1
|
Yin S, Tian T, Wang C, Wang D, Pi X, Liu M, Jin L, Liu J, Wang L, Li Z, Ren A, Yin C. Prenatal uranium exposure and risk for fetal neural tube defects: A case-control study in women living in a rural area of northern China. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127466. [PMID: 34653865 DOI: 10.1016/j.jhazmat.2021.127466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/11/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
The adverse effects of uranium exposure on human health are well-known; less is known, however, regarding its association with congenital malformations. We conducted a case-control study to examine the association between prenatal exposure to uranium and risk for fetal neural tube defects (NTDs) using the concentration of uranium in placental tissue as an exposure marker in 408 NTD cases and 593 healthy controls. Uranium concentration was quantified with an inductively coupled plasma mass spectrometer. The odds ratios of NTDs for uranium exposure levels, categorized into quartiles, were estimated using logistic regression. The median concentration of uranium in the NTD group (0.409 ng/g) was significantly higher than that in the control group (0.218 ng/g). The risk for NTDs increased 2.52-fold (95% CI, 1.85-3.45) for concentrations of uranium above the median value for all participants. After adjusting for confounders, the risk for NTDs increased 1.36-fold (95% CI, 1.25-6.17), 1.77-fold (95% CI, 1.09-2.85), and 3.60-fold (95% CI, 2.30-5.64) for the second, third, and fourth quartiles of uranium concentrations compared to the lowest quartile, respectively. Prenatal exposure to uranium is a risk factor for NTDs in this population. Prospective studies are needed to further validate this finding.
Collapse
Affiliation(s)
- Shengju Yin
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tian Tian
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital); Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Chengrong Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Di Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xin Pi
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing, China
| | - Mengyuan Liu
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Lei Jin
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jufen Liu
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Linlin Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
| | - Chenghong Yin
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Smith DE, Todorov T, Defante AP, Hoffman JF, Kalinich JF, Centeno JA. Spectroscopic and Spectrometric Approaches for Assessing the Composition of Embedded Metals in Tissues. APPLIED SPECTROSCOPY 2021; 75:661-673. [PMID: 33231488 DOI: 10.1177/0003702820979748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many medical devices contain metals that interface with the body. Additionally, embedded metal fragments from military wounds are typically not removed, to avoid the risk of morbidity associated with invasive surgery. The long-term health consequences of many of these materials are not thoroughly understood. To this end, we have exposed rats for up to one year to implanted single-element metal pellets of any one of Al, Co, Cu, Fe, Ni, Pb, Ta, or W. Various tissues were harvested and flash frozen for analysis of their metal distribution. We discuss approaches to most thoroughly and reliably evaluate the distribution of metal in these tissues. The path to the most appropriate analytical technique took us through extensive examination of the tissues using scanning electron microscopy with energy dispersive X-ray spectroscopy (XPS), X-ray photoelectron spectroscopy (XPS), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Though any one of these methods is highly relied upon in surface chemistry analysis, LA-ICP-MS alone showed presence of metal in the tissue. This information will help build robust methods to bridge the gap in our understanding of biosolubility and distribution of embedded metal throughout the body.
Collapse
Affiliation(s)
- Diane E Smith
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, White Oak Federal Research Center, Silver Spring, MD, USA
| | - Todor Todorov
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Adrian P Defante
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Jessica F Hoffman
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| | - John F Kalinich
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| | - José A Centeno
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, White Oak Federal Research Center, Silver Spring, MD, USA
- University of Maryland School of Medicine, Division of Occupational and Environmental Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Rossberg A, Abe T, Okuwaki K, Barkleit A, Fukuzawa K, Nakano T, Mochizuki Y, Tsushima S. Destabilization of DNA through interstrand crosslinking by UO 22. Chem Commun (Camb) 2019; 55:2015-2018. [PMID: 30643910 DOI: 10.1039/c8cc09329f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
UO22+ was shown to form an interstrand crosslink between two different strands of a single DNA molecule. This crosslink hardly affected the hydrogen bonds between nucleobase pairs but destabilized the π-π stacking between the two nucleobases in the vicinity of UO22+-bound phosphate. Thereby, the fragility of the DNA backbone increased upon UO22+ binding.
Collapse
Affiliation(s)
- André Rossberg
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, 01328, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Miller AC, Rivas R, Tesoro L, Kovalenko G, Kovaric N, Pavlovic P, Brenner D. Radiation exposure from depleted uranium: The radiation bystander effect. Toxicol Appl Pharmacol 2017; 331:135-141. [PMID: 28602947 DOI: 10.1016/j.taap.2017.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/22/2017] [Accepted: 06/07/2017] [Indexed: 10/19/2022]
Abstract
Depleted uranium (DU) is a radioactive heavy metal used primarily in military applications. Published data from our laboratory have demonstrated that DU exposure in vitro to immortalized human osteoblast cells (HOS) is both neoplastically transforming and genotoxic. In vivo studies have also demonstrated that DU is leukemogenic and genotoxic. DU possesses both a radiological (alpha particle) and chemical (metal) component but is generally considered a chemical biohazard. Studies have shown that alpha particle radiation does play a role in DU's toxic effects. Evidence has accumulated that non-irradiated cells in the vicinity of irradiated cells can have a response to ionization events. The purpose of this study was to determine if these "bystander effects" play a role in DU's toxic and neoplastic effects using HOS cells. We investigated the bystander responses between DU-exposed cells and non-exposed cells by co-culturing the two equal populations. Decreased cell survival and increased neoplastic transformation were observed in the non-DU exposed cells following 4 or 24h co-culture. In contrast Ni (II)- or Cr(VI)- exposed cells were unable to alter those biological effects in non-Ni(II) or non-Cr(VI) exposed co-cultured cells. Transfer experiments using medium from the DU-exposed and non-exposed co-cultured cells was able to cause adverse biological responses in cells; these results demonstrated that a factor (s) is secreted into the co-culture medium which is involved in this DU-associated bystander effect. This novel effect of DU exposure could have implications for radiation risk and for health risk assessment associated with DU exposure.
Collapse
Affiliation(s)
- Alexandra C Miller
- Science Research Department, Armed Forces Radiobiology Research Institute, Radiology and Radiation Sciences Department, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, United States; Center for Radiological Research, Columbia University Medical Center, Columbia University, New York, NY 10022, United States; New York University, School of Medicine, 550 First Avenue, New York, NY 10016, United States.
| | - Rafael Rivas
- Science Research Department, Armed Forces Radiobiology Research Institute, Radiology and Radiation Sciences Department, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, United States
| | - Leonard Tesoro
- Science Research Department, Armed Forces Radiobiology Research Institute, Radiology and Radiation Sciences Department, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, United States
| | - Gregor Kovalenko
- New York University, School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | - Nikola Kovaric
- New York University, School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | - Peter Pavlovic
- New York University, School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | - David Brenner
- Center for Radiological Research, Columbia University Medical Center, Columbia University, New York, NY 10022, United States
| |
Collapse
|
5
|
Asic A, Kurtovic-Kozaric A, Besic L, Mehinovic L, Hasic A, Kozaric M, Hukic M, Marjanovic D. Chemical toxicity and radioactivity of depleted uranium: The evidence from in vivo and in vitro studies. ENVIRONMENTAL RESEARCH 2017; 156:665-673. [PMID: 28472753 DOI: 10.1016/j.envres.2017.04.032] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/03/2017] [Accepted: 04/22/2017] [Indexed: 06/07/2023]
Abstract
The main aim of this review is to summarize and discuss the current state of knowledge on chemical toxicity and radioactivity of depleted uranium (DU) and their effect on living systems and cell lines. This was done by presenting a summary of previous investigations conducted on different mammalian body systems and cell cultures in terms of potential changes caused by either chemical toxicity or radioactivity of DU. In addition, the authors aimed to point out the limitations of those studies and possible future directions. The majority of both in vitro and in vivo studies performed using animal models regarding possible effects caused by acute or chronic DU exposure has been reviewed. Furthermore, exposure time and dose, DU particle solubility, and uranium isotopes as factors affecting the extent of DU effects have been discussed. Special attention has been dedicated to chromosomal aberrations, DNA damage and DNA breaks, as well as micronuclei formation and epigenetic changes, as DU has recently been considered a possible causative factor of all these processes. Therefore, this approach might represent a novel area of study of DU-related irradiation effects on health. Since different studies offer contradictory results, the main aim of this review is to summarize and briefly discuss previously obtained results in order to identify the current opinion on DU toxicity and radioactivity effects in relation to exposure type and duration, as well as DU properties.
Collapse
Affiliation(s)
- Adna Asic
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, Ilidza, 71210 Sarajevo, Bosnia and Herzegovina
| | - Amina Kurtovic-Kozaric
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, Ilidza, 71210 Sarajevo, Bosnia and Herzegovina; Department of Pathology, Cytology and Human Genetics, Clinical Center of the University of Sarajevo, Bolnicka 25, 71000 Sarajevo, Bosnia and Herzegovina; Department of Biology, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Larisa Besic
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, Ilidza, 71210 Sarajevo, Bosnia and Herzegovina
| | - Lejla Mehinovic
- Department of Biology, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Azra Hasic
- Department of Biology, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mirza Kozaric
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, Ilidza, 71210 Sarajevo, Bosnia and Herzegovina; Department of Pathology, Cytology and Human Genetics, Clinical Center of the University of Sarajevo, Bolnicka 25, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mirsada Hukic
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, Ilidza, 71210 Sarajevo, Bosnia and Herzegovina; Academy of Sciences and Art of Bosnia and Herzegovina, Bistrik 7, 71000 Sarajevo, Bosnia and Herzegovina; Institute for Biomedical Diagnostics Nalaz, Hasana Brkica 2, Sarajevo, Bosnia and Herzegovina
| | - Damir Marjanovic
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, Ilidza, 71210 Sarajevo, Bosnia and Herzegovina; Institute for Anthropologic Research, Ljudevita Gaja 32, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Abstract
Depleted uranium munitions have been used in recent military operations in both the Gulf and the Balkans and there have been concerns that exposure to depleted uranium may be a cause of `Gulf War Syndrome’ and cancer clusters. We recount the properties of depleted uranium, its military uses, and the situations in which personnel may be exposed. Following a review of scientific literature, the health effects of depleted and natural uranium exposure are described and the major outcomes of research into Gulf Veterans’ Illnesses are summarised. We conclude that, although there is the potential for uranium exposures to cause renal damage or lung cancer, the risk of harm following depleted uranium exposure in military settings seems to be low. We advise on the management of casualties exposed to depleted uranium and suggest control measures that may be appropriate to protect personnel who provide casualty care.
