1
|
Helm M, Brulé H, Friede D, Giegé R, Pütz D, Florentz C. Search for characteristic structural features of mammalian mitochondrial tRNAs. RNA (NEW YORK, N.Y.) 2000; 6:1356-79. [PMID: 11073213 PMCID: PMC1370008 DOI: 10.1017/s1355838200001047] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A number of mitochondrial (mt) tRNAs have strong structural deviations from the classical tRNA cloverleaf secondary structure and from the conventional L-shaped tertiary structure. As a consequence, there is a general trend to consider all mitochondrial tRNAs as "bizarre" tRNAs. Here, a large sequence comparison of the 22 tRNA genes within 31 fully sequenced mammalian mt genomes has been performed to define the structural characteristics of this specific group of tRNAs. Vertical alignments define the degree of conservation/variability of primary sequences and secondary structures and search for potential tertiary interactions within each of the 22 families. Further horizontal alignments ascertain that, with the exception of serine-specific tRNAs, mammalian mt tRNAs do fold into cloverleaf structures with mostly classical features. However, deviations exist and concern large variations in size of the D- and T-loops. The predominant absence of the conserved nucleotides G18G19 and T54T55C56, respectively in these loops, suggests that classical tertiary interactions between both domains do not take place. Classification of the tRNA sequences according to their genomic origin (G-rich or G-poor DNA strand) highlight specific features such as richness/poorness in mismatches or G-T pairs in stems and extremely low G-content or C-content in the D- and T-loops. The resulting 22 "typical" mammalian mitochondrial sequences built up a phylogenetic basis for experimental structural and functional investigations. Moreover, they are expected to help in the evaluation of the possible impacts of those point mutations detected in human mitochondrial tRNA genes and correlated with pathologies.
Collapse
Affiliation(s)
- M Helm
- Unité Propre de Recherche 9002 du Centre National de la Recherche Scientifique, Département Mécanismes et Macromolécules de la Synthèse Protéique, et Cristallogenèse, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
2
|
Nuclear-mitochondrial coevolution of RNA processing enzymes and cellular function. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/b978-0-444-82235-2.50028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
3
|
Abstract
Differential screening of a cDNA library prepared from mRNA of the hippocampus of estrogen-stimulated ovariectomized female rats led to the identification of a single estrogen-induced clone. Analysis of the sequence identified this cDNA as the gene coding for subunit III of the enzyme cytochrome c oxidase. Cytochrome c oxidase subunit III mRNA levels significantly increased as early as 3 h following the administration of a single dose of hormone. This effect was visible in the hippocampus and in the hypothalamus, but not in the other brain areas examined. Because subunit III of the cytochrome c oxidase is of mitochondrial origin, the mechanism involved in the estrogenic effect is still unknown. The observation that the activity of cytochrome c oxidase can also be induced by estrogens in the hippocampus indicates that this induction may be secondary to the increased expression of the other subunits of cytochrome c oxidase or to the general increase of neuronal activity.
Collapse
Affiliation(s)
- E Bettini
- Milano Molecular Pharmacology Laboratory, University of Milan, Italy
| | | |
Collapse
|
4
|
Yokogawa T, Watanabe Y, Kumazawa Y, Ueda T, Hirao I, Miura K, Watanabe K. A novel cloverleaf structure found in mammalian mitochondrial tRNA(Ser) (UCN). Nucleic Acids Res 1991; 19:6101-5. [PMID: 1840673 PMCID: PMC329096 DOI: 10.1093/nar/19.22.6101] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bovine mitochondrial tRNA(Ser) (UCN) has been thought to have two U-U mismatches at the top of the acceptor stem, as inferred from its gene sequence. However, this unusual structure has not been confirmed at the RNA level. In the course of investigating the structure and function of mitochondrial tRNAs, we have isolated the bovine liver mitochondrial tRNA(Ser) (UCN) and determined its complete sequence including the modified nucleotides. Analysis of the 5'-terminal nucleotide and enzymatic determination of the whole sequence of tRNA(Ser) (UCN) revealed that the tRNA started from the third nucleotide of the putative tRNA(Ser) (UCN) gene, which had formerly been supposed. Enzymatic probing of tRNA(Ser) (UCN) suggests that the tRNA possesses an unusual cloverleaf structure with the following characteristics. (1) There exists only one nucleotide between the acceptor stem with 7 base pairs and the D stem with 4 base pairs. (2) The anticodon stem seems to consist of 6 base pairs. Since the same type of cloverleaf structure as above could be constructed only for mitochondrial tRNA(Ser) (UCN) genes of mammals such as human, rat and mouse, but not for those of non-mammals such as chicken and frog, this unusual secondary structure seems to be conserved only in mammalian mitochondria.
