1
|
Yuan X, Chen J, Shi D, Song J, Wang P, Cheng D, Yang C, Qiu X, Zhai C. Advanced esophageal cancer with bone metastases: Prognostic biomarkers and palliative treatment. Heliyon 2024; 10:e23510. [PMID: 38170113 PMCID: PMC10758821 DOI: 10.1016/j.heliyon.2023.e23510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Esophageal cancer (EC) is a common and devastating tumor of the upper digestive tract. Unfortunately, by the time any symptoms have manifested, the disease has often progressed to an advanced stage and is accompanied by macro- and micrometastases, including in the bones. The treatment of esophageal cancer with bone metastases remains clinically challenging, given the poor prognosis associated with this condition. Effective prognostic biomarkers can help medical staff choose the appropriate operation and treatment plan, that is for most beneficial for making patients. Current treatments for esophageal cancer with bone metastases include pain-relieving drugs, surgical therapy, radiotherapy (RT), chemotherapy (CT, including molecular-targeted drug therapy), endocrine therapy (ET), bisphosphonates (BPs) and interventional therapy. Of these robust measures, radiotherapy has emerged as a particularly promising therapy for bone metastases from esophageal cancer. Substantial progress has been made in radiation therapy techniques since the discovery of X-rays by Roentgen in 1895. In its palliative capacity, the key goals of radiotherapy are to relieve the patients' bone pain and debilitate effects, including relieving spinal cord compression, correcting the spinal deformity and restoring spinal stability. However, it is worth mentioning that RT for esophageal cancer has various side effects. Currently, the available studies focused exclusively on radiotherapy for ECBM are too small to draw any definitive conclusions, and each of these studies has significant limitations. In this review, in addition to the epidemiology described at the beginning, we will explore the current prognostic biomarkers and radiotherapy for esophageal cancer, with a particular focus on those with bone metastases.
Collapse
Affiliation(s)
- Xiaofeng Yuan
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Chen
- Department of Orthopedics, Yixing People's Hospital, Yixing, China
| | - Dingsen Shi
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiaxun Song
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Pu Wang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dong Cheng
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Cheng Yang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xubin Qiu
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Chenjun Zhai
- Department of Orthopedics, Yixing People's Hospital, Yixing, China
| |
Collapse
|
2
|
Fang Y, Zhang X, Guo Y, Dong Y, Liu W, Hu X, Li X, Gao D. PKMYT1: A Potential Target for CCNE1 Amplificated Colorectal Tumors. Cell Biochem Biophys 2023; 81:569-576. [PMID: 37572218 DOI: 10.1007/s12013-023-01158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Colorectal cancer is a malignant tumor with higher morbidity and mortality. The purpose of this study is to investigate whether inhibition of Protein Kinase, Membrane Associated Tyrosine/Threonine 1 (PKMYT1) affects tumor cell proliferation, survival and migration in colon tumors with high Cyclin E1 (CCNE1) expression. PcDNA3.1-CCNE1 vector and si-PKMYT1 were transfected in SW480 cells by Lipofectamine 2000. Q-PCR and western blot assay were processed to detect the expression. Transwell assay and Edu assay were undertaken to verify the migration and proliferation. CCNE1 promotes the proliferation and migration of SW480. Silencing of PKMYT1 inhibited the proliferation of tumor cells. Silencing the expression of PKMYT1 under the premise of overexpression of CCNE1, the level of Cyclin Dependent Kinase 1 (CDK1)-PT14 was reduced, indicating that the cell cycle was blocked. The expression of γH2AX increased significantly, indicating that the DDR pathway of tumor cells was activated and DNA damage accumulated. The results of immunofluorescence microscopy showed significantly increased expression of DNA damage-associated marker (γH2AX: H2AX Variant Histone). In CCNE1 amplificated colorectal tumor cells, knockdown of PKMYT1 reduced cells in S phase, inhibited cell proliferation and promoted cell apoptosis, confirming that PKMYT1 was a potential therapeutic target for colorectal tumor. This study may verify a potential therapeutic target and provide a new idea for the treatment of colorectal cancer in the future.