Collapse
Affiliation(s)
- JPG Bolton
- Ministry of Defence, Gulf Veterans’ Illnesses Unit, London, UK
| | - CRM Foster
- Department of Submarine and Radiation Medicine, Institute of Naval Medicine, Gosport, UK
| |
Collapse
|
7
|
Xiao G, Jones RL, Saunders D, Caldwell KL. Determination of 234U/238U, 235U/238U and 236U/238U isotope ratios in urine using sector field inductively coupled plasma mass spectrometry. RADIATION PROTECTION DOSIMETRY 2014; 162:618-624. [PMID: 24563523 PMCID: PMC4889024 DOI: 10.1093/rpd/ncu023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Quantification of the isotopic composition of uranium in urine at low levels of concentration is important for assessing both military and civilian populations' exposures to uranium. However, until now there has been no convenient, precise method established for rapid determination of multiple uranium isotope ratios. Here, the authors report a new method to measure (234)U/(238)U, (235)U/(238)U and (236)U/(238)U. It uses solid-phase chelation extraction (via TRU columns) of actinides from the urine matrix, followed by measurement using a magnetic sector field inductively coupled plasma mass spectrometer (SF-ICP-MS-Thermo Element XR) equipped with a high-efficiency nebulizer (Apex PFA microflow) and coupled with a membrane desolvating nebulizer system (Aridus II™). This method provides rapid and reliable results and has been used successfully to analyse Certified Reference Materials.
Collapse
Affiliation(s)
- Ge Xiao
- Inorganic and Radiation Analytical Toxicology Branch, Centers for Disease Control and Prevention, 4770 Buford HWY, Mail Stop F50, Atlanta, GA 30341, USA
| | - Robert L Jones
- Inorganic and Radiation Analytical Toxicology Branch, Centers for Disease Control and Prevention, 4770 Buford HWY, Mail Stop F50, Atlanta, GA 30341, USA
| | - David Saunders
- Inorganic and Radiation Analytical Toxicology Branch, Centers for Disease Control and Prevention, 4770 Buford HWY, Mail Stop F50, Atlanta, GA 30341, USA
| | - Kathleen L Caldwell
- Inorganic and Radiation Analytical Toxicology Branch, Centers for Disease Control and Prevention, 4770 Buford HWY, Mail Stop F50, Atlanta, GA 30341, USA
| |
Collapse
|
8
|
|
9
|
Holmes AL, Joyce K, Xie H, Falank C, Hinz JM, Wise JP. The impact of homologous recombination repair deficiency on depleted uranium clastogenicity in Chinese hamster ovary cells: XRCC3 protects cells from chromosome aberrations, but increases chromosome fragmentation. Mutat Res 2014; 762:1-9. [PMID: 24561002 DOI: 10.1016/j.mrfmmm.2014.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/23/2013] [Accepted: 02/11/2014] [Indexed: 06/03/2023]
Abstract
Depleted uranium (DU) is extensively used in both industry and military applications. The potential for civilian and military personnel exposure to DU is rising, but there are limited data on the potential health hazards of DU exposure. Previous laboratory research indicates DU is a potential carcinogen, but epidemiological studies remain inconclusive. DU is genotoxic, inducing DNA double strand breaks, chromosome damage and mutations, but the mechanisms of genotoxicity or repair pathways involved in protecting cells against DU-induced damage remain unknown. The purpose of this study was to investigate the effects of homologous recombination repair deficiency on DU-induced genotoxicity using RAD51D and XRCC3-deficient Chinese hamster ovary (CHO) cell lines. Cells deficient in XRCC3 (irs1SF) exhibited similar cytotoxicity after DU exposure compared to wild-type (AA8) and XRCC3-complemented (1SFwt8) cells, but DU induced more break-type and fusion-type lesions in XRCC3-deficient cells compared to wild-type and XRCC3-complemented cells. Surprisingly, loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. DU induced selective X-chromosome fragmentation irrespective of RAD51D status, but loss of XRCC3 nearly eliminated fragmentation observed after DU exposure in wild-type and XRCC3-complemented cells. Thus, XRCC3, but not RAD51D, protects cells from DU-induced breaks and fusions and also plays a role in DU-induced chromosome fragmentation.
Collapse
Affiliation(s)
- Amie L Holmes
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America; Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America; Department of Applied Medical Science, University of Southern Maine, 96 Falmouth Street, P.O. Box 9300, Portland, ME 04104-9300, United States of America
| | - Kellie Joyce
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America; Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America
| | - Hong Xie
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America; Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America; Department of Applied Medical Science, University of Southern Maine, 96 Falmouth Street, P.O. Box 9300, Portland, ME 04104-9300, United States of America
| | - Carolyne Falank
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America; Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America
| | - John M Hinz
- School of Molecular Biosciences, Washington State University, Biotechnology and Life Sciences Building, Pullman, WA 99164-7520, United States of America
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America; Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America; Department of Applied Medical Science, University of Southern Maine, 96 Falmouth Street, P.O. Box 9300, Portland, ME 04104-9300, United States of America.
| |
Collapse
|
10
|
Bardack S, Dalgard CL, Kalinich JF, Kasper CE. Genotoxic changes to rodent cells exposed in vitro to tungsten, nickel, cobalt and iron. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:2922-40. [PMID: 24619124 PMCID: PMC3987013 DOI: 10.3390/ijerph110302922] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 12/03/2022]
Abstract
Tungsten-based materials have been proposed as replacements for depleted uranium in armor-penetrating munitions and for lead in small-arms ammunition. A recent report demonstrated that a military-grade composition of tungsten, nickel, and cobalt induced a highly-aggressive, metastatic rhabdomyosarcoma when implanted into the leg muscle of laboratory rats to simulate a shrapnel wound. The early genetic changes occurring in response to embedded metal fragments are not known. In this study, we utilized two cultured rodent myoblast cell lines, exposed to soluble tungsten alloys and the individual metals comprising the alloys, to study the genotoxic effects. By profiling cell transcriptomes using microarray, we found slight, yet distinct and unique, gene expression changes in rat myoblast cells after 24 h metal exposure, and several genes were identified that correlate with impending adverse consequences of ongoing exposure to weapons-grade tungsten alloy. These changes were not as apparent in the mouse myoblast cell line. This indicates a potential species difference in the cellular response to tungsten alloy, a hypothesis supported by current findings with in vivo model systems. Studies examining genotoxic-associated gene expression changes in cells from longer exposure times are warranted.
Collapse
Affiliation(s)
- Stephanie Bardack
- Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, D.C. 20201, USA.
| | - Clifton L Dalgard
- Department of Anatomy, Physiology, and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - John F Kalinich
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA.
| | - Christine E Kasper
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
11
|
Ling D, Hyeon T. Chemical design of biocompatible iron oxide nanoparticles for medical applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1450-66. [PMID: 23233377 DOI: 10.1002/smll.201202111] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Indexed: 05/26/2023]
Abstract
Iron oxide nanoparticles are one of the most versatile and safe nanomaterials used in medicine. Recent progress in nanochemistry enables fine control of the size, crystallinity, uniformity, and surface properties of iron oxide nanoparticles. In this review, the synthesis of chemically designed biocompatible iron oxide nanoparticles with improved quality and reduced toxicity is discussed for use in diverse biomedical applications.
Collapse
Affiliation(s)
- Daishun Ling
- Center for Nanoparticle Research, Institute for Basic Science (IBS) and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
| | | |
Collapse
|
12
|
McDiarmid MA, Albertini RJ, Tucker JD, Vacek PM, Carter EW, Bakhmutsky MV, Oliver MS, Engelhardt SM, Squibb KS. Measures of genotoxicity in Gulf war I veterans exposed to depleted uranium. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:569-581. [PMID: 21728185 DOI: 10.1002/em.20658] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 05/31/2023]
Abstract
Exposure to depleted uranium (DU), an alpha-emitting heavy metal, has prompted the inclusion of markers of genotoxicity in the long-term medical surveillance of a cohort of DU-exposed Gulf War veterans followed since 1994. Using urine U (uU) concentration as the measure of U body burden, the cohort has been stratified into low-u (<0.10 μg U/g creatinine) and high-u groups (≥ 0.10 μg U/g creatinine). Surveillance outcomes for this cohort have historically included markers of mutagenicity and clastogenicity, with past results showing generally nonsignificant differences between low- vs. high-U groups. However, mean hypoxanthine-guanine phosphoribosyl transferase (HPRT) mutant frequencies (MFs) have been almost 50% higher in the high-U group. We report here results of a more comprehensive protocol performed in a 2009 evaluation of a subgroup (N = 35) of this cohort. Four biomarkers of genotoxicity [micronuclei (MN), chromosome aberrations, and MFs of HPRT and PIGA] were examined. There were no statistically significant differences in any outcome measure when results were compared between the low- vs. high-U groups. However, modeling of the HPRT MF results suggests a possible threshold effect for MFs occurring in the highest U exposed cohort members. Mutational spectral analysis of HPRT mutations is underway to clarify a potential clonal vs. a threshold uU effect to explain this observation. This study provides a comprehensive evaluation of a human population chronically exposed to DU and demonstrates a relatively weak genotoxic effect of the DU exposure. These results may explain the lack of clear epidemiologic evidence for U carcinogenicity in humans. Environ. Mol. Mutagen., 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Melissa A McDiarmid
- Occupational Health Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Al-Mumen MM, Al-Janabi AA, Jumaa AS, Al-Toriahi KM, Yasseen AA. Exposure to depleted uranium does not alter the co-expression of HER-2/neu and p53 in breast cancer patients. BMC Res Notes 2011; 4:87. [PMID: 21443808 PMCID: PMC3072333 DOI: 10.1186/1756-0500-4-87] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 03/29/2011] [Indexed: 01/12/2023] Open
Abstract
Background Amongst the extensive literature on immunohistochemical profile of breast cancer, very little is found on populations exposed to a potential risk factor such as depleted uranium. This study looked at the immunohistochemical expression of HER-2/neu (c-erbB2) and p53 in different histological types of breast cancer found in the middle Euphrates region of Iraq, where the population has been exposed to high levels of depleted uranium. Findings The present investigation was performed over a period starting from September 2008 to April 2009. Formalin-fixed, paraffin-embedded blocks from 70 patients with breast cancer (62 ductal and 8 lobular carcinoma) were included in this study. A group of 25 patients with fibroadenoma was included as a comparative group, and 20 samples of normal breast tissue sections were used as controls. Labeled streptavidin-biotin (LSAB+) complex method was employed for immunohistochemical detection of HER-2/neu and p53. The detection rate of HER-2/neu and p53 immunohistochemical expression were 47.14% and 35.71% respectively in malignant tumors; expression was negative in the comparative and control groups (p < 0.05). HER-2/neu immunostaining was significantly associated with histological type, tumor size, nodal involvement, and recurrence of breast carcinoma (p < 0.05), p53 immunostaining was significantly associated with tumor size, nodal involvement and recurrence of breast cancer (p < 0.05). There was greater immunoexpression of HER-2/neu in breast cancer in this population, compared with findings in other populations. Both biomarkers were positively correlated with each other. Furthermore, all the cases that co-expressed both HER-2/neu and p53 showed the most unfavorable biopathological profile. Conclusion P53 and HER-2/neu over-expression play an important role in pathogenesis of breast carcinoma. The findings indicate that in regions exposed to high levels of depleted uranium, although p53 and HER-2/neu overexpression are both high, correlation of their expression with age, grade, tumor size, recurrence and lymph node involvement is similar to studies that have been conducted on populations not exposed to depleted uranium. HER-2/neu expression in breast cancer was higher in this population, compared with results on non-exposed populations.