Collapse
Affiliation(s)
- T Yokogawa
- Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Sprinzl M, Dank N, Nock S, Schön A. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 1991; 19 Suppl:2127-71. [PMID: 2041802 PMCID: PMC331350 DOI: 10.1093/nar/19.suppl.2127] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- M Sprinzl
- Laboratorium für Biochemie, Universität Bayreuth, FRG
| | | | | | | |
Collapse
|
6
|
Chapter 7 Mitochondrial tRNAs; Stricture, Modified Nucleosides and Codon Reading Patterns. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/s0301-4770(08)61493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
7
|
Gadaleta G, Pepe G, De Candia G, Quagliariello C, Sbisà E, Saccone C. The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol 1989; 28:497-516. [PMID: 2504926 DOI: 10.1007/bf02602930] [Citation(s) in RCA: 388] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This paper reports the nucleotide sequence of rat mitochondrial DNA, only the fourth mammalian mitochondrial genome to be completely sequenced. Extensive comparative studies performed with similar genomes from other organisms revealed a number of interesting features. 1) Messenger RNA genes: the codon strategy is mainly dictated by the base compositional constraints of the corresponding codogenic DNA strand. The usage of the initiation and termination codons follows well-established rules. In general the canonical initiator, ATG, and terminators, TAA and TAG (in rat, only TAA), are always present when there is gene overlapping or when the mRNAs possess untranslated nucleotides at the 5' or 3' ends. 2) Transfer RNA genes: a number of features suggest the peculiar evolutionary behavior of this class of genes and confirm their role in the duplication and rearrangement processes that took place in the evolution of the animal mitochondrial genome. 3) Ribosomal RNA genes: accurate sequence analysis revealed a number of significant examples of complementarity between ribosomal and messenger RNAs. This suggests that they might play an important role in the regulation of mitochondrial translation and transcription mechanisms. The properties revealed by our work shed new light on the organization and evolution of the vertebrate mitochondrial genome and more importantly open up the way to clearly aimed experimental studies of the regulatory mechanisms in mitochondria.
Collapse
Affiliation(s)
- G Gadaleta
- Centro di Studio sui Mitocondri e Metabolismo Energetico, CNR Bari, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Cantatore P, Gadaleta MN, Roberti M, Saccone C, Wilson AC. Duplication and remoulding of tRNA genes during the evolutionary rearrangement of mitochondrial genomes. Nature 1987; 329:853-5. [PMID: 3670390 DOI: 10.1038/329853a0] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During the evolution of sea urchins, a transfer RNA gene lost its tRNA function and became part of a protein-coding gene. This functional loss of a tRNA with specificity for one group of leucine codons (CUN, where N is any base) was accompanied by the gain of a new tRNA with that specificity. The new tRNA gene for CUN codons appears to have evolved by duplication and divergence from a tRNA gene specific for another group of leucine codons (UUR, where R is a purine). These proposals account for (1) the strong sequence resemblance between the modern tRNA genes for CUN and UUR codons in Paracentrotus, (2) the altered location of the CUN gene in mitochondrial DNA of this urchin, and (3) the persistence of a 72-base pair sequence containing a trace of the old CUN gene at its original location. The old CUN gene now codes for an extra 24 amino acids at the amino end of subunit 5 in NADH dehydrogenase. Besides giving clues about the mechanisms by which tRNA genes move during mitochondrial DNA evolution, this finding leads us to propose a pathway relating the arrangements of other genes in mitochondrial DNAs from four animal phyla.
