1
|
Zuo M, Ye M, Lin H, Liao S, Xing X, Liu J, Wu D, Huang Z, Ren X. Mitochondrial Dysfunction in Environmental Toxicology: Mechanisms, Impacts, and Health Implications. Chem Res Toxicol 2024; 37:1794-1806. [PMID: 39485318 DOI: 10.1021/acs.chemrestox.4c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Mitochondria, pivotal to cellular metabolism, serve as the primary sources of biological energy and are key regulators of intracellular calcium ion storage, crucial for maintaining cellular calcium homeostasis. Dysfunction in these organelles impairs ATP synthesis, diminishing cellular functionality. Emerging evidence implicates mitochondrial dysfunction in the etiology and progression of diverse diseases. Environmental factors that induce mitochondrial dysregulation raise significant public health concerns, necessitating a nuanced comprehension and classification of mitochondrial-related hazards. This review systematically adopts a toxicological perspective to illuminate the biological functions of mitochondria, offering a comprehensive exploration of how toxicants instigate mitochondrial dysfunction. It delves into the disruption of energy metabolism, the initiation of mitochondrial fragility and autophagy, and the induction of mutations in mitochondrial DNA by mutagens. The overarching objective is to enhance our understanding of the repercussions of mitochondrial damage on human health.
Collapse
Affiliation(s)
- Mingyang Zuo
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Mingqi Ye
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Haofeng Lin
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Shicheng Liao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiumei Xing
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Desheng Wu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Zhenlie Huang
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
2
|
Rodriguez AA, Wojtaszek JL, Greer BH, Haldar T, Gates KS, Williams RS, Eichman BF. An autoinhibitory role for the GRF zinc finger domain of DNA glycosylase NEIL3. J Biol Chem 2020; 295:15566-15575. [PMID: 32878989 PMCID: PMC7667957 DOI: 10.1074/jbc.ra120.015541] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/30/2020] [Indexed: 01/07/2023] Open
Abstract
The NEIL3 DNA glycosylase maintains genome integrity during replication by excising oxidized bases from single-stranded DNA (ssDNA) and unhooking interstrand cross-links (ICLs) at fork structures. In addition to its N-terminal catalytic glycosylase domain, NEIL3 contains two tandem C-terminal GRF-type zinc fingers that are absent in the other NEIL paralogs. ssDNA binding by the GRF-ZF motifs helps recruit NEIL3 to replication forks converged at an ICL, but the nature of DNA binding and the effect of the GRF-ZF domain on catalysis of base excision and ICL unhooking is unknown. Here, we show that the tandem GRF-ZFs of NEIL3 provide affinity and specificity for DNA that is greater than each individual motif alone. The crystal structure of the GRF domain shows that the tandem ZF motifs adopt a flexible head-to-tail configuration well-suited for binding to multiple ssDNA conformations. Functionally, we establish that the NEIL3 GRF domain inhibits glycosylase activity against monoadducts and ICLs. This autoinhibitory activity contrasts GRF-ZF domains of other DNA-processing enzymes, which typically use ssDNA binding to enhance catalytic activity, and suggests that the C-terminal region of NEIL3 is involved in both DNA damage recruitment and enzymatic regulation.
Collapse
Affiliation(s)
- Alyssa A Rodriguez
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jessica L Wojtaszek
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Briana H Greer
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Tuhin Haldar
- Department of Chemistry, University of Missouri, Columbia, Missouri, USA
| | - Kent S Gates
- Department of Chemistry, University of Missouri, Columbia, Missouri, USA
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA.
| | - Brandt F Eichman
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
3
|
Baran SW, Gupta AD, Lim MA, Mathur A, Rowlands DJ, Schaevitz LR, Shanmukhappa SK, Walker DB. Continuous, Automated Breathing Rate and Body Motion Monitoring of Rats With Paraquat-Induced Progressive Lung Injury. Front Physiol 2020; 11:569001. [PMID: 33178039 PMCID: PMC7596732 DOI: 10.3389/fphys.2020.569001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/08/2020] [Indexed: 01/14/2023] Open
Abstract
Assessments of respiratory response and animal activity are useful endpoints in drug pharmacology and safety research. We investigated whether continuous, direct monitoring of breathing rate and body motion in animals in the home cage using the Vum Digital Smart House can complement standard measurements in enabling more granular detection of the onset and severity of physiologic events related to lung injury in a well-established rodent model of paraquat (PQ) toxicity. In rats administered PQ, breathing rate was significantly elevated while body motion was significantly reduced following dosing and extending throughout the 14-day study duration for breathing rate and at least 5 days for both nighttime and daytime body motion. Time course differences in these endpoints in response to the potential ameliorative test article bardoxolone were also readily detected. More complete than standard in-life measurements, breathing rate and body motion tracked injury progression continuously over the full study time period and aligned with, and informed on interval changes in clinical pathology. In addition, breathing rates correlated with terminal pathology measurements, such as normalized lung weights and histologic alveolar damage and edema. This study is a preliminary evaluation of the technology; our results demonstrate that continuously measured breathing rate and body motion served as physiologically relevant readouts to assess lung injury progression and drug response in a respiratory injury animal model.