Collapse
Affiliation(s)
- Mais M Al-Mumen
- Department of Pathology and Forensic Medicine, Faculty of Medicine, Kufa, University, Kufa, P,O, Box 18, Iraq.
| | | | | | | | | |
Collapse
|
14
|
Oh MH, Lee N, Kim H, Park SP, Piao Y, Lee J, Jun SW, Moon WK, Choi SH, Hyeon T. Large-Scale Synthesis of Bioinert Tantalum Oxide Nanoparticles for X-ray Computed Tomography Imaging and Bimodal Image-Guided Sentinel Lymph Node Mapping. J Am Chem Soc 2011; 133:5508-15. [DOI: 10.1021/ja200120k] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Myoung Hwan Oh
- National Creative Research Initiative Center for Oxide Nanocrystalline Materials, World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea
| | - Nohyun Lee
- National Creative Research Initiative Center for Oxide Nanocrystalline Materials, World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea
| | - Hyoungsu Kim
- Radiology, Seoul National University Hospital, and the Institute of Radiation Medicine, Medical Research Center, Seoul National University, 28, Yeongeon-dong, Jongno-gu, Seoul 110-744, Korea
| | - Seung Pyo Park
- National Creative Research Initiative Center for Oxide Nanocrystalline Materials, World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea
| | - Yuanzhe Piao
- Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 443-270, Korea
| | - Jisoo Lee
- National Creative Research Initiative Center for Oxide Nanocrystalline Materials, World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea
| | - Samuel Woojoo Jun
- National Creative Research Initiative Center for Oxide Nanocrystalline Materials, World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea
| | - Woo Kyung Moon
- Radiology, Seoul National University Hospital, and the Institute of Radiation Medicine, Medical Research Center, Seoul National University, 28, Yeongeon-dong, Jongno-gu, Seoul 110-744, Korea
| | - Seung Hong Choi
- Radiology, Seoul National University Hospital, and the Institute of Radiation Medicine, Medical Research Center, Seoul National University, 28, Yeongeon-dong, Jongno-gu, Seoul 110-744, Korea
| | - Taeghwan Hyeon
- National Creative Research Initiative Center for Oxide Nanocrystalline Materials, World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea
| |
Collapse
|
15
|
Miller AC, Stewart M, Rivas R. Preconceptional paternal exposure to depleted uranium: transmission of genetic damage to offspring. HEALTH PHYSICS 2010; 99:371-379. [PMID: 20699700 DOI: 10.1097/hp.0b013e3181cfe0dd] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Depleted uranium (DU) is an alpha particle emitter and radioactive heavy metal used in military applications. Due to internalization of DU during military operations and the ensuing chronic internal exposure to DU, there are concerns regarding its potential health effects. Preconceptional paternal irradiation has been implicated as a causal factor in childhood cancer and it has been suggested that this paternal exposure to radiation may play a role in the occurrence of leukemia and other cancers to offspring. Similarly, in vivo heavy metal studies have demonstrated that carcinogenic effects can occur in unexposed offspring. Using a transgenic mouse system employing a lambda shuttle vector allowing mutations (in the lacI gene) to be analyzed in vitro, we have investigated the possibility that chronic preconceptional paternal DU exposure can lead to transgenerational transmission of genomic instability. The mutation frequencies in vector recovered from the bone marrow cells of the F1 offspring of male parents exposed to low, medium, and high doses of internalized DU for 7 mo were evaluated and compared to control, tantalum, nickel, and gamma radiation F1 samples. Results demonstrate that as paternal DU-dose increased there was a trend towards higher mutation frequency in vector recovered from the DNA obtained from bone marrow of F1 progeny; medium and high dose DU exposure to P1 fathers resulted in a significant increase in mutation frequency in F1 offspring (3.57 +or - 0.37 and 4.81 + or - 0.43 x 10; p < 0.001) in comparison to control (2.28 + or - 0.31 x 10). The mutation frequencies from F1 offspring of low dose DU, Ta- or Ni-implanted fathers (2. 71 + or - 0.35, 2.38 + or - 0.35, and 2.93 + or - 0.39 x 10, respectively) were not significantly different than control levels (2.28 + or - 0.31 x 10). Offspring from Co (4 Gy) irradiated fathers did demonstrate an increased lacI mutation frequency (4.69 + or - 0.48 x 10) as had been shown previously. To evaluate the role of radiation involved in the observed DU effects, males were exposed to equal concentrations (50 mg U L) of either enriched uranium or DU in their drinking water for 2 mo prior to breeding. A comparison of these offspring indicated that there was a specific-activity dependent increase in offspring bone marrow mutation frequency. Taken together these uranyl nitrate data support earlier results in other model systems showing that radiation can play a role in DU-induced biological effects in vitro. However, since the lacI mutation model measures point mutations and cannot measure large deletions that are characteristic of radiation damage, the role of DU chemical effects in the observed offspring mutation frequency increase may also be significant. Regardless of the question of DU-radiation vs. DU-chemical effects, the data indicate that there exists a route for transgenerational transmission of factor(s) leading to genomic instability in F1 progeny from DU-exposed fathers.
Collapse
Affiliation(s)
- Alexandra C Miller
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University, Bethesda, MD 20889-5603, USA.
| | | | | |
Collapse
|
16
|
Xie H, LaCerte C, Thompson WD, Wise JP. Depleted uranium induces neoplastic transformation in human lung epithelial cells. Chem Res Toxicol 2010; 23:373-8. [PMID: 20000475 DOI: 10.1021/tx9003598] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Depleted uranium (DU) is commonly used in military armor and munitions, and thus, exposure of soldiers and noncombatants is frequent and widespread. Previous studies have shown that DU has both chemical and radiological toxicity and that the primary route of exposure of DU to humans is through inhalation and ingestion. However, there is limited research information on the potential carcinogenicity of DU in human bronchial cells. Accordingly, we determined the neoplastic transforming ability of particulate DU to human bronchial epithelial cells (BEP2D). We observed the loss of contact inhibition and anchorage independent growth in cells exposed to DU after 24 h. We also characterized these DU-induced transformed cell lines and found that 40% of the cell lines exhibit alterations in plating efficiency and no significant changes in the cytotoxic response to DU. Cytogenetic analyses showed that 53% of the DU-transformed cell lines possess a hypodiploid phenotype. These data indicate that human bronchial cells are transformed by DU and exhibit significant chromosome instability consistent with a neoplastic phenotype.
Collapse
Affiliation(s)
- Hong Xie
- Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth Street, P.O. Box 9300, Portland, Maine 04104-9300, USA
| | | | | | | |
Collapse
|
17
|
LaCerte C, Xie H, Aboueissa AM, Wise JP. Particulate depleted uranium is cytotoxic and clastogenic to human lung epithelial cells. Mutat Res 2010; 697:33-7. [PMID: 20172046 DOI: 10.1016/j.mrgentox.2010.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 01/21/2010] [Accepted: 01/30/2010] [Indexed: 11/27/2022]
Abstract
Depleted uranium (DU) is commonly used in military applications and consequently exposure to soldiers and non-combatants is potentially frequent and widespread. DU is suspected to be a carcinogen, potentially affecting the bronchial cells of the lung. Few studies have considered DU in human bronchial cells. Accordingly, we determined the cytotoxicity and clastogenicity of particulate DU in human bronchial epithelial cells (BEP2D cells). DU-induced concentration-dependent cytotoxicity in human bronchial epithelial cells, and was not clastogenic after 24h but induced chromosomal aberrations after 48h. These data indicate that if DU is a human bronchial carcinogen, it is likely acting through a mechanism that involves DNA breaks after longer exposures.
Collapse
Affiliation(s)
- Carolyne LaCerte
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., PO Box 9300, Portland
| | | | | | | |
Collapse
|
18
|
The toxicity of depleted uranium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:303-13. [PMID: 20195447 PMCID: PMC2819790 DOI: 10.3390/ijerph7010303] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 01/20/2010] [Indexed: 12/22/2022]
Abstract
Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed.
