II-targeting drugs. The isoform specificity will enable us to extend our understanding of the mechanism of interaction between topo II-targeting agents and their target, the two human isoforms.
Collapse
Affiliation(s)
- E Willmore
- Department of Biochemistry and Genetics, The Medical School, The University of Newcastle-upon-Tyne, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | | | | | | | | |
Collapse
|