Collapse
Affiliation(s)
- Szczepan W Baran
- Emerging Technologies, Laboratory Animal Services, Scientific Operations, Novartis Institutes for BioMedical Research (NIBR), Inc., Cambridge, MA, United States
| | - Ayan Das Gupta
- Clinical Development & Analytics (CD&A), Novartis Healthcare Pvt Ltd., Hyderabad, India
| | | | - Ashwini Mathur
- Data Science and AI, Novartis Ireland Ltd., Dublin, Ireland
| | - David J Rowlands
- Respiratory Diseases, Novartis Institutes for BioMedical Research (NIBR), Inc., Cambridge, MA, United States
| | | | - Shiva K Shanmukhappa
- Preclinical Safety Assessment, Vertex Pharmaceuticals, Boston, MA, United States.,Discovery Investigative Safety, Novartis Institutes for BioMedical Research (NIBR), Inc., Cambridge, MA, United States
| | - Dana B Walker
- Discovery Investigative Safety, Novartis Institutes for BioMedical Research (NIBR), Inc., Cambridge, MA, United States
| |
Collapse
|
4
|
Do JP, Defensor EB, Ichim CV, Lim MA, Mechanic JA, Rabe MD, Schaevitz LR. Automated and Continuous Monitoring of Animal Welfare through Digital Alerting. Comp Med 2020; 70:313-327. [PMID: 32414427 PMCID: PMC7446638 DOI: 10.30802/aalas-cm-19-000090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A primary goal in preclinical animal research is respectful and responsible care aimed toward minimizing stress and discomfort while enhancing collection of accurate and reproducible scientific data. Researchers use hands-on clinical observations and measurements as part of routine husbandry procedures or study protocols to monitor animal welfare. Although frequent assessments ensure the timely identification of animals with declining health, increased handling can result in additional stress on the animal and increased study variability. We investigated whether automated alerting regarding changes in behavior and physiology can complement existing welfare assessments to improve the identification of animals in pain or distress. Using historical data collected from a diverse range of therapeutic models, we developed algorithms that detect changes in motion and breathing rate frequently associated with sick animals but rare in healthy controls. To avoid introducing selec- tion bias, we evaluated the performance of these algorithms by using retrospective analysis of all studies occurring over a 31-d period in our vivarium. Analyses revealed that the majority of the automated alerts occurred prior to or simultaneously with technicians' observations of declining health in animals. Additional analyses performed across the entire duration of 2 studies (animal models of rapid aging and lung metastasis) demonstrated the sensitivity, accuracy, and utility of automated alerting for detecting unhealthy subjects and those eligible for humane endpoints. The percentage of alerts per total subject days ranged between 0% and 24%, depending on the animal model. Automated alerting effectively complements standard clinical observations to enhance animal welfare and promote responsible scientific advancement.
Collapse
|
5
|
Mumby S, Chung KF, Adcock IM. Transcriptional Effects of Ozone and Impact on Airway Inflammation. Front Immunol 2019; 10:1610. [PMID: 31354743 PMCID: PMC6635463 DOI: 10.3389/fimmu.2019.01610] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/27/2019] [Indexed: 12/24/2022] Open
Abstract
Epidemiological and challenge studies in healthy subjects and in individuals with asthma highlight the health impact of environmental ozone even at levels considered safe. Acute ozone exposure in man results in sputum neutrophilia in 30% of subjects particularly young children, females, and those with ongoing cardiopulmonary disease. This may be associated with systemic inflammation although not in all cases. Chronic exposure amplifies these effects and can result in the formation of asthma-like symptoms and immunopathology. Asthmatic patients who respond to ozone (responders) induce a greater number of genes in bronchoalveolar (BAL) macrophages than healthy responders with up-regulation of inflammatory and immune pathways under the control of cytokines and chemokines and the enhanced expression of remodeling and repair programmes including those associated with protease imbalances and cell-cell adhesion. These pathways are under the control of several key transcription regulatory factors including nuclear factor (NF)-κB, anti-oxidant factors such as nuclear factor (erythroid-derived 2)-like 2 NRF2, the p38 mitogen activated protein kinase (MAPK), and priming of the immune system by up-regulating toll-like receptor (TLR) expression. Murine and cellular models of acute and chronic ozone exposure recapitulate the inflammatory effects seen in humans and enable the elucidation of key transcriptional pathways. These studies emphasize the importance of distinct transcriptional networks in driving the detrimental effects of ozone. Studies indicate the critical role of mediators including IL-1, IL-17, and IL-33 in driving ozone effects on airway inflammation, remodeling and hyperresponsiveness. Transcription analysis and proof of mechanisms studies will enable the development of drugs to ameliorate the effects of ozone exposure in susceptible individuals.