Collapse
|
19
|
Hao Y, Li R, Leng Y, Ren J, Liu J, Ai G, Xu H, Su Y, Cheng T. A study assessing the genotoxicity in rats after chronic oral exposure to a low dose of depleted uranium. JOURNAL OF RADIATION RESEARCH 2009; 50:521-8. [PMID: 19801891 DOI: 10.1269/jrr.09052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
PURPOSE The aim of this study was to evaluate the potential genotoxicity induced by chronic oral exposure to depleted uranium (DU). MATERIALS AND METHODS Weanling Wistar rats (F(0)), 50/sex/group, were exposed to DU in food at doses of 0, 4, or 40 mg kg(-1)day(-1) for four months. They were subsequently mated, resulting in the birth of F(1) rats. Fifty F(l) weanlings/sex/group were exposed for four months to the same dose levels as their parents. After four months, the uranium content in the tissues, the potential damage to the genetic material, and pathomorphological changes of the testicles were observed in both F(0) and F(1) rats. The genotoxicity of DU was evaluated by the following methods: sperm abnormality assessment, the bone-marrow micronucleus test, and the comet assay. RESULTS Uranium content in F(1) rats was significantly higher than that in F(0) rats in both the kidney and ovary (p < 0.05). The sperm abnormality rate, marrow cell micronuclei rate, comet tail length, and tailed cell percentage increased in each treatment group in each generation compared with the control group (p < 0.05). When comparing F(1) with F(0) rats, significant differences were detected for most of the indicators, with F(1) rats always exhibiting more damage (p < 0.05). With regard to pathomorphological changes in the testicles, the sperm displayed atypical changes, including thickening of the anachromasis nucleolus, which seemed to be more severe in F(1) rats. CONCLUSION Genotoxicity may be induced in rats after chronic oral exposure to a low dose of DU.
Collapse
Affiliation(s)
- Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Aschner M, Jiang GCT. Toxicity studies on depleted uranium in primary rat cortical neurons and in Caenorhabditis elegans: what have we learned? JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2009; 12:525-539. [PMID: 20183532 DOI: 10.1080/10937400903358942] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Depleted uranium (DU) is the major by-product of the uranium enrichment process for its more radioactive isotopes, retaining approximately 60% of its natural radioactivity. Given its properties as a pyrophoric and dense metal, it has been extensively used in armor and ammunitions. Questions have been raised regarding the possible neurotoxic effects of DU in humans based on follow-up studies in Gulf War veterans, where a decrease in neurocognitive behavior in a small population was noted. Additional studies in rodents indicated that DU readily traverses the blood-brain barrier, accumulates in specific brain regions, and results in increased oxidative stress, altered electrophysiological profiles, and sensorimotor deficits. This review summarizes the toxic potential of DU with emphasis on studies on thiol metabolite levels, high-energy phosphate levels, and isoprostane levels in primary rat cortical neurons. Studies in Caenorhabditis elegans detail the role of metallothioneins, small thiol-rich proteins, in protecting against DU exposure. In addition, recent studies also demonstrate that only one of the two forms, metallothionein-1, is important in the accumulation of uranium in worms.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | | |
Collapse
|
21
|
Abstract
This article describes uranium and depleted uranium (DU), their similar isotopic compositions, how DU arises, its use in munitions and armour-proofing, and its pathways for human exposures. Particular attention is paid to the evidence of DU's health effects from cell and animal experiments and from epidemiology studies. It is concluded that a precautionary approach should be adopted to DU and that there should be a moratorium on its use by military forces. International efforts to this end are described.
Collapse
Affiliation(s)
- Ian Fairlie
- Independent Consultant on Radioactivity in the Environment, London, UK.
| |
Collapse
|
22
|
Arfsten DP, Still KR, Wilfong ER, Johnson EW, McInturf SM, Eggers JS, Schaeffer DJ, Bekkedal MYV. Two-generation reproductive toxicity study of implanted depleted uranium (DU) in CD rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:410-427. [PMID: 19199148 DOI: 10.1080/15287390802647344] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Depleted uranium (DU) munitions and armor plating have been used in several conflicts over the last 17 yr, including the Persian Gulf War and the Iraq War. Because of its effectiveness and availability, DU will continue to be used in military applications into the foreseeable future. There is much controversy over the use of DU in weapons and equipment because of its potential radiological and toxic hazards, and there is concern over the chronic adverse health effects of embedded DU shrapnel in war veterans and bystanders. This study evaluated the effects of long-term implantation of DU on the reproductive success of F0 generation adults and development and survival of subsequent F1 and F2 generations in a two-generation reproductive toxicity study. F0 generation Sprague-Dawley rats, 8 wk of age, were surgically implanted with 0, 4, 8, 12, or 20 DU pellets (1 x 2 mm). Inert implant control animals were implanted with 12 or 20 tantallum (Ta) pellets. The F0 generation was then mated at 120 d post DU implantation. In the F0 generation, when measured on postimplantation d 27 and 117, uranium was present in the urine of DU-implanted animals in a dose-dependent manner. F0 reproductive success was similar across treatment groups and the maternal retrieval test revealed no changes in maternal behavior. DU implantation exerted no effect on the survival, health, or well-being of the F0 generation. Necropsy results of F0 animals were negative with the exception of a marked inflammatory response surrounding the implanted DU pellets. For the F1 generation, measures of F1 development through postnatal day (PND) 20 were unremarkable and no gross abnormalities were observed in F1 offspring. No uranium was detected in whole-body homogenates of PND 4 or PND 20 pups. Necropsy findings of F1 PND 20 pups were negative and no instances of ribcage malformation were observed in F1 PND 20 pups. Body weight and body weight gain of F1 rats through PND 120 were similar across treatment groups. Eight of 414 F1 animals observed from PND 20 to 120 died of unknown causes; 7 were from litters of DU-implanted F0 mating pairs. F1 mating success at 10 wk of age was an overall 70% compared with 91% for F0 mating pairs. Mating success was similar between F1 animals derived from DU-implanted F0 adults and those derived from F0 implant control adults suggesting that the comparatively low mating success was not due to F1 DU exposure. The gestational index of F1 animals derived from mid-dose F0 mating pairs was found to be lower compared with F1 controls. The average gestation duration of F1 animals derived from high-dose F0 mating pairs was found to be significantly longer than F1 controls. F1 sperm motility analyses did not differ among experimental groups and no gross abnormalities were identified at necropsy among surviving F1 animals at PND 120. Histopathology of kidneys, spleen, thymus, bone marrow, ovaries, and testes of F1 high-dose animals did not differ from F1 controls. F1 high-dose females had significantly higher mean relative liver and heart weights compared with F1 controls; the biological relevance of this finding could not be determined. For the F2 generation, measures of F2 development through PND 20 were unremarkable and no gross abnormalities were observed in F2 offspring. Necropsy findings of F2 PND 20 pups were negative and no instances of ribcage malformation were observed in F2 PND 20 pups. Body weight and body weight gain of F2 rats through PND 90 were similar across treatment groups. Mean relative heart weights of males derived from high-dose F0 parents were significantly lower compared with F2 controls. Sperm motility and concentration analysis of F2 males at PND 90 were similar across F2 groups. Overall, the consistent absence of positive findings in this study seems to suggest that DU is not a significant reproductive or developmental hazard, particularly when one considers that mid- and high-dose rats were implanted with the equivalent of 0.3 and 0.5 lb of DU in a 70-kg human, respectively. However, the findings that seven of eight F1 adults that died postweaning were from DU-implanted F0 mating pairs, and that mean relative heart weights were elevated in high-dose F1 and F2 pups, suggest conservatism is warranted in characterizing the reproductive and teratogenic hazards of embedded DU until further studies are completed.
Collapse
Affiliation(s)
- D P Arfsten
- Navy Drug Screening Laboratory, Naval Air Station Jacksonville, Florida 32212-0113, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Magno P, Giday SA, Gabrielson KL, Shin EJ, Clarke JO, Ko CW, Buscaglia JM, Jagannath SB, Canto MI, Kantsevoy SV. EUS-guided submucosal implantation of a radiopaque marker: a simple and effective procedure to facilitate subsequent surgical and radiation therapy. Gastrointest Endosc 2008; 67:1147-52. [PMID: 18513556 DOI: 10.1016/j.gie.2008.02.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 02/15/2008] [Indexed: 02/08/2023]
Abstract
BACKGROUND Endosonography (EUS) is widely used for locoregional staging of malignant GI tumors. Delineation of a tumor's margins with a long-lasting fluoroscopically visible material will facilitate subsequent surgical and radiation therapy. OBJECTIVE To assess the feasibility of EUS-guided submucosal implantation of a radiopaque marker in a porcine model. SETTING Survival experiments on four 50-kg pigs. METHODS A linear array echoendoscope was introduced into the esophagus and advanced to the stomach. With a 19-gauge FNA needle, a submucosal bleb was created by injecting 3 mL of normal saline solution into the gastric and esophageal wall followed by injection of 1 mL of tantalum suspension under fluoroscopic observation. Fluoroscopy was repeated after 1, 2, and 4 weeks followed by euthanasia and necropsy. MAIN OUTCOME MEASUREMENTS Long-term depositions of the marker in the injection sites. RESULTS Submucosal injections of tantalum were easily performed through the 19-gauge FNA needle, resulting in good fluoroscopic opacification of injected material. Follow-up fluoroscopy in 1, 2, and 4 weeks demonstrated stable deposition of the tantalum at the sites of injection. There were no complications during and after the tantalum implantation. Histologic examination of the injection sites demonstrated submucosal tantalum depositions without signs of infection, inflammation, tissue damage, or necrosis. LIMITATIONS Animal experiments with 4 weeks' follow-up. CONCLUSIONS EUS-guided implantation of tantalum as a radiopaque marker into the submucosal layer of the GI tract in a porcine model is technically feasible and safe. Long-lasting fluoroscopically visible tantalum markings could facilitate subsequent surgical and radiation therapy.