Collapse
Affiliation(s)
- P Cantatore
- CSMME del CNR e Dipartimento di Biochimica e Biologia Molecolare, Universita di Bari
| | | | | | | | | |
Collapse
|
9
|
Biogenesis of Mammalian Mitochondria. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/b978-0-12-152515-6.50012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
Mitochondrial Gene Products. CURRENT TOPICS IN BIOENERGETICS - STRUCTURE, BIOGENESIS, AND ASSEMBLY OF ENERGY TRANSDUCING ENZYME SYSTEMS 1987. [DOI: 10.1016/b978-0-12-152515-6.50014-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Cantatore P, Saccone C. Organization, structure, and evolution of mammalian mitochondrial genes. INTERNATIONAL REVIEW OF CYTOLOGY 1987; 108:149-208. [PMID: 3312065 DOI: 10.1016/s0074-7696(08)61438-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- P Cantatore
- Department of Biochemistry and Molecular Biology, University of Bari, Italy
| | | |
Collapse
|
12
|
Brown GG, Gadaleta G, Pepe G, Saccone C, Sbisà E. Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. J Mol Biol 1986; 192:503-11. [PMID: 3560225 DOI: 10.1016/0022-2836(86)90272-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The nucleotide sequences of the D-loop-containing regions of three rat mitochondrial DNAs (mtDNAs), two from the species Rattus norvegicus and one from R. rattus, were determined. Comparisons made among these sequences and with the mouse sequence showed that, on the basis of both base composition and frequency of nucleotide alterations, three domains could be defined within the D-loop-containing region: a central conserved segment, poor in L-strand adenine, flanked by two divergent, adenine-rich regions. Deletions and insertions were found to occur at an unexpectedly high frequency in these sequences and the conserved sequence block called CSB-1 was found not to be intact in the R. rattus sequence. Although in comparisons of more distantly related mtDNAs the D-loop region is the most divergent on the molecule, it does not diverge more than typical protein genes between R. norvegicus and R. rattus, and its central conserved domain appears to be one of the molecule's most conserved regions. The most variable domain borders the tRNAPhe gene and contains the L and H-strand promoters and the 5' terminus for H-strand DNA synthesis. Within this region we have found sequences in all the mtDNAs we have examined, including those of human, two artiodactyls and Xenopus, that are capable of folding into cloverleaf structures. In the other divergent domain of the same mtDNAs, we find sequences capable of assuming similar secondary structural configurations at or near the sites for the termination of D-loop DNA synthesis. The evolutionary preservation of the potential to form such structures despite the high primary-structural divergence of the regions they occur in, suggests the structures are of principal importance for some processes occurring in the D-loop-containing region.
Collapse
|
13
|
Cantatore P, Polosa PL, Fracasso F, Flagella Z, Gadaleta MN. Quantitation of mitochondrial RNA species during rat liver development: the concentration of cytochrome oxidase subunit I (CoI) mRNA increases at birth. CELL DIFFERENTIATION 1986; 19:125-32. [PMID: 2428507 DOI: 10.1016/0045-6039(86)90069-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A quantitative study on the concentration of mitochondrial DNA and two species of mtRNA, the ribosomal (16S rRNA) and messenger (CoI mRNA) has been carried out in rat liver between -3 and 14 days of age. The cellular content of mitochondrial DNA begins to increase at one day of life and goes up linearly until 14 days of age. The cellular level of 16S rRNA and CoI mRNA changes during development: the 16S rRNA increases linearly after birth, whereas CoI mRNA shows a peak at birth and thereafter remains more or less constant. The concentration of 16S rRNA per mitochondrial DNA molecule remains substantially unchanged during development, whereas that of CoI mRNA increases before birth and, at birth, reaches values higher than in adults. These results support an independent regulation of mitochondrial rRNA and mRNA level in rat liver mitochondria during development.
Collapse
|
14
|
Lanave C, Tommasi S, Preparata G, Saccone C. Transition and transversion rate in the evolution of animal mitochondrial DNA. Biosystems 1986; 19:273-83. [PMID: 3801602 DOI: 10.1016/0303-2647(86)90004-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We present a further application of the stochastic model previously described (Lanave et al., 1984, 1985) for measuring the nucleotide substitution rate in the mammalian evolution of the mitochondrial DNA (mtDNA). The applicability of this method depends on the validity of "stationarity conditions" (equal nucleotide frequencies at first, second and third silent codon positions in homologous protein coding genes). In the comparison of homologous sequences satisfying the stationarity condition at the silent sites, only the four codon families (quartets) for which both transitions and transversions are silent at the third position are considered here. This has allowed us to estimate the transition and transversion rates for any pair of species. We have analyzed the third silent codon position of the triplet rat-mouse-cow, of a series of slightly divergent primates and of two Drosophila species. In terms of two external dating input we have then determined the phylogenetic trees for rat, mouse, and cow as well as for a number of primates including man. The phylogenetic tree that we have derived for the triplet rat, mouse and cow agrees with that we had previously determined by analyzing the first, second and third silent codon positions (in both duets and quartets) of mt genes (Lanave et al., 1985). For primates our method leads to the following branching order from the oldest to the most recent: Gibbon, Orangutan, Gorilla, Chimpanzee and Man. In absolute time, fixing the distance Chimpanzee-Man as 5 million years (Myr) we estimate the dating of the divergence nodes as: Gorilla 7 Myr; Orangutan 16 Myr; Gibbon 20 Myr. In all cases analyzed, the transition rate has been found to be substantially higher than the transversion rate. Moreover we have found that the transition/transversion ratio is different in the various lineages. We suggest that this fact is probably related to the nucleotide frequencies at the third silent codon position.