Collapse
Affiliation(s)
- Sharon Mumby
- Respiratory Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kian Fan Chung
- Respiratory Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- Respiratory Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Baptiste BA, Katchur SR, Fivenson EM, Croteau DL, Rumsey WL, Bohr VA. Enhanced mitochondrial DNA repair of the common disease-associated variant, Ser326Cys, of hOGG1 through small molecule intervention. Free Radic Biol Med 2018; 124:149-162. [PMID: 29879444 PMCID: PMC6098717 DOI: 10.1016/j.freeradbiomed.2018.05.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/22/2022]
Abstract
The common oxidatively generated lesion, 8-oxo-7,8-dihydroguanine (8-oxoGua), is removed from DNA by base excision repair. The glycosylase primarily charged with recognition and removal of this lesion is 8-oxoGuaDNA glycosylase 1 (OGG1). When left unrepaired, 8-oxodG alters transcription and is mutagenic. Individuals homozygous for the less active OGG1 allele, Ser326Cys, have increased risk of several cancers. Here, small molecule enhancers of OGG1 were identified and tested for their ability to stimulate DNA repair and protect cells from the environmental hazard paraquat (PQ). PQ-induced mtDNA damage was inversely proportional to the levels of OGG1 expression whereas stimulation of OGG1, in some cases, entirely abolished its cellular effects. The PQ-mediated decline of mitochondrial membrane potential or nuclear condensation were prevented by the OGG1 activators. In addition, in Ogg1-/- mouse embryonic fibroblasts complemented with hOGG1S326C, there was increased cellular and mitochondrial reactive oxygen species compared to their wild type counterparts. Mitochondrial extracts from cells expressing hOGG1S326C were deficient in mitochondrial 8-oxodG incision activity, which was rescued by the OGG1 activators. These data demonstrate that small molecules can stimulate OGG1 activity with consequent cellular protection. Thus, OGG1-activating compounds may be useful in select humans to mitigate the deleterious effects of environmental oxidants and mutagens.
Collapse
Affiliation(s)
- Beverly A Baptiste
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Steven R Katchur
- Respiratory Therapy Area, GSK R&D, Collegeville, PA, United States
| | - Elayne M Fivenson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - William L Rumsey
- Respiratory Therapy Area, GSK R&D, Collegeville, PA, United States
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.
| |
Collapse
|
7
|
Zhang S, Li J, Li Y, Liu Y, Guo H, Xu X. Nitric Oxide Synthase Activity Correlates with OGG1 in Ozone-Induced Lung Injury Animal Models. Front Physiol 2017; 8:249. [PMID: 28496412 PMCID: PMC5406453 DOI: 10.3389/fphys.2017.00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/07/2017] [Indexed: 12/12/2022] Open
Abstract
Background: NO is an important cellular signaling molecule which is derived from L-arginine by nitric oxide synthase (NOS) and the effects of NOS signaling in lung injury is conflicting. The present study was designed to observe the effect of NOS and Arginase signaling in the occurrence and development of lung injury and its mechanism. Methods: An ozone-stressed lung injury animal model was established by exposure to 2.0 ppm O3 for 30 min every day for consecutive 12 day with or without the administration of NO precursor L-arginine or non-selective NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME). Then, the lung histopathology, the releases of inflammatory mediators and the production of ROS were assayed by immunohistochemistry, ELISA and flow cytometry respectively. The activities and expression of NOS and Arginase were assayed by biochemical methods and western blot. Correspondingly, the release of 8-oxoguanine glycosylase 1(8-OxoG) and 8-oxoguanine glycosylase 1 (OGG1) were assayed by ELISA and western blot. The correlation between NOS/Arginase signaling with 8-OxoG/ OGG1 was also analyzed by Pearson correlation coefficients and immunofluorescence in NOS deficient bronchial epithelial cells. Results: In ozone-induced rat lung injury models, lung inflammation as well as lung architecture was disrupted in a time dependent manner. Ozone treatment with L-arginine showed a substantial attenuation of adverse lung histopathological changes and treatment with L-NAME promoted the inflammation and remodeling. Importantly, the expression of NOS was promoted by L-arginine and inhibited by L-NAME and the expression of Arginase was promoted by L-NAME treatment. Further, we observed significantly higher levels of 8-OxoG and lower levels of OGG1 in ozone group which was reversed by L-arginine and promoted by L-NAME. The expression of NOS is closely related with 8-OxoG /OCG1. Conclusion: These findings give further evidence that the NOS signaling is related with base excise repair.
Collapse
Affiliation(s)
- Suqin Zhang
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Jianhua Li
- Department of General Surgery, First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Yuqin Li
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Yufeng Liu
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Hongxiang Guo
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Xiaoli Xu
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| |
Collapse
|