Collapse
Affiliation(s)
- Priscilla Magno
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Banday AA, Priyamvada S, Farooq N, Yusufi ANK, Khan F. Effect of uranyl nitrate on enzymes of carbohydrate metabolism and brush border membrane in different kidney tissues. Food Chem Toxicol 2008; 46:2080-8. [DOI: 10.1016/j.fct.2008.01.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 11/23/2007] [Accepted: 01/31/2008] [Indexed: 11/26/2022]
|
26
|
Arfsten DP, Wilfong ER, Bekkedal MYV, Johnson EW, McInturf SM, Eggers JS, Schaeffer DJ, Still KR. Evaluation of the effect of implanted depleted uranium (DU) on adult rat behavior and toxicological endpoints. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1995-2010. [PMID: 17966071 DOI: 10.1080/15287390701550987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In 2002, the Naval Health Research Center Toxicology Detachment began a study to determine the effects of surgically implanted depleted uranium (DU) pellets on adult rat (e.g., P1 generation) health and reproduction. In this report, the effect of implanted DU on adult rat behavior and health is described. Adult Sprague-Dawley (SD) rats, 8 wk of age, were surgically implanted with 0, 4, 8, 12, or 20 DU pellets (1 x 2 mm); 20 DU pellets of size 1 x 2 mm approximates to 0.22 kg (0.5 lb) of DU in a 70-kg (154 lb) person. Control animals were implanted with 12 or 20 tantallum (Ta) pellets. The animals were then housed for up to 150 d postimplantation or 20% of an assumed 2-yr life span for rats. The concentration of uranium in urine directly correlated with the number of implanted DU pellets, indicating that DU was migrating into the body from the implanted pellets. Three male and 4 female animals died during the 150-d period of causes apparently not related to DU implantation. Behavioral testing found no definitive evidence of neurobehavioral perturbations associated with DU implantation. Uranium translocated to tissues known to sequester uranium (bone, teeth, and kidneys), but uranium concentrations varied considerably within each dose group and did not follow a dose-response pattern as anticipated. Serum chemistry values were within normal ranges for the SD rat. However, alanine aminotransferase measurements were significantly lower for rats implanted with 20 DU pellets as compared to sham surgery controls but not when compared to animals implanted with Ta pellets only. Phosphate measurements were significantly lower for female rats implanted with 20 DU pellets as compared to both sham surgery controls and animals implanted with Ta pellets only. Monocyte ratios were higher in adult rats implanted with 20 DU pellets as compared to sham surgery controls but not when compared to animals implanted with 20 Ta pellets. Mean platelet volume was found to be significantly lower for rats implanted with 20 DU pellets as compared to sham surgery controls but not when compared to animals implanted with 20 Ta pellets. Gross necropsy found no obvious tissue abnormalities in implanted rats, and the weights of major tissues did not differ between Ta- and DU-implanted animals. Histopathologic analysis of major tissues from animals implanted with 0 pellets, 20 Ta pellets, or 20 DU pellets found no differences between treatment groups. The findings of this study indicate that implantation of up to 20 DU pellets in adult rats did not have a significant negative impact on their general health and neurobehavioral capacities when assessed after 150 d of pellet implantation. However, the growing body of data on the potential health effects associated with DU exposure warrants further studies involving higher embedded DU body burdens in conjunction with longer surveillance periods postimplantation.
Collapse
Affiliation(s)
- D P Arfsten
- Navy Drug Screening Laboratory, Naval Air Station, Jacksonville, Florida 32212-0113, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Magno P, Giday SA, Gabrielson KL, Shin EJ, Buscaglia JM, Clarke JO, Ko CW, Jagannath SB, Canto MI, Sedrakyan G, Kantsevoy SV. EUS-guided implantation of radiopaque marker into mediastinal and celiac lymph nodes is safe and effective. Gastrointest Endosc 2007; 66:387-92. [PMID: 17643719 DOI: 10.1016/j.gie.2006.12.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 12/26/2006] [Indexed: 02/08/2023]
Abstract
BACKGROUND EUS is the preferred modality for local staging of esophageal cancer. The presence of a long-lasting fluoroscopically visible marker of malignant lymph nodes would facilitate subsequent radiation and surgical therapy. OBJECTIVE To assess the feasibility of EUS-guided implantation of a radiopaque marker (tantalum) into mediastinal and celiac lymph nodes in a porcine model. SETTING Survival experiments on six 50-kg pigs. DESIGN AND INTERVENTIONS A linear-array echoendoscope was advanced into the esophagus and the stomach. Mediastinal and celiac lymph nodes were identified and injected with 1 mL tantalum suspension by using 19- and 22-gauge FNA needles under fluoroscopy. The pigs were recovered. Fluoroscopy was repeated after 1, 2, and 4 weeks, then a postmortem examination was performed. MAIN OUTCOME MEASUREMENTS Long-term opacification of lymph nodes. RESULTS It was not possible to inject tantalum through the 22-gauge FNA needle because of its rapid precipitation inside the needle, which caused needle occlusion. Intranodal injection with the 19-gauge FNA needle was easily accomplished and resulted in excellent fluoroscopic opacification of injected lymph nodes. Repeat fluoroscopy at 1, 2, and 4 weeks demonstrated stable tantalum deposition at the injection site. There were no complications. Histologic examination of harvested lymph nodes revealed intranodal tantalum depositions without signs of infection, inflammation, tissue damage, or necrosis. CONCLUSIONS EUS-guided implantation of tantalum as a radiopaque marker into mediastinal and celiac lymph nodes in a porcine model is technically feasible, safe, and results in long-lasting intranodal depositions to facilitate subsequent surgical and radiotherapeutic interventions.
Collapse
Affiliation(s)
- Priscilla Magno
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jiang GCT, Tidwell K, McLaughlin BA, Cai J, Gupta RC, Milatovic D, Nass R, Aschner M. Neurotoxic Potential of Depleted Uranium—Effects in Primary Cortical Neuron Cultures and in Caenorhabditis elegans. Toxicol Sci 2007; 99:553-65. [PMID: 17636247 DOI: 10.1093/toxsci/kfm171] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Depleted uranium (DU) is an extremely dense metal that is used in radiation shielding, counterbalances, armor, and ammunition. In light of the public concerns about exposure to DU and its potential role in Gulf War Syndrome (GWS), this study evaluated the neurotoxic potential of DU using focused studies on primary rat cortical neurons and the nematode Caenorhabditis elegans. We examined cell viability, cellular energy metabolism, thiol metabolite oxidation, and lipid peroxidation following exposure of cultured neurons to DU, in the form of uranyl acetate. We concurrently evaluated the neurotoxicity of uranyl acetate in C. elegans using various neuronal-green fluourescent protein reporter strains to visualize neurodegeneration. Our studies indicate that uranyl acetate has low cytotoxic potential, and uranium exposure does not result in significant changes in cellular energy metabolism, thiol metabolite oxidation, or lipid peroxidation. Furthermore, our C. elegans studies do not show any significant neurodegeneration following uranyl acetate exposure. Together, these studies suggest that DU, in the form of uranyl acetate, has low neurotoxic potential. These findings should alleviate the some of public concerns regarding DU as an etiologic agent of neurodegenerative conditions associated with GWS.
Collapse
Affiliation(s)
- George C-T Jiang
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1083, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Miller AC, Stewart M, Rivas R, Marino S, Randers-Pehrson G, Shi L. Observation of radiation-specific damage in cells exposed to depleted uranium: hprt gene mutation frequency. RADIAT MEAS 2007. [DOI: 10.1016/j.radmeas.2007.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Miller AC, Bonait-Pellie C, Merlot RF, Michel J, Stewart M, Lison PD. Leukemic transformation of hematopoietic cells in mice internally exposed to depleted uranium. Mol Cell Biochem 2007; 279:97-104. [PMID: 16283518 DOI: 10.1007/s11010-005-8226-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Depleted uranium (DU) is a dense heavy metal used in military applications. During military conflicts, US military personnel have been wounded by DU shrapnel. The health effects of embedded DU are unknown. Published data from our laboratory demonstrated that DU exposure in vitro can transform immortalized human osteoblast cells (HOS) to the tumorigenic phenotype. Results from our laboratory have also shown that DU is genotoxic and mutagenic in cultured human cells. Internalized DU could be a carcinogenic risk and concurrent alpha particle and heavy metal toxic effects complicate this potential risk. Anecdotal reports have suggested that DU can cause leukemia. To better assess this risk, we have developed an in vivo leukemogenesis model. This model involves using murine hematopoietic cells (FDC-P1) that are dependent on stimulation by granulocyte-macrophage colony stimulating factor (GM-CSF) or interleukin 3 (IL-3) and injected into mice to produce myeloid leukemia. Although immortalized, these cells are not tumorigenic on subcutaneous inoculation in mice. Intravenous injection of FDC-P1 cells into DU-implanted DBA/2 mice was followed by the development of leukemias in 76% of all mice implanted with DU pellets. In contrast, only 12% of control mice developed leukemia. Karyotypic analysis confirmed that the leukemias originated from FDC-P1 cells. The growth properties of leukemic cells from bone marrow, spleen, and lymph node were assessed and indicate that the FDC-P1 cells had become transformed in vivo. The kidney, spleen, bone marrow, muscle, and urine showed significant elevations in tissue uranium levels prior to induction of leukemia. These results demonstrated that a DU altered in vivo environment may be involved in the pathogenesis of DU induced leukemia in an animal model.
Collapse
Affiliation(s)
- Alexandra C Miller
- Applied Cellular Radiobiology Department, Armed Forces Radiobiology Research, Institute, Bethesda, Maryland 20889-5603, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Briner WE. The evolution of depleted uranium as an environmental risk factor: lessons from other metals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2007; 3:129-35. [PMID: 16823086 PMCID: PMC3807504 DOI: 10.3390/ijerph2006030016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Depleted uranium (DU) is used in both civilian and military applications. Civilian uses are primarily limited to ballast and counterweights in ships and aircraft with limited risk of environmental release. The very nature of the military use of DU releases DU into the environment. DU released into the environment from military use takes the form of large fragments that are chemically unchanged and dust in the form of oxides. DU dust is nearly insoluble, respirable and shows little mobility in the soil. Exposure to DU occurs primarily from inhalation of dust and possible hand to mouth activity. Toxicity of DU is believed to be primarily chemical in nature with radiological activity being a lesser problem. DU has been shown to have a variety of behavioral and neurological effects in experimental animals. DU has been used the Balkans, Afghanistan, and both Iraq wars and there is a high probability of its use in future conflicts. Further, other nations are developing DU weaponry; some of these nations may use DU with a greater radiological risk than those currently in use. The toxicity of DU has been studied mostly as an issue of the health of military personnel. However, many tons of DU have been left in the former theater of war and indigenous populations continue to be exposed to DU, primarily in the form of dust. Little epidemiological data exists concerning the impact of DU on these groups. It may be possible to extrapolate what the effects of DU may be on indigenous groups by examining the data on similar metals. DU has many similarities to lead in its route of exposure, chemistry, metabolic fate, target organs, and effect of experimental animals. Studies should be conducted on indigenous groups using lead as a model when ascertaining if DU has an adverse effect.