Collapse
|
15
|
Abstract
In analyzing the silent nucleotide substitutions in some mammalian mitochondrial mRNA coding genes, we had found that the frequency of each of the four nucleotides in rat, mouse, and cow, but not in humans, is the same in the silent third codon position (Lanave C, Preparata G, Saccone C, Serio G (1984) J Mol Evol 20:86-93). Because our findings for these three species were compatible with a stationary Markov process for the evolution of nucleotide sequences, we applied such a model to calculate the effective evolutionary silent substitution rate (vs) and the divergence times among the species. In this paper we have analyzed the first and second codon positions in the same mammalian mitochondrial genes. We found that in the first and second codon positions the human mitochondrial genes satisfy the stationarity conditions. This has allowed us to use the stochastic model mentioned above to calculate the divergence times among mouse, rat, cow, and human. Furthermore, we have analyzed the silent substitution rate in one nuclear gene for these four mammals. We found that in this gene the effective silent substitution rate is about 3 times lower than in mitochondrial genes, and that humans are in this case stationary with respect to the other three mammals in the third codon position as well. Application of our Markov model to this latter gene yields divergence times consistent with our previous determinations.
Collapse
|
16
|
Attardi G. Animal mitochondrial DNA: an extreme example of genetic economy. INTERNATIONAL REVIEW OF CYTOLOGY 1985; 93:93-145. [PMID: 3891661 DOI: 10.1016/s0074-7696(08)61373-x] [Citation(s) in RCA: 222] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Lanave C, Preparata G, Saccone C, Serio G. A new method for calculating evolutionary substitution rates. J Mol Evol 1984; 20:86-93. [PMID: 6429346 DOI: 10.1007/bf02101990] [Citation(s) in RCA: 907] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this paper we present a new method for analysing molecular evolution in homologous genes based on a general stationary Markov process. The elaborate statistical analysis necessary to apply the method effectively has been performed using Monte Carlo techniques. We have applied our method to the silent third position of the codon of the five mitochondrial genes coding for identified proteins of four mammalian species (rat, mouse, cow and man). We found that the method applies satisfactorily to the three former species, while the last appears to be outside the scope of the present approach. The method allows one to calculate the evolutionarily effective silent substitution rate (vs) for mitochondrial genes, which in the species mentioned above is 1.4 X 10(-8) nucleotide substitutions per site per year. We have also determined the divergence time ratios between the couples mouse-cow/rat-mouse and rat-cow/rat-mouse. In both cases this value is approximately 1.4.
Collapse
|
18
|
Pusyriov AT, Mazo AM, Minchenko AG, Avdonina TA. Transcriptional mapping of the rat liver mitochondrial genome. Gene 1983; 24:115-24. [PMID: 6628998 DOI: 10.1016/0378-1119(83)90136-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have identified and mapped nine discrete poly(A)-containing RNAs (RNA-2 to RNA-10) transcribed from rat liver mitochondrial DNA. The 5'-terminal fragments have been sequenced in five of these. The transcriptional map of rat mitochondrial DNA is homologous to those for mitochondrial DNAs of man and mice. The 5'-terminal nucleotide sequences of poly(A)-containing RNAs from rat liver mitochondria are similar in structure to those of HeLa cells studied by other authors; none of them have leader sequences.
Collapse
|
19
|
Clary DO, Wahleithner JA, Wolstenholme DR. Transfer RNA genes in Drosophila mitochondrial DNA: related 5' flanking sequences and comparisons to mammalian mitochondrial tRNA genes. Nucleic Acids Res 1983; 11:2411-25. [PMID: 6304652 PMCID: PMC325893 DOI: 10.1093/nar/11.8.2411] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Genes for tRNAgly and tRNAserUCN have been identified within sequences of mtDNA of Drosophila yakuba. The tRNAgly gene lies between the genes for cytochrome c oxidase subunit III and URF3, and all three of these genes are contained in the same strand of the mtDNA molecule. The tRNAserUCN gene is adjacent to the URF1 gene. These genes are contained in opposite strands of the mtDNA molecule and their 3' ends overlap. The structures of the tRNAgly and tRNAserUCN genes, and of the four tRNA genes of D. yakuba mtDNA reported earlier (tRNAile, tRNAgln, tRNAf-met and tRNAval) are compared to each other, to non-organelle tRNAs, and to corresponding mammalian mitochondrial tRNA genes. Within 19 nucleotides upstream from the 5' terminal nucleotide of each of the Drosophila mitochondrial tRNAgly, tRNAserUCN, tRNAile, tRNAgln and tRNAf-met genes occurs the sequence 5'TTTATTAT, or a sequence differing from it by one nucleotide substitution. Upstream from this octanucleotide sequence, and separated from it by 3, 4 and 11 nucleotides, respectively, in the 5' flanking regions of the tRNAile, tRNAserUCN and tRNAgly genes occurs the sequence 5'GATGAG.
Collapse
|