Collapse
Affiliation(s)
- Yong Fang
- Department of General Surgery, The 305 hospital of People's Liberation Army, Beijing, 100017, China
| | - Xuhui Zhang
- Department of Anesthesiology, The 305 hospital of People's Liberation Army, Beijing, 100017, China
| | - Yuyang Guo
- Department of General Surgery, The 305 hospital of People's Liberation Army, Beijing, 100017, China
| | - Yi Dong
- Department of General Surgery, The 305 hospital of People's Liberation Army, Beijing, 100017, China
| | - Wenfei Liu
- Department of General Surgery, The 305 hospital of People's Liberation Army, Beijing, 100017, China
| | - Xihua Hu
- Department of General Surgery, The 305 hospital of People's Liberation Army, Beijing, 100017, China
| | - Xuxin Li
- Department of General Surgery, The 305 hospital of People's Liberation Army, Beijing, 100017, China
| | - Daifeng Gao
- Department of Health, Guard Bureau of the Joint Staff of the Central Military Commission, Beijing, 100013, China.
| |
Collapse
|
3
|
Kozmin SG, Eot-Houllier G, Reynaud-Angelin A, Gasparutto D, Sage E. Dissecting Highly Mutagenic Processing of Complex Clustered DNA Damage in Yeast Saccharomyces cerevisiae. Cells 2021; 10:cells10092309. [PMID: 34571958 PMCID: PMC8471780 DOI: 10.3390/cells10092309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022] Open
Abstract
Clusters of DNA damage, also called multiply damaged sites (MDS), are a signature of ionizing radiation exposure. They are defined as two or more lesions within one or two helix turns, which are created by the passage of a single radiation track. It has been shown that the clustering of DNA damage compromises their repair. Unresolved repair may lead to the formation of double-strand breaks (DSB) or the induction of mutation. We engineered three complex MDS, comprised of oxidatively damaged bases and a one-nucleotide (1 nt) gap (or not), in order to investigate the processing and the outcome of these MDS in yeast Saccharomyces cerevisiae. Such MDS could be caused by high linear energy transfer (LET) radiation. Using a whole-cell extract, deficient (or not) in base excision repair (BER), and a plasmid-based assay, we investigated in vitro excision/incision at the damaged bases and the mutations generated at MDS in wild-type, BER, and translesion synthesis-deficient cells. The processing of the studied MDS did not give rise to DSB (previously published). Our major finding is the extremely high mutation frequency that occurs at the MDS. The proposed processing of MDS is rather complex, and it largely depends on the nature and the distribution of the damaged bases relative to the 1 nt gap. Our results emphasize the deleterious consequences of MDS in eukaryotic cells.
Collapse
Affiliation(s)
- Stanislav G. Kozmin
- Institut Curie, PSL Research University Orsay, F-91405 Orsay, France; (G.E.-H.); (A.R.-A.)
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Correspondence: (S.G.K.); (E.S.)
| | - Gregory Eot-Houllier
- Institut Curie, PSL Research University Orsay, F-91405 Orsay, France; (G.E.-H.); (A.R.-A.)
- Institut de Génétique et Développement de Rennes, CNRS-UR1 UMR6290, Université Rennes-1, F-35043 Rennes, France
| | - Anne Reynaud-Angelin
- Institut Curie, PSL Research University Orsay, F-91405 Orsay, France; (G.E.-H.); (A.R.-A.)
| | - Didier Gasparutto
- CEA, CNRS IRIG/SyMMES-UMR5819, Université Grenoble Alpes, F-38054 Grenoble, France;
| | - Evelyne Sage
- Institut Curie, PSL Research University Orsay, F-91405 Orsay, France; (G.E.-H.); (A.R.-A.)
- CNRS UMR3347, INSERM U1021, Université Paris-Saclay, F-91405 Orsay, France
- Correspondence: (S.G.K.); (E.S.)
| |
Collapse
|
4
|
Liu H, Wang X, Huang A, Gao H, Sun Y, Jiang T, Shi L, Wu X, Dong Q, Sun X. Silencing Artemis Enhances Colorectal Cancer Cell Sensitivity to DNA-Damaging Agents. Oncol Res 2018; 27:29-38. [PMID: 29426373 PMCID: PMC7848410 DOI: 10.3727/096504018x15179694020751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Artemis is a key protein of NHEJ (nonhomologous end joining), which is the major pathway for the repair of IR-induced DSBs in mammalian cells. However, the expression of Artemis in tumors and the influence of silencing Artemis on tumor sensitivity to radiation have not been investigated fully. In this study, we investigated how the expression levels of Artemis may affect the treatment outcome of radiotherapy and chemotherapy in colorectal cancer cells. First, we found that the expression of Artemis is strong in some human rectal cancer samples, being higher than in adjacent normal tissues using immunohistochemical staining. We then knocked down Artemis gene in a human colorectal cancer cell line (RKO) using lentivirus-mediated siRNAs. Compared to the control RKO cells, the Artemis knockdown cells showed significantly increased sensitivity to bleomycin, etoposide, camptothecin, and IR. Induced by DNA-damaging agents, delayed DNA repair kinetics was found by the γ-H2AX foci assay, and a significantly increased cell apoptosis occurred in the Artemis knockdown RKO cells through apoptosis detection methods and Western blot. We also found that the p53/p21 signaling pathway may be involved in the apoptosis process. Taken together, our study indicates that manipulating Artemis can enhance colorectal cancer cell sensitivity to DNA-damaging agents. Therefore, Artemis can serve as a therapeutic target in rectal cancer therapy.