Collapse
Affiliation(s)
- Wayne E Briner
- Department of Psychology, University of Nebraska at Kearney, Kearney, NE 68849, USA.
| |
Collapse
|
32
|
Miller AC, McClain D. A review of depleted uranium biological effects: in vitro and in vivo studies. REVIEWS ON ENVIRONMENTAL HEALTH 2007; 22:75-89. [PMID: 17508699 DOI: 10.1515/reveh.2007.22.1.75] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The use of depleted uranium in armor-penetrating munitions remains a source of controversy because of the numerous unanswered questions about its long-term health effects. Although no conclusive epidemiologic data have correlated DU exposure to specific health effects, studies using cultured cells and laboratory rodents continue to suggest the possibility of leukemogenic, genetic, reproductive, and neurological effects from chronic exposure. Until issues of concern are resolved with further research, the use of depleted uranium by the military will continue to be controversial.
Collapse
Affiliation(s)
- Alexandra C Miller
- Uniformed Services University of the Health Sciences, Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Building 42, Bethesda, MD 20889-5603, USA.
| | | |
Collapse
|
33
|
Squibb KS, McDiarmid MA. Depleted uranium exposure and health effects in Gulf War veterans. Philos Trans R Soc Lond B Biol Sci 2006; 361:639-48. [PMID: 16687268 PMCID: PMC1569622 DOI: 10.1098/rstb.2006.1823] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Health effects stemming from depleted uranium (DU) exposure in a cohort of Gulf War veterans who were in or on US Army vehicles hit by friendly fire involving DU munitions are being carefully monitored through the Baltimore Veterans Affairs (VA) DU Follow-Up Program initiated in 1993. DU exposure in this cohort has been directly measured using inductively coupled plasma-mass spectrometer (ICP-MS) isotopic analysis for DU in urine specimens. Soldiers with embedded DU fragments continue to excrete elevated concentrations of U in their urine, documenting ongoing systemic exposure to U released from their fragments. Biennial surveillance visits provide a detailed health assessment that includes basic clinical measures and surveillance for early changes in kidney function, an expected target organ for U. Tests also include measurements of genotoxicity and neuroendocrine, neurocognitive and reproductive function. With the exception of the elevated urine U excretion, no clinically significant expected U-related health effects have been identified to date. Subtle changes in renal function and genotoxicity markers in veterans with urine U concentrations greater than 0.1 microg(-1) creatinine, however, indicate the need for continued surveillance of these DU-exposed veterans.
Collapse
Affiliation(s)
- Katherine S Squibb
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, 21201, USA.
| | | |
Collapse
|
34
|
Arfsten DP, Schaeffer DJ, Johnson EW, Robert Cunningham J, Still KR, Wilfong ER. Evaluation of the effect of implanted depleted uranium on male reproductive success, sperm concentration, and sperm velocity. ENVIRONMENTAL RESEARCH 2006; 100:205-15. [PMID: 15939419 DOI: 10.1016/j.envres.2005.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 03/21/2005] [Accepted: 03/25/2005] [Indexed: 05/02/2023]
Abstract
Depleted uranium (DU) projectiles have been used in battle in Iraq and the Balkans and will continue to be a significant armor-penetrating munition for the US military. As demonstrated in the Persian Gulf War, battle injury from DU projectiles and shrapnel is a possibility, and removal of embedded DU fragments from the body is not always practical because of their location in the body or their small size. Previous studies in rodents have demonstrated that implanted DU mobilizes and translocates to the gonads, and natural uranium may be toxic to spermatazoa and the male reproductive tract. In this study, the effects of implanted DU pellets on sperm concentration, motility, and male reproductive success were evaluated in adult (P1) Sprague-Dawley rats implanted with 0, 12, or 20, DU pellets of 1x2 mm or 12 or 20 tantalum (Ta) steel pellets of 1x2 mm. Twenty DU pellets of 1x2 mm (760 mg) implanted in a 500-g rat are equal to approximately 0.2 pound of DU in a 154-lb (70-kg) person. Urinary analysis found that male rats implanted with DU were excreting uranium at postimplantation days 27 and 117 with the amount dependent on dose. No deaths or evidence of toxicity occurred in P1 males over the 150-day postimplantation study period. When assessed at postimplantation day 150, the concentration, motion, and velocity of sperm isolated from DU-implanted animals were not significantly different from those of sham surgery controls. Velocity and motion of sperm isolated from rats treated with the positive control compound alpha-chlorohydrin were significantly reduced compared with sham surgery controls. There was no evidence of a detrimental effect of DU implantation on mating success at 30-45 days and 120-145 days postimplantation. The results of this study suggest that implantation of up to 20 DU pellets of 1x2 mm in rats for approximately 21% of their adult lifespan does not have an adverse impact on male reproductive success, sperm concentration, or sperm velocity.
Collapse
Affiliation(s)
- Darryl P Arfsten
- Naval Health Research Center Detachment, Environmental Health Effects Laboratory, Wright-Patterson AFB, OH 45433, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Paquet F, Houpert P, Blanchardon E, Delissen O, Maubert C, Dhieux B, Moreels AM, Frelon S, Gourmelon P. Accumulation and distribution of uranium in rats after chronic exposure by ingestion. HEALTH PHYSICS 2006; 90:139-47. [PMID: 16404171 DOI: 10.1097/01.hp.0000174527.66111.83] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Data describing the biokinetics of radionuclides after contamination come mainly from experimental acute exposures of laboratory animals and follow-up of incidental exposures of humans. These data were compiled to form reference models that could be used for dose calculation in humans. In case of protracted exposure, the same models are applied, assuming that they are not modified by the duration of exposure. This work aims at testing this hypothesis. It presents new experimental data on retention of uranium after chronic intake, which are compared to values calculated from a biokinetic model that is based on experiments of acute exposure of rats to uranium. Experiments were performed with 56 male Sprague Dawley rats, from which 35 were exposed during their whole adult life to 40 mg L of uranyl nitrate dissolved in mineral water and 21 were kept as controls. Animals were euthanatized at 32, 95, 186, 312, 368, and 570 d after the beginning of contamination. Urine and all tissues were removed, weighted, mineralized, and then analyzed for uranium content by Kinetics Phosphorescence Analysis (KPA) or by ICP-MS. Experimental data showed that uranium accumulated in most organs, following a nonmonotonous pattern. Peaks of activities were observed at 1-3, 10, and 19 mo after the beginning of exposure. Additionally, accumulation was shown to occur in tissues such as teeth and brain that are not usually described as target organs. Comparison with model prediction showed that the accumulation of uranium in target organs after chronic exposure is overestimated by the use of a model designed for acute exposure. These differences indicate that protracted exposure to uranium may induce changes in biokinetic parameters when compared to acute contamination and that calculation of dose resulting from chronic intake of radionuclides may need specific models that are not currently available.
Collapse
Affiliation(s)
- F Paquet
- IRSN/DRPH/SRBE Laboratoire de Radiotoxicologie Expérimentale, BP 166, 26702 Pierrelatte, Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bower JJ, Leonard SS, Shi X. Conference overview: Molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem 2005; 279:3-15. [PMID: 16283510 DOI: 10.1007/s11010-005-8210-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chronic exposure to many heavy metals and metal-derivatives is associated with an increased risk of cancer, although the mechanisms of tumorigenesis are largely unknown. Approximately 125 scientists attended the 3rd Conference on Molecular Mechanisms of Metal Toxicity and Carcinogenesis and presented the latest research concerning these mechanisms. Major areas of focus included exposure assessment and biomarker identification, roles of ROS and antioxidants in carcinogenesis, mechanisms of metal-induced DNA damage, metal signalling, and the development of animal models for use in metal toxicology studies. Here we highlight some of the research presented, and summarize the conference proceedings.
Collapse
Affiliation(s)
- Jacquelyn J Bower
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505-2888, USA
| | | | | |
Collapse
|
37
|
Stearns DM, Yazzie M, Bradley AS, Coryell VH, Shelley JT, Ashby A, Asplund CS, Lantz RC. Uranyl acetate induces hprt mutations and uranium-DNA adducts in Chinese hamster ovary EM9 cells. Mutagenesis 2005; 20:417-23. [PMID: 16195314 DOI: 10.1093/mutage/gei056] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Questions about possible adverse health effects from exposures to uranium have arisen as a result of uranium mining, residual mine tailings and use of depleted uranium in the military. The purpose of the current study was to measure the toxicity of depleted uranium as uranyl acetate (UA) in mammalian cells. The activity of UA in the parental CHO AA8 line was compared with that in the XRCC1-deficient CHO EM9 line. Cytotoxicity was measured by clonogenic survival. A dose of 200 microM UA over 24 h produced 3.1-fold greater cell death in the CHO EM9 than the CHO AA8 line, and a dose of 300 microM was 1.7-fold more cytotoxic. Mutagenicity at the hypoxanthine (guanine) phosphoribosyltransferase (hprt) locus was measured by selection with 6-thioguanine. A dose of 200 microM UA produced approximately 5-fold higher averaged induced mutant frequency in the CHO EM9 line relative to the CHO AA8 line. The generation of DNA strand breaks was measured by the alkaline comet assay at 40 min and 24 h exposures. DNA strand breaks were detected in both lines; however a dose response may have been masked by U-DNA adducts or crosslinks. Uranium-DNA adducts were measured by inductively coupled plasma optical emission spectroscopy (ICP-OES) at 24 and 48 h exposures. A maximum adduct level of 8 U atoms/10(3) DNA-P for the 300 microM dose was found in the EM9 line after 48 h. This is the first report of the formation of uranium-DNA adducts and mutations in mammalian cells after direct exposure to a depleted uranium compound. Data suggest that uranium could be chemically genotoxic and mutagenic through the formation of strand breaks and covalent U-DNA adducts. Thus the health risks for uranium exposure could go beyond those for radiation exposure.