Collapse
Affiliation(s)
- Hai Liu
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou, P.R. China
| | - Xuanxuan Wang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou, P.R. China
| | - Aihua Huang
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Huaping Gao
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Yikan Sun
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Tingting Jiang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou, P.R. China
| | - Liming Shi
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou, P.R. China
| | - Xianjie Wu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Qinghua Dong
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xiaonan Sun
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
5
|
Shikazono N, Akamatsu K. Mutagenic potential of 8-oxo-7,8-dihydroguanine (8-oxoG) is influenced by nearby clustered lesions. Mutat Res 2018; 810:6-12. [PMID: 29870902 DOI: 10.1016/j.mrfmmm.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/13/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Ionizing radiation causes various different types of DNA damage. If not repaired, DNA damage can have detrimental effects. Previous studies indicate that the spatial distribution of DNA lesions induced by ionizing radiation is highly relevant to the ensuing biological effects. Clustered DNA damage, consisting of DNA lesions in close proximity, has been studied in detail, and has enhanced mutagenic potential depending on the configuration of the lesions. However, it is not known whether clustered DNA damage affects the mutagenic potential of a sufficiently separated, isolated lesion. Using synthetic damage constructs, we investigated the mutagenic potential of an isolated 8-oxo-7,8-dihydroguanine (8-oxoG) separated by at least 7 bp from other lesions. Under the spatial distribution of DNA lesions tested in the present study, neighboring clustered DNA lesions likely retarded the processing of the isolated 8-oxoG and resulted in enhanced mutation frequency. However, the enhanced mutagenic potential was dependent on which strand the isolated 8-oxoG was located. Our results indicate that the processing of a bi-stranded cluster could affect the mutagenic outcome of a nearby isolated lesion, separated up to ∼20 bp.
Collapse
Affiliation(s)
- Naoya Shikazono
- Department of Quantum life Science, Quantum Beam Science Research Directorate, National Institutes of Quantum and Radiological Science and Technology, 8-1-7 Umemidai, Kizugawa-shi, Kyoto, 619-0215 Japan.
| | - Ken Akamatsu
- Department of Quantum life Science, Quantum Beam Science Research Directorate, National Institutes of Quantum and Radiological Science and Technology, 8-1-7 Umemidai, Kizugawa-shi, Kyoto, 619-0215 Japan.
| |
Collapse
|
6
|
Sage E, Shikazono N. Radiation-induced clustered DNA lesions: Repair and mutagenesis. Free Radic Biol Med 2017; 107:125-135. [PMID: 27939934 DOI: 10.1016/j.freeradbiomed.2016.12.008] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 12/18/2022]
Abstract
Clustered DNA lesions, also called Multiply Damaged Sites, is the hallmark of ionizing radiation. It is defined as the combination of two or more lesions, comprising strand breaks, oxidatively generated base damage, abasic sites within one or two DNA helix turns, created by the passage of a single radiation track. DSB clustered lesions associate DSB and several base damage and abasic sites in close vicinity, and are assimilated to complex DSB. Non-DSB clustered lesions comprise single strand break, base damage and abasic sites. At radiation with low Linear Energy Transfer (LET), such as X-rays or γ-rays clustered DNA lesions are 3-4 times more abundant than DSB. Their proportion and their complexity increase with increasing LET; they may represent a large part of the damage to DNA. Studies in vitro using engineered clustered DNA lesions of increasing complexity have greatly enhanced our understanding on how non-DSB clustered lesions are processed. Base excision repair is compromised, the observed hierarchy in the processing of the lesions within a cluster leads to the formation of SSB or DSB as repair intermediates and increases the lifetime of the lesions. As a consequence, the chances of mutation drastically increase. Complex DSB, either formed directly by irradiation or by the processing of non-DSB clustered lesions, are repaired by slow kinetics or left unrepaired and cause cell death or pass mitosis. In surviving cells, large deletions, translocations, and chromosomal aberrations are observed. This review details the most recent data on the processing of non-DSB clustered lesions and complex DSB and tends to demonstrate the high significance of these specific DNA damage in terms of genomic instability induction.