Collapse
Affiliation(s)
- Diane M Stearns
- Department of Chemistry and Biochemistry, Northern Arizona University, PO Box 5698, Flagstaff, AZ 86011-5698, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
McDiarmid MA, Engelhardt SM, Oliver M, Gucer P, Wilson PD, Kane R, Kabat M, Kaup B, Anderson L, Hoover D, Brown L, Albertini RJ, Gudi R, Jacobson-Kram D, Thorne CD, Squibb KS. Biological monitoring and surveillance results of Gulf War I veterans exposed to depleted uranium. Int Arch Occup Environ Health 2005; 79:11-21. [PMID: 16075297 DOI: 10.1007/s00420-005-0006-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 04/06/2005] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To relate medical surveillance outcomes to uranium biomonitoring results in a group of depleted uranium (DU)-exposed, Gulf War I veterans. METHODS Thirty-two veterans of Gulf War I who were victims of 'friendly fire' involving DU weapons, in whom exposure assessment can accurately be measured, had urine uranium concentrations determined using ICP-MS technology. Clinical laboratory parameters were measured and related to urine uranium concentrations. Data were examined by stratifying the cohort into a low U group, <0.10 mug/g creatinine versus a high U group, >/=0.10 mug/g creatinine and assessing differences between groups. RESULTS Over a decade after first exposure, soldiers possessing embedded DU fragments continue to excrete elevated concentrations of uranium in urine. No clinically significant uranium related health effects were observed in blood count, blood chemistries including renal markers, neuropsychological measures, and semen quality or genotoxicity measures. Markers of early changes in renal glomerular and tubular function were not statistically different between groups; however, genotoxicity measures continue to show subtle, mixed results. CONCLUSION Persistent urine uranium elevations continue to be observed more than 12 years since first exposure. Despite this, renal and other clinical abnormalities were not observed, likely due to the 'relatively' low uranium burden in this cohort compared to historical uranium-exposed occupational groups. Continuing surveillance is indicated, however, due to the on-going nature of the exposure. These results are an important finding in light of the on-going controversy regarding health effects observed in soldiers of the Gulf War and other conflicts, whose uranium exposure assessment is unable to be accurately determined.
Collapse
Affiliation(s)
- Melissa A McDiarmid
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Arfsten DP, Bekkedal M, Wilfong ER, Rossi J, Grasman KA, Healey LB, Rutkiewicz JM, Johnson EW, Thitoff AR, Jung AE, Lohrke SR, Schaeffer DJ, Still KR. Study of the reproductive effects in rats surgically implanted with depleted uranium for up to 90 days. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2005; 68:967-97. [PMID: 16020187 DOI: 10.1080/15287390590912603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In 2001, the Naval Health Research Center Toxicology Detachment was funded by the U.S. Army Medical Research Acquisition Activity (USAMRAA) to conduct a study of the effects of surgically implanted depleted uranium (DU) pellets on adult rat reproductive success and development across two successive generations. This article presents some of the findings for the group of offspring from adult rats mated at 30 d post surgical implantation of DU pellets. Adult male and female Sprague-Dawley rats (P1 generation) were surgically implanted with 0, 4, 8, or 12 DU pellets (1 x 2 mm). The P1 generation was then cross-mated at 30 d post surgical implantation. Urine collected from P1 animals at 27 d post surgical implantation showed that DU was excreted in the urine of DU-implanted animals in a dose-dependent manner. DU surgical implantation did not have a negative impact on P1 reproductive success, survival, or body weight gain through post surgical implantation d 90. There were no statistically significant differences in F1 birth weight, survival, and litter size at postnatal day (PND) 0, 5, and 20. No gross physical abnormalities identified in the offspring were attributable to neonatal DU exposure. A series of neurodevelopment and immune function assessments were also conducted on F1 offspring. No group differences were observed that were related to parental DU exposure. Studies are ongoing on the impact of leaving DU embedded in soft tissue for 120 d on rat reproduction and subsequent offspring survival and development.
Collapse
Affiliation(s)
- D P Arfsten
- Naval Health Research Center Detachment, Environmental Health Effects Laboratory, Wright-Patterson AFB, Ohio, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Prat O, Berenguer F, Malard V, Tavan E, Sage N, Steinmetz G, Quemeneur E. Transcriptomic and proteomic responses of human renal HEK293 cells to uranium toxicity. Proteomics 2005; 5:297-306. [PMID: 15672453 DOI: 10.1002/pmic.200400896] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The industrial use of uranium, in particular depleted uranium, has pin-pointed the need to review its chemical impact on human health. Global methodologies, applied to the field of toxicology, have demonstrated their applicability to investigation of fine molecular mechanisms. This report illustrate the power of toxicogenomics to evaluate the involvement of certain genes or proteins in response to uranium. We particularly show that 25% of modulated genes concern signal transduction and trafficking, that the calcium pathway is heavily disturbed and that nephroblastomas-related genes are involved (WIT-1, STMN1, and STMN2). A set of 18 genes was deregulated whatever the concentration of toxicant, which could constitute a signature of uranium exposure. Moreover, a group of downregulated genes, with corresponding disappearing proteins (HSP90, 14-3-3 protein, HMGB1) in two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), are good candidates for use as biomarkers of uranium effects. These results reveal a cross-checking between transcriptomic and proteomic technologies. Moreover, our temporal gene expression profiles suggest the existence of a concentration threshold between adaptive response and severe cell deregulation. Our results confirm the involvement of genes already described and also provide new highlights on cellular response to uranium.
Collapse
Affiliation(s)
- Odette Prat
- Service de Biochimie post-génomique et Toxicologie Nucléaire, F-30207 Bagnols-sur-Cèze, France.
| | | | | | | | | | | | | |
Collapse
|
41
|
Taulan M, Paquet F, Maubert C, Delissen O, Demaille J, Romey MC. Renal toxicogenomic response to chronic uranyl nitrate insult in mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:1628-35. [PMID: 15598614 PMCID: PMC1247660 DOI: 10.1289/txg.7296] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although the nephrotoxicity of uranium has been established through numerous animal studies, relatively little is known about the effects of long-term environmental uranium exposure. Using a combination of conventional biochemical studies and serial analysis of gene expression (SAGE), we examined the renal responses to uranyl nitrate (UN) chronic exposure. Renal uranium levels were significantly increased 4 months after ingestion of uranium in drinking water. Creatinine levels in serum were slightly but significantly increased compared with those in controls. Although no further significant differences in other parameters were noted, substantial molecular changes were observed in toxicogenomic profiles. UN induced dramatic alterations in expression levels of more than 200 genes, mainly up-regulated, including oxidative-response-related genes, genes encoding for cellular metabolism, ribosomal proteins, signal transduction, and solute transporters. Seven differentially expressed transcripts were confirmed by real-time quantitative polymerase chain reaction. In addition, significantly increased peroxide levels support the implication of oxidative stress in UN toxicant response. This report highlights the potential of SAGE for the discovery of novel toxicant-induced gene expression alterations. Here, we present, for the first time, a comprehensive view of renal molecular events after uranium long-term exposure.
Collapse
Affiliation(s)
- Magali Taulan
- Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiotoxicologie Expérimentale, Pierrelatte, France
| | | | | | | | | | | |
Collapse
|
42
|
Miller AC, Brooks K, Smith J, Page N. Effect of the militarily-relevant heavy metals, depleted uranium and heavy metal tungsten-alloy on gene expression in human liver carcinoma cells (HepG2). Mol Cell Biochem 2004; 255:247-56. [PMID: 14971665 DOI: 10.1023/b:mcbi.0000007280.72510.96] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Depleted uranium (DU) and heavy-metal tungsten alloys (HMTAs) are dense heavy-metals used primarily in military applications. Chemically similar to natural uranium, but depleted of the higher activity 235U and 234U isotopes, DU is a low specific activity, high-density heavy metal. In contrast, the non-radioactive HMTAs are composed of a mixture of tungsten (91-93%), nickel (3-5%), and cobalt (2-4%) particles. The use of DU and HMTAs in military munitions could result in their internalization in humans. Limited data exist however, regarding the long-term health effects of internalized DU and HMTAs in humans. Both DU and HMTAs possess a tumorigenic transforming potential and are genotoxic and mutagenic in vitro. Using insoluble DU-UO2 and a reconstituted mixture of tungsten, nickel, cobalt (rWNiCo), we tested their ability to induce stress genes in thirteen different recombinant cell lines generated from human liver carcinoma cells (HepG2). The commercially available CAT-Tox (L) cellular assay consists of a panel of cell lines stably transfected with reporter genes consisting of a coding sequence for chloramphenicol acetyl transferase (CAT) under transcriptional control by mammalian stress gene regulatory sequences. DU, (5-50 microg/ml) produced a complex profile of activity demonstrating significant dose-dependent induction of the hMTIIA FOS, p53RE, Gadd153, Gadd45, NFkappaBRE, CRE, HSP70, RARE, and GRP78 promoters. The rWNiCo mixture (5-50 microg/ml) showed dose-related induction of the GSTYA, hMTIIA, p53RE, FOS, NFkappaBRE, HSP70, and CRE promoters. An examination of the pure metals, tungsten (W), nickel (Ni), and cobalt (Co), comprising the rWNiCo mixture, demonstrated that each metal exhibited a similar pattern of gene induction, but at a significantly decreased magnitude than that of the rWNiCo mixture. These data showed a synergistic activation of gene expression by the metals in the rWNiCo mixture. Our data show for the first time that DU and rWNiCo can activate gene expression through several signal transduction pathways that may be involved in the toxicity and tumorigenicity of both DU and HMTAs.