Collapse
Affiliation(s)
- Evelyne Sage
- Institut Curie, PSL Research University, CNRS, UMR3347, F-91405 Orsay, France.
| | - Naoya Shikazono
- Quantum Beam Science Research Directorate, National Institutes of Quantum and Radiological Science and Technology, Kansai Photon Science Institute, 8-1-7 Umemidai, Kizugawa-Shi, Kyoto 619-0215, Japan.
| |
Collapse
|
7
|
End-processing nucleases and phosphodiesterases: An elite supporting cast for the non-homologous end joining pathway of DNA double-strand break repair. DNA Repair (Amst) 2016; 43:57-68. [PMID: 27262532 DOI: 10.1016/j.dnarep.2016.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 11/20/2022]
Abstract
Nonhomologous end joining (NHEJ) is an error-prone DNA double-strand break repair pathway that is active throughout the cell cycle. A substantial fraction of NHEJ repair events show deletions and, less often, insertions in the repair joints, suggesting an end-processing step comprising the removal of mismatched or damaged nucleotides by nucleases and other phosphodiesterases, as well as subsequent strand extension by polymerases. A wide range of nucleases, including Artemis, Metnase, APLF, Mre11, CtIP, APE1, APE2 and WRN, are biochemically competent to carry out such double-strand break end processing, and have been implicated in NHEJ by at least circumstantial evidence. Several additional DNA end-specific phosphodiesterases, including TDP1, TDP2 and aprataxin are available to resolve various non-nucleotide moieties at DSB ends. This review summarizes the biochemical specificities of these enzymes and the evidence for their participation in the NHEJ pathway.
Collapse
|
8
|
Calugaru V, Nauraye C, Cordelières FP, Biard D, De Marzi L, Hall J, Favaudon V, Mégnin-Chanet F. Involvement of the Artemis protein in the relative biological efficiency observed with the 76-MeV proton beam used at the Institut Curie Proton Therapy Center in Orsay. Int J Radiat Oncol Biol Phys 2014; 90:36-43. [PMID: 25195988 DOI: 10.1016/j.ijrobp.2014.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/25/2014] [Accepted: 05/14/2014] [Indexed: 12/27/2022]
Abstract
PURPOSE Previously we showed that the relative biological efficiency for induced cell killing by the 76-MeV beam used at the Institut Curie Proton Therapy Center in Orsay increased with depth throughout the spread-out Bragg peak (SOBP). To investigate the repair pathways underlying this increase, we used an isogenic human cell model in which individual DNA repair proteins have been depleted, and techniques dedicated to precise measurements of radiation-induced DNA single-strand breaks (SSBs) and double-strand breaks (DSBs). METHODS AND MATERIALS The 3-Gy surviving fractions of HeLa cells individually depleted of Ogg1, XRCC1, and PARP1 (the base excision repair/SSB repair pathway) or of ATM, DNA-PKcs, XRCC4, and Artemis (nonhomologous end-joining pathway) were determined at the 3 positions previously defined in the SOBP. Quantification of incident SSBs and DSBs by the alkaline elution technique and 3-dimensional (3D) immunofluorescence of γ-H2AX foci, respectively, was performed in SQ20 B cells. RESULTS We showed that the amount of SSBs and DSBs depends directly on the particle fluence and that the increase in relative biological efficiency observed in the distal part of the SOBP is due to a subset of lesions generated under these conditions, leading to cell death via a pathway in which the Artemis protein plays a central role. CONCLUSIONS Because therapies like proton or carbon beams are now being used to treat cancer, it is even more important to dissect the mechanisms implicated in the repair of the lesions generated by these particles. Additionally, alteration of the expression or activity of the Artemis protein could be a novel therapeutic tool before high linear energy transfer irradiation treatment.
Collapse
Affiliation(s)
- Valentin Calugaru
- Institut Curie Centre de Protonthérapie d'Orsay, Centre Universitaire, Orsay, France; Institut Curie, Centre Universitaire, Orsay, France; INSERM U612, Centre Universitaire, Orsay, France
| | - Catherine Nauraye
- Institut Curie Centre de Protonthérapie d'Orsay, Centre Universitaire, Orsay, France
| | | | - Denis Biard
- Centre d'Etude Atomique, Direction des Sciences du Vivant, Institut des Maladies Emergentes et des Thérapies Innovantes, Service d'Etude des Prions et des Infections Atypiques, Fontenay-aux-Roses, France
| | - Ludovic De Marzi
- Institut Curie Centre de Protonthérapie d'Orsay, Centre Universitaire, Orsay, France
| | - Janet Hall
- Institut Curie, Centre Universitaire, Orsay, France; INSERM U612, Centre Universitaire, Orsay, France
| | - Vincent Favaudon
- Institut Curie, Centre Universitaire, Orsay, France; INSERM U612, Centre Universitaire, Orsay, France
| | - Frédérique Mégnin-Chanet
- Institut Curie, Centre Universitaire, Orsay, France; INSERM U612, Centre Universitaire, Orsay, France.
| |
Collapse
|