Collapse
Affiliation(s)
- Alexandra C Miller
- Applied Cellular Radiobiology Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA.
| | | | | | | |
Collapse
|
43
|
Craft E, Abu-Qare A, Flaherty M, Garofolo M, Rincavage H, Abou-Donia M. Depleted and natural uranium: chemistry and toxicological effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2004; 7:297-317. [PMID: 15205046 DOI: 10.1080/10937400490452714] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Depleted uranium (DU) is a by-product from the chemical enrichment of naturally occurring uranium. Natural uranium is comprised of three radioactive isotopes: (238)U, (235)U, and (234)U. This enrichment process reduces the radioactivity of DU to roughly 30% of that of natural uranium. Nonmilitary uses of DU include counterweights in airplanes, shields against radiation in medical radiotherapy units and transport of radioactive isotopes. DU has also been used during wartime in heavy tank armor, armor-piercing bullets, and missiles, due to its desirable chemical properties coupled with its decreased radioactivity. DU weapons are used unreservedly by the armed forces. Chemically and toxicologically, DU behaves similarly to natural uranium metal. Although the effects of DU on human health are not easily discerned, they may be produced by both its chemical and radiological properties. DU can be toxic to many bodily systems, as presented in this review. Most importantly, normal functioning of the kidney, brain, liver, and heart can be affected by DU exposure. Numerous other systems can also be affected by DU exposure, and these are also reviewed. Despite the prevalence of DU usage in many applications, limited data exist regarding the toxicological consequences on human health. This review focuses on the chemistry, pharmacokinetics, and toxicological effects of depleted and natural uranium on several systems in the mammalian body. A section on risk assessment concludes the review.
Collapse
Affiliation(s)
- Elena Craft
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
44
|
Patočka J, Kassa J, Štětina R, Šafr G, Havel J. Toxicological aspects of depleted uranium. J Appl Biomed 2004. [DOI: 10.32725/jab.2004.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
45
|
McDiarmid MA, Engelhardt S, Oliver M, Gucer P, Wilson PD, Kane R, Kabat M, Kaup B, Anderson L, Hoover D, Brown L, Handwerger B, Albertini RJ, Jacobson-Kram D, Thorne CD, Squibb KS. Health effects of depleted uranium on exposed Gulf War veterans: a 10-year follow-up. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2004; 67:277-296. [PMID: 14713562 DOI: 10.1080/15287390490273541] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Medical surveillance of a group of U.S. Gulf War veterans who were victims of depleted uranium (DU) "friendly fire" has been carried out since the early 1990s. Findings to date reveal a persistent elevation of urine uranium, more than 10 yr after exposure, in those veterans with retained shrapnel fragments. The excretion is presumably from ongoing mobilization of DU from fragments oxidizing in situ. Other clinical outcomes related to urine uranium measures have revealed few abnormalities. Renal function is normal despite the kidney's expected involvement as the "critical" target organ of uranium toxicity. Subtle perturbations in some proximal tubular parameters may suggest early although not clinically significant effects of uranium exposure. A mixed picture of genotoxic outcomes is also observed, including an association of hypoxanthine-guanine phosphoribosyl transferase (HPRT) mutation frequency with high urine uranium levels. Findings observed in this chronically exposed cohort offer guidance for predicting future health effects in other potentially exposed populations and provide helpful data for hazard communication for future deployed personnel.
Collapse
Affiliation(s)
- Melissa A McDiarmid
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bleise A, Danesi PR, Burkart W. Properties, use and health effects of depleted uranium (DU): a general overview. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2003; 64:93-112. [PMID: 12500797 DOI: 10.1016/s0265-931x(02)00041-3] [Citation(s) in RCA: 290] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Depleted uranium (DU), a waste product of uranium enrichment, has several civilian and military applications. It was used as armor-piercing ammunition in international military conflicts and was claimed to contribute to health problems, known as the Gulf War Syndrome and recently as the Balkan Syndrome. This led to renewed efforts to assess the environmental consequences and the health impact of the use of DU. The radiological and chemical properties of DU can be compared to those of natural uranium, which is ubiquitously present in soil at a typical concentration of 3 mg/kg. Natural uranium has the same chemotoxicity, but its radiotoxicity is 60% higher. Due to the low specific radioactivity and the dominance of alpha-radiation no acute risk is attributed to external exposure to DU. The major risk is DU dust, generated when DU ammunition hits hard targets. Depending on aerosol speciation, inhalation may lead to a protracted exposure of the lung and other organs. After deposition on the ground, resuspension can take place if the DU containing particle size is sufficiently small. However, transfer to drinking water or locally produced food has little potential to lead to significant exposures to DU. Since poor solubility of uranium compounds and lack of information on speciation precludes the use of radioecological models for exposure assessment, biomonitoring has to be used for assessing exposed persons. Urine, feces, hair and nails record recent exposures to DU. With the exception of crews of military vehicles having been hit by DU penetrators, no body burdens above the range of values for natural uranium have been found. Therefore, observable health effects are not expected and residual cancer risk estimates have to be based on theoretical considerations. They appear to be very minor for all post-conflict situations, i.e. a fraction of those expected from natural radiation.
Collapse
Affiliation(s)
- A Bleise
- International Atomic Energy Agency (IAEA), Department of Nuclear Science and Applications, Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna, Austria
| | | | | |
Collapse
|
47
|
Miller AC, Brooks K, Stewart M, Anderson B, Shi L, McClain D, Page N. Genomic instability in human osteoblast cells after exposure to depleted uranium: delayed lethality and micronuclei formation. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2003; 64:247-259. [PMID: 12500809 DOI: 10.1016/s0265-931x(02)00053-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
It is known that radiation can induce a transmissible persistent destabilization of the genome. We have established an in vitro cellular model using HOS cells to investigate whether genomic instability plays a role in depleted uranium (DU)-induced effects. Transmissible genomic instability, manifested in the progeny of cells exposed to ionizing radiation, has been characterized by de novo chromosomal aberrations, gene mutations, and an enhanced death rate. Cell lethality and micronuclei formation were measured at various times after exposure to DU, Ni, or gamma radiation. Following a prompt, concentration-dependent acute response for both endpoints, there was de novo genomic instability in progeny cells. Delayed reproductive death was observed for many generations (36 days, 30 population doublings) following exposure to DU, Ni, or gamma radiation. While DU stimulated delayed production of micronuclei up to 36 days after exposure, levels in cells exposed to gamma-radiation or Ni returned to normal after 12 days. There was also a persistent increase in micronuclei in all clones isolated from cells that had been exposed to nontoxic concentrations of DU. While clones isolated from gamma-irradiated cells (at doses equitoxic to metal exposure) generally demonstrated an increase in micronuclei, most clonal progeny of Ni-exposed cells did not. These studies demonstrate that DU exposure in vitro results in genomic instability manifested as delayed reproductive death and micronuclei formation.
Collapse
Affiliation(s)
- Alexandra C Miller
- Applied Cellular Radiobiology Department Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Depleted uranium munitions have been used in recent military operations in both the Gulf and the Balkans and there have been concerns that exposure to depleted uranium may be a cause of 'Gulf War Syndrome' and cancer clusters. We recount the properties of depleted uranium, its military uses and the situations in which personnel may be exposed. Following a review of scientific literature, the health effects of depleted and natural uranium exposure are described and the major outcomes of research into Gulf Veterans' Illnesses are summarised. We conclude that, although there is the potential for uranium exposures to cause renal damage or lung cancer, the risk of harm following depleted uranium exposure in military settings seems to be low. We advise on the management of casualties exposed to depleted uranium and suggest control measures that may be appropriate to protect personnel who provide casualty care.
Collapse
Affiliation(s)
- J P G Bolton
- Surgeon General's Department, St Giles Court, St Giles High Road, London WC2H 8LD
| | | |
Collapse
|
49
|
Miller AC, Stewart M, Brooks K, Shi L, Page N. Depleted uranium-catalyzed oxidative DNA damage: absence of significant alpha particle decay. J Inorg Biochem 2002; 91:246-52. [PMID: 12121782 DOI: 10.1016/s0162-0134(02)00391-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Depleted uranium (DU) is a dense heavy metal used primarily in military applications. Published data from our laboratory have demonstrated that DU exposure in vitro to immortalized human osteoblast cells (HOS) is both neoplastically transforming and genotoxic. DU possesses both a radiological (alpha particle) and a chemical (metal) component. Since DU has a low-specific activity in comparison to natural uranium, it is not considered to be a significant radiological hazard. In the current study we demonstrate that DU can generate oxidative DNA damage and can also catalyze reactions that induce hydroxyl radicals in the absence of significant alpha particle decay. Experiments were conducted under conditions in which chemical generation of hydroxyl radicals was calculated to exceed the radiolytic generation by one million-fold. The data showed that markers of oxidative DNA base damage, thymine glycol and 8-deoxyguanosine could be induced from DU-catalyzed reactions of hydrogen peroxide and ascorbate similarly to those occurring in the presence of iron catalysts. DU was 6-fold more efficient than iron at catalyzing the oxidation of ascorbate at pH 7. These data not only demonstrate that DU at pH 7 can induced oxidative DNA damage in the absence of significant alpha particle decay, but also suggest that DU can induce carcinogenic lesions, e.g. oxidative DNA lesions, through interaction with a cellular oxygen species.
Collapse
Affiliation(s)
- Alexandra C Miller
- Applied Cellular Radiobiology Department, Armed Forces Radiobiology Research Institute, 8901 Wisconsin Ave., Bethesda, MD 20889-5603, USA.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Recently, several studies have reported on the health and environmental consequences of the use of depleted uranium. Depleted uranium is a heavy metal that is also radioactive. It is commonly used in missiles as a counterweight because of its very high density (1.6 times more than lead). Immediate health risks associated with exposure to depleted uranium include kidney and respiratory problems, with conditions such as kidney stones, chronic cough and severe dermatitis. Long-term risks include lung and bone cancer. Several published reports implicated exposure to depleted uranium in kidney damage, mutagenicity, cancer, inhibition of bone, neurological deficits, significant decrease in the pregnancy rate in mice and adverse effects on the reproductive and central nervous systems. Acute poisoning with depleted uranium elicited renal failure that could lead to death. The environmental consequences of its residue will be felt for thousands of years. It is inhaled and passed through the skin and eyes, transferred through the placenta into the fetus, distributed into tissues and eliminated in urine. The use of depleted uranium during the Gulf and Kosovo Wars and the crash of a Boeing airplane carrying depleted uranium in Amsterdam in 1992 were implicated in a health concern related to exposure to depleted uranium.
Collapse
Affiliation(s)
- Aqel W Abu-Qare
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|